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Abstract

Let T be the multiplier operator associated to a multiplier m, and [b,T] be the commutator generated
by T and a BMO function b. In this paper, the authors have proved that [b,T| is bounded from the
Hardy space H'(R™) into the weak L' (R™) space and from certain atomic Hardy space H) (R™) into the

Lebesgue space L'(R™), when the multiplier m satisfies the conditions of Hormander type.
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1 Introduction and Statement of Results

A bounded measurable function m defined on R" is called a multiplier. The multiplier

operator T associated to m is defined by
(T5)" (@) = m(z)f(z), for f € SR™), (1.1)

where f denotes the Fourier transform of f and S (R™) the Schwartz test function class.

Let a = (a1,03,: -+ ,a,) be a multi-index of nonnegative integers a;(j = 1,2,+-- ,n) with
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|| = a1 + @2 + - - - + @,. Denote by D* the partial differential operators of order a as follows

Hlal

D° =
o a *
0z 8zy? - - - Oz

Definition 1.118), Let € be a positive integer and 1 < s < 2. We say that the multiplier m
satisfies the condition M (s, £), and write m € M (s, £), if

1/s
sup (R’|°‘|—n/ |D°‘m(£)|sd£) < +o00, forall|a] <4 (1.2)
R>0 R<[¢|<2R

Condition (1.2) has been known sometimes to be related to multiplier theorems and was
profoundly studied by Kurtz-Wheeden in [6], see also Hormanderl® or Stein19 for s = 2. It is
easy to see that m € M(s,¢) implies m € M(s1,41) when s > s; and £ > f;. The following
theorem is the unweighted case of Kurtz-Wheeden’s results in [6].

Theorem AlSl. Let £ be a positive integer. If 1 <5< 2, nf/s < £<n andm € M(s,£),

then there ezists a positive number C > 0 independent of f such that
@) ITfllrwny < CllfllLrwny, for 1 <p < o0;
(i) {z e R : |Tf(z)] > A} < C)\’1||f||L1(R-.), for all A > 0.

Let b € BMO(R"™), we denote by [b,T)f = bTf — T(bf) the commutator generated by T
and the function b. There are a few papers on commutators of multipliers, such as [2],[3],[13],
and [14]. In 1988, Youl'! established boundedness properties of [b,T] on L?(R™) space and got
the following theorem.

Theorem B['3l, Let b € BMO(R") and ¢ be a positive integer. If m € M(s,£), 1 <8< 2
and n/s < £ <n. Then there is a positive constant C > 0 such that

16, T) fllLe@ny < Clbllu|l fllrny, for 1 <p < oo,

where ||b]|« is the BMO norm of the function b.

On the other hand, denote by Tz the Calderén-Zygmund singular integral with homoge-
neous kernel and [b, Tcz] the commutator generated by Tez and the function b. It is well known
that [b, Toz] is neither of weak type (1,1) nor bounded from H!(R™) into L!(R"), see [§] and [9]
for instance, where H!(R™) stands for the Hardy space on R”. Instead of the weak type (1,1)
and the (H', L*) estimates, Alvarez(*! and Peréz!®) studied boundedness properties of [b,7cz] on
a kind of subspaces of Hardy spaces. Recently, Chen and Hul*! proved that [b, Tcz] is bounded
from H!(R") into weak L'(R").

Motivated by [4] and [9], we consider the same problems for commutators of multiplier
operators in this paper. More precisely, we shall prove that [b, T] is bounded from the Hardy
space H!(R") into the weak L!(R") space and from a kind of atomic Hardy type space H} (R™)
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into L'(R"). We would like to remark that, in [4] and [9], under some conditions imposed on
the kernels of Tz, the Calderdén-Zygmund singular integral operator Tz can be realized by a
multiplier. So, we believe that the commutator [b, T] of the multiplier operator T is also neither
of weak type (1, 1) nor of type (H!, L!). To state our results, we first recall the definition of the
space H} (R™).

Definition 1.2%. A function a is called a b-atom if there is a ball B = B(zp,rg) centered
at rp with radius rg such that supp(a) C B and

) lallse@ < 1B () / aly)dy = / a(y)b(y)dy = 0.

The space H}! (R") consists of all functions f € L' (R™) which can be written as f = Z Ajaj,
]
where a;’s are b-atoms and A;'s are complex numbers with Z {Aj] < 00. Furthermore, we define
J
the quasi-norm on H} (R™) by ||f|| H}(rn) = inf { Z |)\j|}, where the infimum is taken over all
J

the above decompositions of f.

Theorem 1.1. Let b € BMO(R"®), T be defined as in (1.1) and £ a positive integer. If
m € M(s,f), 1 <s<2andn/s <?<n, then there is a positive constant C > 0, independent
of b such that for any A > 0 and any f € H'(R"),

[{z € R™ : [0, T)f (@) > A} < CATH bl fll e (re)-

Theorem 1.2. Let b € BMO(R"), T be defined as in (1.1) and ¢ a positive integer. If
me M(s,0), 1 <s<2andnfs <l<n, then [b,T] is bounded from H}(R™) into L' (R™), there
is a positive constant C > 0, independent of f and b such that

{6, T1f L mey < ClIBHLIIf g (rm) -

Our paper is arranged as follows. In §2, we give some preliminary materials and prove

Theorem 1.1. In the last section, we prove Theorem 1.2.

2 Proof of Theorem 1.1

As in [6] and [12], we denote by K(z) the kernel that corresponds to the inverse Fourier
transforin of m in the sense of distribution, this says, K (z) = m"(z) in the sense of distribution.
Then for f € S(R") we have T f(z) = (K = f)(x), where gV denotes the inverse Fourier transform
of the function g. To prove Theorem 1.1, it is natural to consider how the behavior of K reflects
the fact that mn € M(s,€). We have the following estimates for the kernel K from Stromberg
and Torkinsky!'2l.



P. Zhang et al : Commutators of Multipliers on Hardy Spaces - 229

Denote by |z| ~ t the fact that the value of z lies in the annulus {z € R" : at < |z| < bt},

where 0 < a €1 < b < o0 are constants specified in each instance.

Lemma 2.10122182)  Supnose m € M(s,£), 1 <s<2. Given1<35< oo, letr>1 be
such that 1/r = max{1/s,1-1/5} and { = {—n/r. Then K € M(3,{), this says that K satisfies

i o\ o
( /[ | RID"‘K(z)i”dz) < CRM3-n-lal (2.1)

for all R > 0 and all multi-indices |&| < £. And in addition, if u denotes the largest integer
strictly less than € and = pu+ v,

. ) ) o\
( / ID%K(z)~ DOK(z - z)|3da:>
lzj~R

C %‘ RM3-n—n fo<v<l, (2.2)
<
C l—;—l (log l7R|>1~'€”/§‘""“, ifv=1,

for all |z| < R/2, R >0, and all multi-indices & with |@] = p.

To prove our result, we also need the atomic decomposition theorem of the Hardy space,
which can be found in (7] and [11].

Definition 2.1. Let 0 < p < 1. A function a defined in R is called a (p, 2)-atom, if
1) supp a C B(zo,r) = {z € R" : |z — 20| < 7}, for some 7 > 0;

2) llallzz@ny < |B(zo,r)|M/271/7;

3) / a(z)z"dz = 0, for all multi-indices vy with 0 < |y] < [n(1/p - 1)}

Lemma 2.2. Let 0 < p < 1. A distribution f belongs to HP(R™) if and only if f =

o0
Z Aja;j in the sense of distribution, where a;’s are (p,2)-atoms and \; € C with Z [A;]P <
j=—o0 j=-00
0. Furthermore,
o0

||f||Hp(Rn)~inf{( Z l,\j|p)1/P}’

j=—o0
where the infimum is laken over all the above atomic decompositions of f.

In the sequel, for a ball B C R™ and a locally integrable function b, we denote by bp =

ﬁ b(z)dz. Now, we are at the position to prove Theorem 1.1.

Proof of Theorem 1.1. For any given f € H'(R"), by Lemma 2.2, f = Z Ajaj, where a;’s
J

are (1,2)-atoms with supp(e;} C B; = B(z;,r;) and furthermore, || f||z1(g») ~ inf { Z [,\j|}.

3
Denote by b; = bg;, then
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b6, T1f(z) = Y Aib(x) - b;)Ta;(z)xz8, ()
j=-c0
+ Y Aj(b(z) - b;)Ta;(z)x 8, (@)
j==—o0
() Aj(b—b,)a,)(z)
J=-00

To prove our theorem, it suffices to establish the following estimates,

[{z € R™ : [Li(z)| > A/3} < CAT bl fllinn ey, 6= 1,2,3. (2.3)

Since b € BMO(R"), then for any nonnegative integer k and any ball B, there holds |bgr+15—
bg] < C(k + 1)||b]|+ (see [11], p.141), and then

1 i/p
- b(z) — by <CH+1)|bll., forall 1< : 2.4
(g [, Mad-boPdz) © <CG+ DB, Tralli<p<oce  (24)

Since n/s < £ <nand 1 < s < 2, by Theorem A, T is bounded from L?(R") into itself.
Applying the Holder inequality, (2.4) and the size condition of a;, we obtain

1/2
106 — 5T (a3)xes, o e <c( / 1 )—bl’dz> a5,

<|23 | / b |de)1/2 < Clp)...

Consequently,

{z € R™: [Ii(2)| > A/3} < 3A71 )~ A1l — b5)T(a)x28; |l 2 o)
j=—0

<CNYBl Y IS OBl me)-

j=—o0

By Theorem A, T is of weak type (1,1). Applying the Holder’s inequality and the size
condition of a;, we have

{z € R™: |I3(z)] > A/3}] < CA™! Z I\ = bj)asll L we)

J——-oo
1/2
<ot 3 m( / b )—bjl'zdw) T
_]——OO

< Cl[bjl. A~ Z A1 < CATMIBIL L1l 1 ggeny -

j=—o0
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To check (2.3) for i = 2, firstly, we consider the case of 0 < £ —n/s < 1. Set § = s and
{=10—n-max{l/s, 1/§'}. Noting that 1 < s <2 < s' = §', we have = £ — n/s. This fact and
Lemma 2.1 imply X € M(s,#). Denote by Kj(z,y) = K(z —y) — K(z — z;) for simplicity.

fo<fi<1, by (2.2), then for any y € B; and any positive integer ¥,
1/s ,
( / lKj(w,y)dew> < D/ (glripyynie, (2.5)
f)k+lB.\2kB.

If £ = 1, we choose a real number & with 0 < € < 1 such that t'~¢log(1/t) < C when
0 <t £ 1/2. Then by (2.2), for any y € B; and any positive integer k, we can obtain

1/s | k1,
g y 2!31 2 L k+1,. yn/s—n
K;(z,y)l’da <C‘(————>(lo ———~> PARRE
(/W‘Bj\mz (@) vl) (log i) 21
SC(]J II)]|> (2k+1 )n/.s n (26)

ok+1,

< O~k De (il y=n/s’,

Noting that / la;(y)ldy < |B; 12/ %lla;ll 12®~) < 1. By the cancellation condition of a;, the
Hoélder inequality, (2 4), (2.5) and (2.6), we have

|~ 0)(Tap)Xespe | 1riemy = /(’B o

<¢ [t IZ/ ~ by, )y

ok+1 1. \ZLB

1/¢
<C/ |a]y|2{(/}k+13 )—bj|“’d$>

. 1/s
x ( / lfc-(z,y)rdw) bay
2k+1 B;\2* B;

< Oy / a5y 3k + 1276 < C.,

k=1

Kj(z,y)a;(y)dy|dz
B;

where ¢ is the same as in (2.6) when £=1and e = —n/s when 0 < £ < 1 as in (2.5).

Then

l{z € R™: |L(2)] > A/3}] < CA- 1” Z A3 (b= b5)(Tas)X 25, ”L‘ R")

< CAYb]l. Z I\ < OBl 1l ey

j=—00

This shows that (2.3) is truefori=2and 0 < f—-n/s < 1.

Next, we consider the case of £ — n/s > 1. Set £ = n/s + 1 if n/s is an integer, then

n/s < £, <€and & —n/s = 1. If n/sis not an integer, we choose ¢; = £ —[¢ - 2], where [{ - ;—l—]
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is the integer part of £ — e says, [£ — —S-] is the greatest integer which is less than or equals to

{ -~ —Z, and it easy to see that n/s < ¢; < £ and ¢; — n/s < 1. Noting that m € (s,£) implies
m € M(s, 1), instead of considering m € M(s, £), we consider m € M(s,{;) in the estimates of
(2.3) for i = 2. So, (2.3) is true when i =2 and n/s < £ < n.

Thus, the proof of Theorem 1.1 is completed.

3 Proof of Theorem 1.2

Proof of Theorem 1.2. We need to prove that there is a constant C > 0 independent, of b,
such that for any f € Hy(R"), fpu 1[0, T1f (2)|dz < CIIblL I fll 12 gy

To this end, by a standard argument, it suffices to prove that there exists a positive constant

C such that for each b-atom a, the following inequality holds
| 1bTl@)lda < Cipll. (3.1)

Fix a b-atom a, by the homogeneity, we can assume that a is supported in a ball B = B(0, d)
centered at the origin with radius d. Then,

/Rn |b, Ta(z)|dz < (/23 + /(zB)C > |16, Tla(z)|dz := Jy + Ja. (3.2)

By Theorem B, [b,T} is bounded from L?(R") into itself. Applying the Holder’s inequality

and the size condition of a, we get

‘ 1/2 ‘
Ji < (/B |[b,T]a(w)l2dw> 12B1*/* < Cllbll.lall L2wn) | BT
2

(3.3)
< Cjbll«llal| Lo rmy 1Bl < Cl|b]}s
Now, let us consider the second term J,. By the cancellation condition of a, we have
Bos [ [ K1) - K@IkE) - bellaty)ldyda
(2B)¢ /B
[ [ K@=y - K@l - bella)ldyds (3.4)
(2B)¢ JB

= Jb + JU.

Without loss of generality, we assume 0 < £ —n/s < 1. Set § = s and £ = £ — n/s. From
Lemma 2.1 we have K € M(s,€). Similar to (2.5) and (2.6), there is a real number & with
0 < € < 1, then for any positive integer k and y € B,

1/s
(/ |K(z —y) -~ K(z)|*dz ] < ¢ et (gk+lgy—n/s’, (3.5)
2k+1B\2+ B
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By the size condition of a and using the Holder’s inequality, (2.4) and (3.5), we have

Bo<y / / K(z — y) - K@)|[b(z) - bslla(y)|dydz
1 /2*+1B\2*B JB

< [ lats) g ([ pe-solaz)”

1/s
v (/ K(z - y) - K(x)lsdx) }dy
2641 B\2+ B
< C[p]l.|B| " /B Sk + 1274+ 0dy < C.
k=1

Similarly, by the size condition of a, (2.4) and (3.5), we can obtain

o
3 <iBY [ o) - bl |K (&~ y) - K(z)|dady
im1’B 24+1B\2* B

o
<l Y [ o) - bal2t Bp ( /
k=1 B 2

<CY gtk it /B Ib(y) - baldy < Clb]..

k=1

1/s
|K(z —y) - K(m)lsdz> dy
k+1B\2* B

This together with (3.4) and (3.6) we have J; < C||b||,. And then, by (3.2) and (3.3), we
obtain (3.1). So the proof of Theorem 1.2 is complete.
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