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Abstract

In this paper, we construct a kind of bivariate real-valued orthogonal periodic wavelets. The corre-
sponding decomposition and reconstruction elgorithms involve only 8 terms respectively which are very
simple in practical computation. Moreover, the relation between periodic wavelets and Fourier series is

also discussed.
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1 Introduction and Notations

Wavelet analysis is a kind of well known and widely used mathematical method in such
areas as signal processing and image processing etc.. It is well known that, in application areas,
periodization method is the important approach to deal with periodic problems and boundary
phenomena.

In {1], Y. Meyer studied periodic wavelets first by periodizing known wavelets. Since then,
the theory of periodic wavelets has been developed rapidly (cf. e.g., [2-10]). In multidimension
settings, Liang, Jin and Chen!!!l constructed a class of bivariate orthogonal periodic wavelets
associated with box spline functions. But, the wavelets are complex-valued. Goh, Lee, and
Teol'? studied the multidimensional periodic multiwavelets. Chen and Lil'*l investigated the

multidimensional biorthogonal periodic multiwavelets. In [7], a general construction method of
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univariate real-valued orthogonal periodic wavelets was given. The corresponding decomposition
and reconstruction algorithms are simple.

In this paper, we are interested in generalizing the construction method in [7] to bivariate
setting. That is, we shall constructed a class of bivariate orthogonal periodic wavelets and the
corresponding decomposition and reconstruction algorithms are very simple. It should be pointed
out that our construction method is not a simple generalization of the counterpart in univariate
setting.

This paper is organized as follows. In sections 2, we will construct a bivariate periodic
multiresolution analysis associated with a class of special functions. In section 3, we will construct
the corresponding periodic scaling functions and the periodic wavelets which are orthogonal.
There are only 8 terms in the two-scale dilation equations. In sections 4, we will establish the
decomposition and reconstruction algorithms. Section 5 discusses the relation between periodic

wavelets and Fourier series. We will give an example to illustrate our conclusions in section 6.
We will use the following notations.

Let T = Kh, where K is a positive even integer and h'is a positive real number. Suppose
that K = 2N. Let N; := 2/N, K := 2K, and h; := 27/h. Denoted by Z(K;) = {l€ Z% 0<
li<K;j-1,i=1,2}. Let TT = [0,T} x [0,T}. L3(TT) represents the set of all periodic, square-
integrable functions defined on T'T', equipped with the inner product (f, g) = —1}—2 /T . f(z)g(z)dz.

2 The Periodic Multiresolution Analysis

In this section, we will construct a so-called bivariate periodic multiresolution analysis. To
this end, we give its definition first.

Definition 2.1. A bivariate periodic multiresolution analysis is a nested subspace sequence
{V;}j>o satisfying

(1) V; € Vjya, for any j > 0.
(2) Uj»0V; is dense in L2(TT).

(3) For any j > 0, there exists a function f; in V; such that the h;-shifts of f;:{f;(-~lh;); | €
Z(K;)} produce Vj, i.e.

V; =span{f;(- - lh;); 1 € Z(K})}.

To construct a bivariate periodic multiresolution analysis, we suppose that a compactly
supported real valued function w(z) € L*(R?) satisfies

(1) For some positive integer p, 2p < N, the support of w(z): supp w(z) C TT.
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(2) w(z) is refinable, i.e. there exists {c,} € [2(Z?) such that

z)=4 Z crw(2z — kh). (2.1)
kez?
(3)
/ w(z)dz # 0. (2.2)
R?

4) {w(z = lh);1 —p <l < K +p-1,i=1,2} are linearly independent on TT.

Remark2.1. Note that the number of nonzero items in the right summation in the condition

(2.1) is finite since w(z) is compactly supported. Therefore the the number of the nonzero items
of refinable sequence {c;} are finite.

Definition 2.2. For j >0, a € Z?2, the T-periodization of w(z) is defined as

Qi (z) = Y w(@(z - AT - ah;))

AEZ?

From the above definition and formula (2.1), we have

Proposition 2.1. For any j > 0, a € Z2%, the function O, defined in Definition 2.1 has
the following properties:

(1) QY (z + AT) = Qi(z), for all X € Z7.
(2) O (x) = @ (z), where v € Z(K;) satisfies: there exists n € Z* such that @ = nK; + .

(3) The function QY satisfies the following scaling relation

=4 0¥, (2), forzeTT. (2.3)
kez?

For j > 0, let V; = span{Q(z); a € Z(K;)}, then V; C Vj41 evidently. Furthermore, by
generalizing the proofs of Lemma 2.2 and Lemma 2.3 in-[7], we can get the following propositions.

Proposition 2.2. U;»oV; = L(TT).

Proposition 2.3. Suppose Q4 (z), a € Z(K;) is defined by Definition 2.2, then {9 (z); a €
Z(K;)} is linearly independent in TT, hence dimV; = KJ?.

Therefore, we have

Theorem 2.1. The space sequence {V;};>o forms a bivariate periodic multiresolution
analysis in L2(TT).

3 The Periodic Scaling Functions and Wavelets

In this section, we will construct the bivariate orthogonal periodic scaling functions and
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wavelets. To this end, for j > 0, a € Z2, denoted by
adyy = 0a, ajyy = (01, Kj - ), afyy = (K; — a1, @), aly = (K — a1, Kj — aa).

For j >0, a,x € 2%, let

27r/\1a1 cos Zﬂ'AQaQ CSj;a cos 27['/\1011 . 2’”)\2&2
0 ) = )
K; K; A K; K; 3.)

CC{Q = COS

. 2o Ardq0ry o L 2ndon . 2mhaog
]'a._ JY ——
SCy®* =sin X, <Os %, $8y% =sia K sin K,
and
CC(z)= Y CCI°QY(z), CSQU@)= Y CS{*0i(=),
AEZ(K;) NEZ{K;) {32>
SCU(x)= 5 SCL°0i(), SSQi()= D SS°NY(s
AEZ(K;) AEZ(K;)

Then we can easily see that
Proposition 3.1. For j >0, a € Z%, we have
OO (z) = CCQY, (z) =CCNR, (z)= CCYy, (),
CSU(z) = ~CSA, ()= CSY, (o) = -CSAU, (),
SO (@) = SCR, (2) = -SCOY,  (2) = -5, (a),
S5QY(z) =-S5, (2) = =SS () = S50, (x).

1

Moreover, we can prove the following proposition.

Proposition 3.2. For j >0, a € Z(Kj), then we have

Qi(x) = _\17 S (CCEFCCR () + CSL°CSN (2) + SCL7SCRY () + S5 ISR (2)).
7 xezZ(K;)

Proof. Recall the following trigonometric identities

,

n, for p+q = 0 (mod 2n) and p ~ g # 0 (mod 2n)
-1 27rlq or p— ¢ =0 (mod 2n) and p+ ¢ # 0 (mod 2n),

2mlp
Z CcQ8 ———— on 271

2n, for p=q =0 (mod n),

{ 0, otherwise.

For a = (o, ) € Z(K;), ai,az ¢ {0, N;}, we have

> ccrccai) = Y, col® > CePi(x)

AEZ(K;) NEZ(K;) REZ(K})
= > Qi@ Y ccirece
ueZ(K;) NEZ(K ;)

= N2z} + O, (2)+ 0, (&) +0, (2)).
i+1 i+l i+l
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Similarly, we have

S CSJeCSA(e) = Ni(Rh(2) -, (2)+0L (2) -0, (o)),

i+l i+ LPS]
AEZ(K;)
> SCISCO(e) = NI QL(z) + QL (&) - (z) -0y (2)),
/\€Z(1{,) i+t i+l J+1
Y SS{eSSR(x) = N}(Q() -, (@) -, (2)+0, (2)).
AEZ(K;) itt i+t i+t

By Proposition 2.1, it is the special case as above that the case a; or a3 takes 0 or N;. Therefore,

we can obtain the proposition.

For j > 0, denoted by

1?. = {a = (a1, ) € Z%,0 < a1, 02 < Nj},
I}:{a:(al,a2)622;05a1SNj,lgangj—l}, (33)
IF={a=(m,a) €2%1< 01 <N; - 1,0< a3 S Ny},

I={a=(a,0m)€2%1 <oy, <N; -1},

then by Proposition 2.3 and Proposition 3.1, we have

Lemma 3.1. For j > 0, suppose CCV,(z), CSNY,(z), SCN (z) and SSQ(z) (a € Z?)
are defined by (3.2). Let

CCI = {CCOY(a),a € I}, CSI = {CSN(),a €I},
SCi = {SCQY(z),a € I?}, SS7 = {SSQY(2)},a € IP}.

Then CCIUCSIUSCIUSS? forms a basis for V;, and CCIUCS?, CCIUSC, SSTUCSI, SSTU
SC7 are all orthogonal systems. Furthermore, if the functions are in CC?UCSIUSCIUSS?, then
for any a, [|ICCA| = ||ICSQU| = ISCQLI = ISSQL|I, (CCQL,SSQ) = —(CSQY,, SCAY),
(CCNL,,850L) = (CSQY, SCAL) =0, for a # B.

Proof. First, by formula (3.2), we can see that CCI U CSI USCIUSS? C V;. On the
other hand, Proposition 3.1 and Proposition 3.2 imply CC/ U CSJ U SC7 U SS7 can span the
space V;. In addition, the number of the functions in CC? UCS/ USCIUSSI is equal to dim V;.
Therefore, CCI U CS/ USC? U SS? forms a basis for V;.
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By the definition of CCQ,, for any CC$Y,, C’C’Qfi € CC7, we have

(coR,, cond)

= 3 ) ccreciel, )
AEZ(K;) nEZ(K;)

= > > coieccif@l, 2y
A€Z(K;) neZ(K;)
Kj-1=-X Kj—=1-X2

= Y 3 ¥ ccieecit )

AEZ(K;) m=—A1 pa=—X2

= > 3 cofeecit @)

AEZ(K;) nEZ(K;)

= S ccir,aiy|ceif S coiecci? -csit Y cceesit
REZ(K;) AEZ(K;) AEZ(K,)

- SCip N ccjesci? + 5858 N cejessyt

AEZ(K;) AEZ(K;)
= Z C’C";;ﬁ(Qg,Qi) Z CC’f\.;aCC’f\';ﬂ
EZ(K;) .\ez K 3
K;~1
— Z CCJ 8 Q_g), > Z 271'/\101 27T/\1ﬂ1 Z cos 27‘(‘/\20[2 oS 27!'/\252-
K; K; K;
HEZ(K,) A1=0 A2=0

For the case o, 8 € I}, a # B, then (C’CQ{;,CCQ{,) = 0. While for o, € I?, a = j3, we have

lccailr =N Y~ CCixeg, o

Qs Fp
HEZ(Kj)
=N}, > ccien)
HEZ(K;)

= N2(0,CC).
The other cases are can be similarly proved and the theorem follows.

Lemma 3.1 gives a basis for V;, but it is not orthogonal generally. To construct the orthog-
onal basis for Vj, for all j > 0, a € Z2, we define

FL0() = CCN(2) + SSQY(x),  FE'(z) = C5Q(2) + SCR (),
Fi?(z) = CSRY(x) - SCRU(x),  FH(z) = CONY(2) ~ S, (a).

(3.4)

Then, from Lemma 3.1, we can easily prove the following theorem.
Theorem 3.1. For j >0, a € Z%, suppose that $hi(z), i =0,1,2,3 are defined by (3.4).
Let s
S = {Fi(z),a € 1;1}, i=0,1,2,3 5 = U S,
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Then S? is an orthogonal basis for V;. In addition, ||3%2|| = |32°||, for @ € IZ; {53 = |15,
foraelI?.

Now, we turn to give the scaling relations of the orthogonal basis S7.

Lemma 3.2. For j >0, a € Z2, suppose CC3®, CST* , SCI* and SS§*; CCQY(x),
CSO (z), SCO(z) and SSV,(z) are defined by (3.1) and (3.2). Let

ool = Z cCCie, 0di = Z exCSJe,

keZz? . keZ? ' (35)
Sl =Y enSCY, 86, =) eSSPe.

kez? keZz?

Then, we have the following refinable equations

1“] AJ+11 J+1 .
; o (@), (36)
where
I () = [CCY,(z) CSY,(z) SCU(zx) SSAU(z)]",
450 = (A0 AR ARR AP, AR = A2 - A5 A% —Af"?]t,
, . . . ! % A
Y [ A Ay 3] A= (A2 - aly - N3E AR
and
ASP =00 o8] ol 461}, At =[-08) o0l —486) bailt,
A% =[-d0d —66) odl obl)t, AP =[88) -éo0)f —ab) ool)t.

Proof. We need only to prove the first equation in (3.5) and the proofs of the other equa-

tions are similar.

CCUY(z) = >  CCY*M(a)
AEZ(K;)
= ) ccited cmﬁ;
XEZ(K;) kez?
= D COP) agm— ), [CCIFRCCaM (@)
AEZ(K;) kez? J+1 HEZ(Kj41)
+ CS,’;+1"°+2)‘CSQ{,+1(IE) + SC,J‘H;k"'?’\SCfoI(:E) + Sslj;+1;k+2,\SSQi+1(x)]

= ch Z [CC,{“‘"C’CQ{;“(:E)+CS{;+1;’°CSQ£+1(3:)
J+1 kEZ?  pEZ(Kjt1)

+ SC,].H kSCQJ+1(IB) + SSJ+1 kSSQ]+1 Z CCJ aC’CJ’“
z\EZ(K,)
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By Proposition 3.1, we can get
Q} t J+lipitl
CCQl(z) = Z; AZYHTIE (@),
where 71 = [1,0,0,0]%. The proof is finished.

By the formula (3.3) and Lemma 3.2, we can give the relations between the orthogonal basis
S7 of V; given in Theorem 3.1 and the orthogonal basis S/ of V4.

Theorem 3.2. The orthogonal basis S of V; given in Theorem 3.1 and the orthogonal
basis SIT! of Vj11 have the following scaling welations

3
& (z) = gmmqﬂﬁl( z), (3.7)
where
% (z) = [#0(z) Fl@) P (z) FP@)]’,
o= (A R K A, mp=([Ri -AR -E A
mp = (R Rip & Ag)', A (R -dpp B )
with

Ai® = [0l + 661 0 06l — b0l O, Ail=[0 ool -8, 0 — bl -dai)t,
A3? = [-06] + 80l 0 66} + o0l 0], AL%=[0 00l +60l O ool — 02}

Theorem 3.2 establishes the relations between the orthogonal basis for V; and V;4;. Now
we define W; as the orthogonal complement of V; in V;4,, that is, W; L V; and Vi, = V; + Wj.
Denoted by Vi =V; & W], the orthogonal sum of V;;;. We can conclude that W; L W, for
j#r, and L2(TT) = V & (@550 W).

Now, by Theorem 3.2, we can construct an orthogonal basis for each W;. To this end, note
that |5 = 1BL°1, N84 = 1847 if they are in S7. Let

], (2) = diagll| LI~ IBE3I=" IG5~ 1322 1)~ @4 (o)

. , , : , (3.8)
R¥},(2) = [(25(@)", (8, ()", (8, (@), (&L ()]
Thus, we can rewrite the scaling equation (3.7) as the following form:
&l (z) = MI* R&H (a), (3.9)

where

M = diagll@Z° = NG IS0 IS LS, - HEP),
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Hi0 = [AJ,O APl A2 AdB t Hitl = Aj,3 Aj’2 Aj’l Aj’o t
- a a o @ ] ) a a} - a} - 011_ a} )
. .ot t
i 2 e 33 A2 Al §0 13 Ji0 7l 32 A3
Hit = a3 Al2 AR A), mpS= (A - ol - ol A%
with

AR = IE0NBL
AP = IF0BE

= [hd° 0 Ri? 0Of,
== 0 REO O, AL =||ER3IAL3 = [0 KLt 0 KL

A

B = Io1AL =0 M 0 Y,

We can get a new 2 x 8 matrix M. 40 by selecting the nonzero elements in the first and the

third row of matrix M. J following their original order, i.e.

. i o

N

M = ’ !
2 =

_hj_)2 hjvo

a? aof

a1 7,3
ha’l. h’al
j J

i3 j
_h]yl h ’

oW
’ i (3.10)

j,3 jy1 2 ,0
h] 2 _hj’g 11113 _h]ls
aj aJ. QJ- aj

We see that the two rows in matrix M7° are orthogonal. Furthermore, the elements in each row

are the same except for their order and sign. Let

.-

.0 32
h]-o h '0
aJ. aj
] a;
Al 7.3
_h]y h y
a} a;
i3 i1
3 _hf;l. —hf,,’;
MJ'O - 2 3
a
aj aj
i3 41
_h.772 h 12
aj aj
o o
‘o ,
_h]»s h]yg
a; aj

Then we can prove the following lemma.

7.3
_ha?
]

2
—hg

33
i

jit
h)
J

a;

3,0
ho
F

i

—h h

a@;

—_ J,0
ha?

j13
ke
2

Jil
hl,
i

j 1 j,0 j,2
he  hga o hgs o R
3 3 3 2

i3 1 j2 j,0

I 3 ? 2
hls -k’ 3 - LR 20N
J 7 J J

j,2 0 j 1

A e SR A

2 2 J 2

(3.11)

ﬂj o (Xj
_pd2 5,0 8 gl
A R

J F) H J

j,3 1 j,2 j,0

h] 1 hJ 1 "'hj 0 h] Q
@ i @; a

Lemma 3.3 The 8 x 8 matriz MJ° defined by (3.31) satisfies

(1) The first two rows in the matriz M3 are the two rows of matriz 1\7({0 defined in (3.10).

(2) any pair of rows of M3° is orthogonal.

(8) The elements in every row of MI® are the same except for their order and sign.

Similarly, for the second row and the forth row of M7, we can get another matrix M3 with
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the similar properties as in Lemma 3.3. Let

. .t
J = | £16 16 ,16 ~16 ;16 16 /16 /16 7.0
La - 1 ,<3 356 158 )ClOs 1255131515 [Ma ]
. s it
J = 16 16 £16 ,16 ~16 +16 ~16 16 4.1
RG_ 2 064 558 557 189 151156145616 [Mﬂ]’
where (}%, i = 1,---,16 are 16-dimension unit column vectors whose i-th element is 1 and the

others are 0. Let
M} = [Li,Ri]".

Then, we rearrange the rows in matrix MJ following the order 1, 9, 2, 10, 4, 5, 8, 12, 14, 15, 3,
6, 7, 10, 11, 13, 16. Denote by GJ, the new matrix . We define the function vector ¥ (z) by the
following scaling equation
I (x . :
() = GITIROIF (1) (3.12)
¥ ()

Write ¥4 (z) = [¢4°(z),--- ,W;;“(a:)]t, then we have

Theorem 3.3. For a € Z?%, suppose that the functions ¥3°(z),--- ,93 (z) are defined
as the above formula (3.12). Let U?® = { ¥*(z), k=0,1,2, a € I?, 0 # N;,i = 1,2}; UP! =
{¥i¥(z), k= 3,4,5, a € II}; UM = {yi¥(z), k =6,7,8, a € I7}; UI® = {$}*(z), k =
9,10,11, a € I}}; UM = {9y ), 7 = 1,3,4; ¥ )0 8= 2,4,5 Yy, v, ¢ =0,3,5} then the
function system UJ = U{_,U%" is an orthogonal basis for W;. We call these functions periodic

wavelets.

Proof. It is easy to verify that [G7t!] [G{;“]t is a unit matrix. Namely, any pair of rows
in GJ, is orthogonal. Furthermore, the number of the functions in S7 U U7 is equal to dim Vj41.

This implies the conclusion. The proof is completed.

4 Decomposition and Reconstruction Algorithms

In this section, we establish the decomposition and reconstruction algorithms corresponding
to the wavelets constructed in section 3. To this end, for j > 0, define projection operators P;
and Q;: L2(TT) — V; and L%(TT) — W; respectively as follows. For any f(z) € L3(TT),

3 11
Pif =30 Y Ahelelt  Qif = 30 3 (Sl

aEI_? i=0 aelg’ i=0

Here, if the functions %! and ¢%* are not appeared in S7 or U7, the corresponding terms in the

above summations are assumed to be zero. Similarly conventions are for the other functions..
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Denoted by ¢t = (f,ph?), dit = (f,4%*). Then, for a € I}’, 1=0,1,2,3, we have

ci! (freih)
(£, (G®)'GEF R () (4.1)
(o rairicrtt,

il

i

with
Ci*' = (f, Rt (2))

= ((f,@it10), ... ¢J+13
— (it +1,3
= (ch+10"" ,C‘J’?+l ) .
Similarly, we have
di' = (GRa)'GET CRH. (42)
On the contrary, for a € I3, = 0,1,2,3, we see that one of {},,, i =0,1,2,3} must be
in I9, say, of,, € I, with some k € {0,1,2,3}. Then we have
A = (e
= (Pif + Q;f, AR

= (ZZ%% +1;+(szu¢]ﬁ +11

gelol 0 Bel9 1=0
= Z Z C’m)tGJ+1R(I,J+1 (m) (p]'H") (4_3)
BEI? 1=0
+) Zd“ GE)IGE RESH (2), o)
Bell i=0
3 11
e il j jud
= g (0 '!1+1C1}g+ic;§-+l + %(G&)tGﬁHdngf,?“

We call (4.1) and (4.2) decomposition formulas and (4.3) the reconstruction formula. For
there are only 8 nonzero elements in every row or every column of the dilation matrix GI*!,
we can see that the decomposition and reconstruction formulas involve only 8 terms which
is very simple in practical computation. Furthermore, when the underlying function w(z) is
symmetric, i.e. w(r) = w(-z), there are only 4 terms in the scaling relations and the same in
the decomposition and reconstruction formulas as well. In fact, if w(z) = w(-z), the sequence

{ex} in (2.1) satisfies ¢;, = c_, for all k € Z%. Hence, we have the following proposition.

Proposition 4.1. Suppose that the original function w(z) satisfies w(z) = w(—z), and
o85%, 5o ave defined by (3.5), then o67* = 607 = 0, for a € Z2.

5 Periodic Wavelets and Fourier Series
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In this section, we will show that special periodic scaling functions constructed in (3.3)
convergs to cosine and sine functions which implies that the scaling functions constructed in this

paper have some stationary properties.

TT . .
Suppose w(z) is continuous, supp w C [~ =, 5]2 and satisfy the partition of unity, Z w(z+

2
kez?
kh) = 1, for = € R?. Define the operator 47: C[0,T)* — [0, T)? by

Alf@y= > flph)U (),

I‘EZ(KJ')

where € (z) is defined in Definition 2.2 and C[0,T]? is the continuous function space on [0, T,

Then, we have the following theorem.

Theorem 5.1. For all f(z) € C(TT), we have lim ||47f — fl|loo = 0.
j—o0

Proof. We note first that z (.(z) =1 for z € [0, T]?, therefore,
peZ(K;)

|47f(z) = f@)] < Y 1@~ fluhy)||0 ()|

BEZ(K;)

= > (@) = f(uhy)|IN ()]
i».—-[-;.';zrllslf-ﬂ

<M > f(@) - fuhy)l
Iu.'-l{-?llsl,}ﬂ

i=1,2

<SM(K+2) max |f(z) - f(t)l,
fz—tI<(E+1)h;

- J . . ] _ —_
where M 2{r(}g})?cﬂIQ,‘(:I;)|. This shows that jllf{.‘o”A f—Fflleo =0.

Corollary 5.1. Suppose that the scaling functions $J*(z), i = 0,1,2,3 are defined by (3.4),

then

2ra -z 2ra -

. ~',3 — . ~"l - .
Jl_xbr{.low{, (z) = cos T 11_1,11010% (z) =sin T

Corollary 5.1 shows that, for g(x) € C(TT), let P;g be the projection of g(z) on Vj, then,
(P;g,943(x)), (Pjg,9% (z)), are the "step” approzimation of the Fourier coefficients of g(z).

6 An Example

In this section, we will give an example of the orthogonal real-valued periodic wavelets with
box-spline constructed by the above procedure. We choose the centered 3-directions box-spline

of degree [1,1,1], hence the final two-scale relations will be simpler.

Let mi,m2 be positive integers, ms be a nonnegative integer such that both m; + mg

and mo + ma are even. Denoted by ¢ = (m; + ma,ms + m3)t, n = my + ma + m3. The
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centered 3-directions e; = [1,0}%, e2 = [0,1]}, es = [1,1]* box-spline of corresponding degree

= [my, my, mg] are defined as follows:

We let

Cw) = 2 =2 [+ emes)eicn’2 = 3 ek,

j=1 kez?

then B(z) =4 Z ¢k B(2z — k), where the sequence {c} has only finite nonzero terms.
kez?
We choose w(z) = B(z), m = [1,1,1], and T = 6. We only illustrate our conclusions by the
following figures.

F \ A
B s Yy T

—

- L eV

Fig. 1 The figure of cos w Fig. 2 The figure of Qfgfl)(x).
A ¢
ree,
Ry MAS A D b/
- I -
- “

L ’ .VW'V o

Fig. 3 The figure of 6?51)(9:). Fig. 4 The figure of d)?llf (z).
2 .
From the figures above, we can find that ;% | (z) gives a better approximation of cos M
gu (1,)\*) & T

than @?1’31)(:1:). The last figure is one of the corresponding wavelets.
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