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A b s t r a c t  

In this paper, we construct a kind of bivariate real-valued orthogonal periodic wavelets. The corre- 

sponding decomposition and reconstructwn algorithms involve only 8 terms respectively which are very 

simple in practical computation. Moreover, the relation between pe~iodic wavelets and Fourier series is 

also discussed. 
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1 In t roduc t ion  and Nota t ions  

Wavelet analysis is a kind of well known and widely used mathematical method in such 

areas as signal processing and image processing etc.. It is well known that, in application areas, 

periodization method is the important approach to deal with periodic problems and boundary 

phenomena. 

In [1], Y. Meyer studied periodic wavelets first by periodizing known wavelets. Since then, 

the theory of periodic wavelets has been developed rapidly (cf. e.g., [2-10]). In multidimension 

settings, Liang, Jin and Chen[ 1I] constructed a class of bivariate orthogonal periodic wavelets 

associated with box spline functions. But, the wavelets are complex-valued. Goh, Lee, and 

Teo [12l studied the multidimensional periodic multiwavelets. Chen and Li[ la] investigated the 

multidimensional biorthogonal periodic muttiwavelets. In [7], a general construction method of 
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univariate real-valued orthogonal periodic wavelets was given. The corresponding decomposition 

and reconstruction algorithms are simple. 

In this paper, we are interested in generalizing the construction method in [7] to bivariate 

setting. That  is, we shall constructed a class of bivariate orthogonal periodic wavelets and the 

corresponding decomposition and reconstruction algorithms are very simple. It should be pointed 

out that our construction method is not a simple generalization of the counterpart in univariate 

setting. 

This paper is organized as follows. In sections 2, we will construct a bivariate periodic 

multiresolution analysis associated with a class of special functions. In section 3, we will construct 

the corresponding periodic scaling functions and the periodic wavelets which are orthogonal. 

There are only 8 terms in tile two-scale dilation equations. In sections 4, we will establish the 

decomposition and reconstruction algorithms. Section 5 discusses the relation between periodic 

wavelets and Fourier series. We will give an example to illustrate our conclusions in section 6. 

We will use the following notations. 

Let T = Kh, where K is a positive even integer and h is a positive real number. Suppose 

that  K = 2N. Let Nj := 2JN, Kj := 2JK, and hj := 2-Jh. Denoted by Z(Kj) = {l E Z2; 0 < 

li _< Kj  - 1, i = 1, 2}. Let TT = [0, T] x [0, T]. L2,(TT) represents the set of all periodic, square- 

1 IT .f(x)g(x)dx. integrable functions defined on TT, equipped with the inner product (f, g) = ~-i T 

2 T h e  Pe r iod i c  M u l t i r e s o l u t i o n  Ana lys i s  

In this section, we will construct a so-called bivariate periodic multiresolution analysis. To 

this end, we give its definition first. 

Definition 2.1. A bivariate periodic multiresolution analysis is a nested subspace sequence 

{Vj}j>o satisfying 

(1) 

(2) 

(3) 
Z(KD} 

Vj C Vj+I, for any j > 0. 

Uj>oVj is dense in L2.(TT). 

For any j _ 0, there exists a function fj in Vj such that the hj-shifts of fj:{fj (. -lhj); l E 

produce t~, i.e. 

v; = span{.fj(. - roD; t e z (KD}.  

To construct a bivariate periodic multiresolution analysis, we suppose that a compactly 

supported real valued function w(x) E L2(R 2) satisfies 

(1) For some positive integer p, 2p _< N, the support of w(x): supp w(x) C TT. 
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(2) w(x) is refinable, i.e. there exists {Ck} E 12(Z 2) such that 

w(x) = 4 E CkW(2Z -- kh). 
k E Z  2 

(3) 

(2.1) 

ts2 w(x)dx  # O. (2.2) 

(4) {w(x - lh); 1 - p < l~ <_ K + p - 1,i = 1,2} are linearly independent on TT .  

Remark 2.1. Note that the number of nonzero items in the right summation in the condition 

(2.1) is finite since w(x) is compactly supported. Therefore the the number of the nonzero items 

of refinable sequence {ck} are finite. 

Definition 2.2. For j >_ 0, a E Z 2, the T-periodization of w(x) is defined as 

~J(X) := E w(2J(x - -  AT - a h j ) )  

,kEZ 2 

From the above definition and formula (2.1), we have 

P r o p o s i t i o n  2.1. For any j >_ 0, a E Z 2, the function ft~ defined in Definition 2.1 has 

the following properties: 

(1) f iJ(x + ,kT) : fl~(x), for all ~ E Z "2. 

(2) ftJa(x ) = f2~(x), where "~ e Z ( I ( j )  satisfies: there exists 71 E Z 2 such that a = ~ICj + % 

(3) The function f2~ satisfies the following scaling relation 

f l{(x)  = 4 ~ c flJ+' ' " k k+2~(X), for  x E TT.  (2.3) 
k E Z  ~ 

For j >_ 0, let Vj = span{f~J(x); a E Z(Kj)},  then Vj C Vj+I evidently. Furthermore, by 

generalizing the proofs of Lemma 2.2 and Lemma 2.3 in [7], we can get the following propositions. 

P r o p o s i t i o n  2.2. Uj>oVj = L~(TT) .  

P r o p o s i t i o n  2.3. Suppose fl~(x), a E Z ( K j )  is defined by Definition 2.2, then {fl~(x); a E 

Z ( I f  j ) } is linearly independent in TT ,  hence dim Vj = 1( 2. 

Therefore, we have 

The space sequence {Vj}j>o forms a bivariate periodic multiresolution 

3 T h e  Pe r iod ic  Scal ing Func t ions  and  Wavele t s  

T h e o r e m  2.1. 

analysis in L~(TT) .  

In this section, we will construct the bivariate orthogonal periodic scaling functions and 
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wavelets. To this end, for j _ O, a ~ Z '~, denoted by 

o ~ . = ( K  i - a ~ ,  , - OZj+ 1 : OZ, Otj+ 1 = (oq,Kj -- 0~',), O~j+ 1 2  Or.2), O~j+ 1 3  . 7 - ( I ( j -  0:1 I { j  0~2) . 

For j >_ O, c~, ,~ e g "z , let 

end 

CC~; ~ 2~rAla~ 2zrA2a,2 
: COS - -  COS 

K~ Kj ' 
�9 2~rAlal 2r~2a2 

cca , : ( . )  = ~7 
~EZ(Kj) 

~eZ(K~) 

Then we can easily see that 

2 7 r ) h a l  . 27r~2oz:2 
CSJ~ ;'~ : cos I(j sm 

2~Xla I 2~r12a2 
s s f  ~ 

csa,;(~)= C csFai(~), 
xe Z(Kj) 

ssa,;(~)= Z ssFflr �9 
xez(;q) 

(3.1) 

(a.2) 

P r o p o s i t i o n  3.1. For j > O, [~ E Z 2, we have 

cca~(~) = cca~+,  (~) = c c ~ L  ' (,~) = cca~+,  (~), 

c s a , ; ( ~ }  = - c s a [ ~ , , ( 2 )  = csa[~+,(~)  = -cs%~+, (~ ) ,  

sca3o~ (~) = sc~~Jjj~, (x) = --SC~"~Joli.t. l (X) = -tJ~Cai~_l.l (X), 

SSa~(~ )  = -SSa~; , ,  (~) = --SSn~+, (~) = SSa~L ' (~). 

Moreover, we can prove the following proposition. 

P r o p o s i t i o n  3.2. For j >_ O, a E Z(I(j), then we have 

1 

~eZ(Ks) 

Proof. Recall the following trigonometric identities 

f 

2n-l~ 27rlp 2Mq ~ n, 
__~ coS-~n  cos ~ = 
/=0  2r t ,  

O, 

f o r p + q = O ( m o d 2 n )  a n d p - q C O ( m o d 2 n )  

or p -  q = 0 (mod 2n) and p +  q # 0 (mod 2n), 

f o r p = q = O ( m o d n ) ,  

otherwise. 

F o r a  = (oq,a2)  E Z(KJ ,  al,a,2 ~ {G, Nj}, we have 

ccFccai(~) 
Xez(gj 

= C C .  f ~ . ( z )  

~Z(Ks) ~,ez(gJ 

.eZ(Kj) ~,ez(g~) 

= N](Y~{(x) + n~j+, (x)+ n~y+, (x) + nJsc.j+, (x)). 
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Similarly, we have 

XeZ(K~) 

Z 

Z 

= N ~ ( f l ~ , ( x ) - f l  , ( x ) + f l  , ( x ) - ~  , (x)), A AX ] 

sci,~ = ~j~(f l~(~) + %,+ ,  (=) - n~+ ,  (~) - f l~+ ,  (=)), 

SSI;~ = Nj2(fl~(x) - flJ, (x) - flJ., (x) + fl~3., (x)). 
O./-~ l Oj '{-  1 $ t  

By Proposition 2.1, it is the special case as above that the case e l  or a2 takes 0 or Nj. Therefore, 

we can obtain the proposition. 

For j > 0, denoted by 

I 0  = {O~ = (Oq,O~2) C Z 2 ; 0  _ o q , o t 2  < Nj}, 

I~ = {a = (al,a.~) e Z2;O <_ al <_ N j , I  <_ a.2 <_ Nj - 1 } ,  

I~ = {c~ = (al ,a2) E Z2;l  < ar < Nj - I,O < a.2 < Nj},  

I 3 = {a = ( a , , a2 )  6 Z2;1 _< a l , a 2  < Nj - 1}, 

(3.3) 

then by Proposition 2.3 and Proposition 3.1, we have 

L e m m a  3.1. For j > O, suppose CCfl~(x),  CSfi~(x),  SCfl~(x) and S S ~ ( x )  (a 6 Z "~) 

are defined by (3.2). Let 

cc~ = { c c ~ i ( = ) , .  e I~  csJ = { c s ~ { ( = ) , ~  e iJ } ,  

sc~ = { s c u i ( = ) , ~  e 1]},  ss~ = { s s u ~ ( = ) } , ~  e I ] } .  

Then CCJUCSJUSCJUSS  i forms a basis for Vj, and C C i U C S  i, CCJuSCJ,  S S J u C S  j, S S J u  

SC j are all orthogonal systems. Furthermore, if the functions are in CC j u C S  j USC j u S S  j, then 

fo r  any a, I l C C ~ l l  = IlCSW:ll = IlSCfl~ll = IlSSfl~ll, (OCf l~,SSf l~)  = - ( C S f l ~ , s e f l ~ ) ,  

( c c n L  s s ~ )  = <cs~ ,  s c ~ )  = o, for ~ # ~. 

Proof. First, by formula (3.2), we can see that CC i U C S  j U S C  j U S S  i C V i. On the 

other hand, Proposit ion 3.1 and Proposition 3.2 imply CC j U CSJ U SC j U SS j can span the 

space Vj. In addit ion, the number of the functions in CC i U CS i U SC i U SS j is equal to dim Vj. 

Therefore, CC j U CS j U SC j U SS j forms a basis for Vj. 
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1 J By the definition of CCfl~, for any CCfla, CCflz  6 CC j, we have 

< c c a { , c c @  

: E E cci:~ 
AeZ(Kj) #6Z(IQ) 

= ~ ~ c ~ ; ~ p ~ ; ~ a  ~ n~' 
;~eZ(K~) .~ZtKA 

,-~v A v~+A\-~ O, 

= E E /~PJ;~ /aj o J \  

AeZ(K#) UeZ(K#) 

~eZ(Ki) 

ccl'~ ;' E cct'~ ~̀ 
~eZCKj) 

E ccl;~ `~) 
)~eZ(Ks) 

ueZ(K~) 

- sct'~ E ccl;~ ;~ + ss~;~ 
AeZ(Ki) 

-- E cy,o~. ,o.o,a';) E cc~;~ 
,6z(Ks) XeztKA 

Kj-1 
p j.~ j 2zrAlat 2/rAlfll Ki-1 21rA2a.~ 27rA2~2 

= z_. cc., <ao, a~) E ~os ~ cos ~ r ~  E cos ~ cos~K; 
. e z ( K , )  ~,=o - -  A2=O 

For the case a ,  1~ e I ~ a # B, then (COn j ,  CCft~} = 0. While for a, ]~ e I ~ e = ]~, we have 

IlCOaLII "~ = N} ~ ~;~ J c c t  <ao,a.) 
pEZ(Ks) 

2 J = N}Ca0, ~ cc;ya~> 
ueZ(KD 

2 J j = N)  <a0, cca~,>. 

The other cases are can be similarly proved and the theorem follows. 

Lemma 3.1 gives a basis for Vj, but it is not orthogonal generally. To construct the orthog- 

onal basis for Vj, for all j >_ 0, a E Z 2, we define 

~~ = c c a [ ( ~ )  + ssu~(x), 

r = csa~(~) - sca~(~) ,  

~2' (~) = csa~(~) + scn~ (~), 

~,2~(~) = c c a { ( ~ )  - ssa~(~) .  
(3.4) 

Let 

Then, from Lemma 3.1, we can easily prove the following theorem. 

T h e o r e m  3.1. For j >_ O, a E Z 2, suppose that ~gi(x), i = 0 ,1 ,2 ,3  are defined by (3.4). 

3 

s~, '= {~'2'(~),-e Ij}, i : o,1,2,3, s~ = U s~,'. 
i=O 
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Then S ~ is an orthogonal basis for Vj. In addition, 11~,2=11 = I1~{;~ .fo,-o, e ~; II,.~,)all = [ l~, ;  111, 

fo ,  ~ e z~.. 

Now, we turn to give the scaling relations of the orthogonal basis S ~. 

[ , e m m a  3.2. For j > O, ~ e Z 2, suppose CC~ ;~, CSI ;~ , SCI ;~ and SSI;~; cc~Ja(x), 

CSf lJ  (x), SCf~J (x) and SSf~J (x) are defined by (3.1) and (3.2). Let 

= c k C S k '  , Ck ~,L~ k 
k~Z  2 k~Z  ~ 

~ 4  = E ~sc~ ;~ ~ = E ~ss~;~ 
kEZ 2 k~Z  = 

(3.5) 

Then, we have the following refinable equations 

3 

o, -o,~+,(=), 
i =0  

(3.6) 

where 

and 

r~(x)  = [ccu~(=)  csu~(=) scu~(=) ssu~(=)]', 

. = , _ ~  = , . % , j  , 

A~o= [o-o-~ o-~{ ~o-~ ~,~{],, , { , =  [-o-~{ ,:,-o-~ - , ~ {  ~o-~],, 

.,,,s = [-~o-~ - ~,~ o-o-~ o-~{1,, A~ = [,~,~ -,~o-~ - o-a~ o-,:41'. 

Proof. We need only to prove the first equation in (3.5) and the proofs of the other equa- 

tions are similar. 

ccu{(~) = Z cci;~ 
~CZ(Kj) 

E ccF4 E c,.~+' . k . ( ~ )  
AEZ(K~) kEZ 2 

1 E ccF4Ee~,:~ E r .,+';"+~.."~,'-:'.,-,.,+1, . , - , y c .  . . . .  . , . ,  

A6Z(Ki  ) k6Z  2 "'j+l #6Z(Ki+I  ) 

csJ+l ;kW2A(7 .qOj+l( ,~ '~  s cJ .+ l ; k+2A j-I-l( ~ SSJ.+l;k+2A i-I-l( ~] + , - - . . j ,  ~ j +  , SC f l ,  , x , +  , S S f l ,  ,x,j 

4 
[CC, C C ~ ,  ( x ) + _ _ ,  . . . .  , ~,~j 

g}+l kEZ 2 #EZ(Ki+I  ) 

S S:i+ l ;k.q.qoJ+ 1 +sc~,+l:~sc~,+l(~) + , - - - ,  (~)] Z c c F c c F .  
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By Proposition 3.1, we can get 

3 
CCf~(z)  = "~ ~ Ar ~+~ (~  

i=O 

where -),1 = [1, O, O, O] ~. The proof is finished. 

By the formula (3.3) and Lemma 3.2, we can give the relations between the orthogonal basis 

S j of Vj given in Theorem 3.1 and the orthogonal basis S j+~ of Vj+~. 

T h e o r e m  3.2. The orthogonal basis S j of Vj given in Theorem 3.1 and the orthogonal 

basis S j+~ of Vj+I have the following scaling relations 

3 
~ja(x, ) ~"~ ~ j + l , i ~ j + l  / , (3.7)  

= A. . ,  - ' ~  '~+x (x), 
i=0 

where 

with 

~ ( ~ )  = [~,o(~ / ~21(~) ~ 2 ( ~ )  ~-~(~/ ] ' ,  

[ - ], H~-J'~ ~x~o Aa-j,~ Aa~j,2 A~3 , H a~jJ= ,~ -~xJ'?% -~J'~% ~x t, 

~,~-J,~ = [ -o ,~  + ,~o~ o ,~,~ + ~,,~ o]', ~ ,~  = [o o ~  + ,~,~ o ~o~ - ~,~]'. 

Theorem 3.2 establishes the relations between the orthogonal basis for Vj and Vj+I. Now 

we define Wj as the orthogonal complement of I~ in Vj+I, that is, Wj I Vj and Vj+I = Vj + Wj. 

Denoted by Vj+I = Vj @ Wj, the orthogonal sum of Vj+I. We can conclude that Wj _l_ Wr for 

j # r, and L~(TT) = Vo (9 (~j>oWj). 

Now, by Theorem 3.2, we can construct an orthogonal basis for each Wj. To this end, note 

that [[~d.O[[ = [[~,o11, ][~j,l[[ = [1~3(~,311 if they are in S j. Let 

,~(x) = diag[ll~~ 11~;3 }1 -~, II~f I1-1, I1~d311]-1]~ (x), 

= ( ~  (~)), (~ 2(x)) ,  (r 
3 $ 

Thus, we can rewrite the scaling equation (3.7) as the following form: 

(I)J (X) /~fJ+l  R ~ J + I  t'--~ 

(3.8) 

(3.9) 

where 

~ . . . .  diag[ll,~fl1-1, 11~:311-1, II~'~ ll~d311]-a][Hs '~ ,H,~ ],J'3 
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with 

L ~ a~ 

[ . 

~̂,oI' H~ '3 = ra~,~ ~ - A~:=' - A~:; ,,~,31' 
A'~<~ "<:'~J ' t <'~ ~ ~ '-'o~J 

A~o = ii,~;OllZ,~o := [h~O 0 h~ ~ 0] ~, 

A~2 = II,~'~;~ ~ := [ -h~"  0 h~ ~ 0] ~, 

A ~  '1 11~;311~ ~ := [0 h~ 3 0 ]~j'11t 
= - - ,~0  J , 

A3~3 = jj~<~3jj~3 :=  [0 h~ 1 0 h~3] t. 

We can get a new 2 x 8 matrix Ma j'~ by selecting the nonzero elements in the first and the 

third row of matrix Ma j following their original order, i.e. 

/~faj, 0 = ~ ~ a~ ~  .i j ~  
(3.10) 

We see that  the two rows in matrix M j,~ are orthogonal. Furthermore, the elements in each row 

are the same except for their order and sign. Let 

M a  j,O 

Then we can prove 

-hJo:~ -hJ: j  h~:~ h ~,~ , , "  ~ , ~ : o - h ~ , ~ - h J , ~  
j ~j ~*a~ j t~i ~j 

- h J ~ - h J ~ - h ~  ~ - h ~  h ~,~ hJ~ h~,~ hi,, ~ 
j j aj % aj ~j 

j oj t~j % ~ ~ t~j ~j 

the following lemm~. 

(3.11) 

L e m m a  3.3 The 8 x 8 matrix M~ '~ defined by (3.31) satisfies 

(1) The first two rows in the matrix MJa '~ are the two rows of matrix M j'~ defined in (3.10). 

(2) any pair of rows of M~ '~ is orthogonal. 

(3) The elements in every row of M~ '~ are the same except for their order and sign. 

Simi!arly, for the second row and the forth row of M~, we can get another matrix M~ j,1 with 
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the similar properties as in Lemma 3.3. Let 

R~= 

~16,f16 f16 f16 16 16 f16 f16 
~3 ~'~6 '~8 ,~10,ff12,~13'~15 

~16 f16 /'16 ~r /-16 f16 16 
2 ,~,4 ~,5 , ~,9 ,~11,~14,~16 

[M~,~ 

[M~,I] ' , 

where (~6, i = 1 , . . .  , 16 are 16-dimension unit column vectors whose i-th element is 1 and the 

others are 0. Let 

M j  j j t = [Lo,Ro]  

Then, we rearrange the rows in matrix/VI~ following the order 1, 9, 2, 10, 4, 5, 8, 12, 14, 15, 3, 

6, 7, 10, 11, 13, 16. Denote by G j the new matr ix.  We define the function vector ~J (x)  by the 

following scaling equation 

v~(~) 
= e~+'R~{+'(~) .  (3.12) 

Write q l~ (x )=  [r176 , r  then we have 

T h e o r e m  3.3. For a e Z 2, suppose that the functions r176 ,r  are defined 

o 1, 2}; U j,1 as the above formula (3.12). Let U j'~ = { cJ'k(x), k = 0,1,2, a e I~,ai 7t N j , i  = = 

{r  k = 3 , 4 , 5 ,  ~ e r ) } ;  VJ ,2 = {r  k = 6 , 7 , 8 ,  ~ e I f } ;  V~ ,3 = {r  k = 
j , r  j , s  

9 , 1 0 , 1 1 ,  d~ e 13}~ " U j'4 = {~/)(0,Nj)' r = 1 ,3 ,4 ;  ~)(N,,0), 8 = 2 , 4 , 5 ;  ~/)~rs,Nj), t = 0 , 3 , 5 }  then  the 

function system U j = to~=o Uj'i is an orthogonal basis for Wj.  We call these functions periodic 

wavelets. 

Proof. It is easy to verify that [V{ +']  [G{+I] t is a unit matrix. Namely, any pair of rows 

in G{ is orthogonal. Furthermore, the number of the functions in S j tO U s is equal to dim Vj+I. 

This implies the conclusion. The proof is completed. 

4 D e c o m p o s i t i o n  an d  R e c o n s t r u c t i o n  A l g o r i t h m s  

In this section, we establish the decomposition and reconstruction algorithms corresponding 

to the wavelets constructed in section 3. To this end, for j _> 0, define projection operators P j  

and Qj: L2,(TT) --+ Vj and L2(TT) -~ Wj respectively as follows. For any f ( x )  e L2.(TT), 

~ f =  
3 11 

E EIf, 2> 2, Q;f= E EIf,  i>r 
~elO i=o ~eto i=o 

Here, if the functions ~o j'i and r are not  appeared in S j o r  U j, the corresponding terms in tim 

above summations are assumed to be zero. Similarly conventions are for the other functions.. 
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Denoted by C3d i = (f,q~p~;i>, d~i = <f,~Mdi). Then, for a E I ~ i = 0,1,2,3,  we have 

= (f, 99J~ 'i> 

: ( f  ( l16"~t~J+lR~J+l  , - , ,~,  , ~ a  - - - a  (x)) 

[ f l6)t(7. j+ l /~, j + l  

(4.1) 

with 

Similarly, we have 

C~+ 1 : if, n r  +1 (x)> 

: ( ( f , ~ + l , o ) , . . . ,  (f,~+:,3)), 

= ( 4 + 1 , 0 , . - .  d + l , 3 ~ t  
, a~+ 1 ] " 

dJdi (/'.16 ~t(-2j+lpj+l  
= k'~i+41 ~'~cr v a  �9 (4.2) 

On the contrary, for a E I)~ i 0, 1, 2, 3, we see that one of i = {aj+l ,  i = 0, 1, 2, 3} must be 

in I ~ say, ak+l E I ~ with some k E {0,1,2,3}. Then we have 

= (f,993 +1,i> 

= (7) i f  + Q j f , ~ a  +l,i) 
3 11 

= ( E  E4'r § 
~elo t=0 oelo t=o 

3 

= (E E , j , l f f l 6 , t p _ j + l  D,T~j+I ( ) j + )  

~ely ~=0 
11 

dr( E E AJ'I'F16 'tt"2-J+I D ~ j + l ( ' '  , ~ + 1 , i ,  t~13 k~,l+4) ~-J~J a~ ~ ka.i,Wa / 
aeto t=o 

3 11 
~"~(/.16~tp_j+1/-16 .j , l  

: /__.r ) ~'Ja q4k+i t~a t '  
j + l  

l=O 

(4.3) 

~"~  i l l  6 ~tc~_j+l r 1 6  AJ,l 
+ /_ I,%lfl-4) v a  ~ 4 k + i t * ~  �9 

I=0  

We call (4.1) and (4.2) decomposition formulas and (4.3) the reconstruction formula. For 

there are only 8 nonzero elements in every row or every column of the dilation matrix G~ +1, 

we can see that the decomposition and reconstruction formulas involve only 8 terms which 

is very simple in practical computation. Furthermore, when the underlying function w ( x ) i s  

symmetric, i.e. w(x)  = w(-x ) ,  there are only 4 terms in the scaling relations and the same in 

the decomposition and reconstruction formulas as well. In fact, if w(x)  = w ( - x ) ,  the sequence 

{Ck} in (2.1) satisfies Ck = c-k ,  for all k E Z 2. Hence, we have the following proposition. 

P r o p o s i t i o n  4.1. Suppose that the original funct ion w(x)  satisfies w(x)  = w ( - x ) ,  and 

a5 ky;~, 5a k,j.a are defined by (3.5), then a~ j;" = 6aJk ;a = O, for a e Z 2. 

5 Pe r iod i c  Wave l e t s  and  Four ie r  Ser ies  
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In this section, we will show that special periodic scaling functions constructed in (3.3) 

convergs to cosine and sine functions which implies that the scaling functions constructed in this 

paper have some stationary properties. 

Suppose w(x) is continuous, supp w C [ -  T T 
I 

2 '  . .  ]2 and satisfy the partition of unity, 2 w(x+ 
k E Z  2 

kh) = 1, for x e R 2. Define the operator AJ: C[O,T] 2 ~ [0,T] 2 by 

AJf(x)  = ~ f(phJ)f~J(x), 
~eZ(Kj) 

where D~(x) is defined in Definition 2.2 and C[0, T] 2 is the continuous function space on [0, T] 2. 

Then, we have the following theorem. 

T h e o r e m  5.1. For all f (x )  e C(TT) ,  we have lim [IAJ f - fl[oo = O. 
j ~ o o  

We note first that 2 f~J(x) = 1 for x e [0,T] 2, therefore, Proof. 
I*EZ(Kj } 

IA~ f (x )  - f(x)l  _< 
~,eZ(Kj) 

i=1 ,2  

I,,-I~H_< 4t-+' 
i=1 ,2  

I f ( x )  - f ( # h ~ ) l l ~ ( x ) l  

I f ( x )  - f ( # h ~ ) l l ~ ( x ) l  

I f ( x )  - f ( # h j ) l  

< M ( K  + 2) max If(x) - f(t)[, 
i~-ti___(~+l)h~ 

where M = ,eTTmax I~'/,J,.(x)l. This shows that j l im [lAir - fl]oo = 0. 

C o r o l l a r y  5.1. Suppose that the scaling functions ~'d i (x), i = 0, 1, 2, 3 are defined by (3.~), 

then 
2rra . x 27ra �9 x 

lim ~dZ(x) = cos - -  lim ~dl(X) = s i n -  
j-~oo T ' j-~oo T 

Corollary 5.1 shows that, for g(x) E C(TT) ,  let Pig be the projection of g(x) on Vj, then, 

(Pig, ~3ada(X)), (Pig, ~OJdl ( X ) ) , are the "step" approximation of the Fourier coefficients of g(x). 

6 An  E x a m p l e  

In this section, we will give an example of the orthogonal real-valued periodic wavelets with 

box-spline constructed by the above procedure. We choose the centered 3-directions box-spline 

of degree [1,1,1], hence the final two-scale relations will be simpler. 

Let ml ,m2  be positive integers, m3 be a nonnegative integer such that both ml + m3 

and m 2 + m 3  are even. Denoted by c = (ml + m 3 , m 2 + m 3 )  t, n = mx + m 2 + m a .  The 
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centered 3-directions el = [1,0] t, e.., = [0, 1] t, e3 = [1, 1] t box-spline of corresponding degree 

m = [ml, m2, m3] are defined as follows: 

)mj 
B(w) = H 1 - e-i'~..~_ "ej eiC.~/.z. 

j=l  iw �9 ej 

We let 

c(~)  = ~(2~) 
~(~) 

3 

=2-" 1-[(1 + = 
j : l  k E Z  2 

then B(x) = 4 Z ckB(2x - k), where the sequence {Ck} has only finite nonzero terms. 
kEZ 2 

We choose w(x) = B(x), m = [1, 1, 1], and T = 6. We only illustrate our conclusions by the 

following figures�9 

Fig. 1 

A 

~ 

, ... . . . . . .  . - ;  �9 

2~'(Xl + z~) 
The figure of cos 

T 

A 

.A  

�9 o 

Fig.  2 The figure of ~(1,z)~x)" 

A 

:'>- V~  ~r r 
, ,,.. --, 

~ 3 , 3  ~ / 0 , 1 0  Fig.  3 The figure of ~(1,1)(x). Fig.  4 The figure of v.(x,O(x). 

~ 3 , 3  From the figures above, we can find that ~o(1,1 ) (x) gives a better approximation of cos 27r(xl + x2) 
T 

than ~o,u ~0(1,1 ) (x). The last figure is one of the corresponding wavelets. 
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