COMMUTATORS OF MULTIPLIERS ON HARDY SPACES*

Pu Zhang

(Zhejiang Sci-Tech University, China)

Jiukun Hua (Zhejiang Gongshang University, China)

Received Jan. 24, 2003 Revised July 1, 2004

Abstract

Let T be the multiplier operator associated to a multiplier m, and [b,T] be the commutator generated by T and a BMO function b. In this paper, the authors have proved that [b,T] is bounded from the Hardy space $H^1(\mathbb{R}^n)$ into the weak $L^1(\mathbb{R}^n)$ space and from certain atomic Hardy space $H^1_b(\mathbb{R}^n)$ into the Lebesgue space $L^1(\mathbb{R}^n)$, when the multiplier m satisfies the conditions of Hörmander type.

Key words multiplier, commutator, Hardy space, Hörmander condition AMS(2000) subject classification 42B15, 42B20, 42B30

1 Introduction and Statement of Results

A bounded measurable function m defined on \mathbb{R}^n is called a multiplier. The multiplier operator T associated to m is defined by

$$(Tf)^{\wedge}(x) = m(x)\hat{f}(x), \quad \text{for } f \in \mathcal{S}(\mathbb{R}^n),$$
(1.1)

where \hat{f} denotes the Fourier transform of f and $\mathcal{S}(\mathbb{R}^n)$ the Schwartz test function class.

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ be a multi-index of nonnegative integers $\alpha_j (j = 1, 2, \dots, n)$ with

^{*}Supported by the Research Funds of Zhejiang Sci-Tech University (No. 0313055-Y).

 $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$. Denote by D^{α} the partial differential operators of order α as follows

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_n^{\alpha_n}}$$

Definition 1.1^[6]. Let ℓ be a positive integer and $1 \leq s \leq 2$. We say that the multiplier m satisfies the condition $M(s,\ell)$, and write $m \in M(s,\ell)$, if

$$\sup_{R>0} \left(R^{s|\alpha|-n} \int_{R<|\xi|<2R} \left| D^{\alpha} m(\xi) \right|^s \mathrm{d}\xi \right)^{1/s} < +\infty, \text{ for all } |\alpha| \le \ell.$$
(1.2)

Condition (1.2) has been known sometimes to be related to multiplier theorems and was profoundly studied by Kurtz-Wheeden in [6], see also Hörmander^[5] or Stein^[10] for s = 2. It is easy to see that $m \in M(s, \ell)$ implies $m \in M(s_1, \ell_1)$ when $s \ge s_1$ and $\ell \ge \ell_1$. The following theorem is the unweighted case of Kurtz-Wheeden's results in [6].

Theorem A^[6]. Let ℓ be a positive integer. If $1 < s \leq 2$, $n/s < \ell \leq n$ and $m \in M(s, \ell)$, then there exists a positive number C > 0 independent of f such that

- (i) $||Tf||_{L^{p}(\mathbb{R}^{n})} \leq C||f||_{L^{p}(\mathbb{R}^{n})}, \text{ for } 1$
- (ii) $|\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}| \le C\lambda^{-1} ||f||_{L^1(\mathbb{R}^n)}, \text{ for all } \lambda > 0.$

Let $b \in BMO(\mathbb{R}^n)$, we denote by [b,T]f = bTf - T(bf) the commutator generated by Tand the function b. There are a few papers on commutators of multipliers, such as [2],[3],[13], and [14]. In 1988, You^[13] established boundedness properties of [b,T] on $L^p(\mathbb{R}^n)$ space and got the following theorem.

Theorem B^[13]. Let $b \in BMO(\mathbb{R}^n)$ and ℓ be a positive integer. If $m \in M(s, \ell)$, $1 < s \leq 2$ and $n/s < \ell \leq n$. Then there is a positive constant C > 0 such that

$$\|[b,T]f\|_{L^{p}(\mathbb{R}^{n})} \leq C\|b\|_{*}\|f\|_{L^{p}(\mathbb{R}^{n})}, \quad for \ 1$$

where $||b||_*$ is the BMO norm of the function b.

On the other hand, denote by T_{CZ} the Calderón-Zygmund singular integral with homogeneous kernel and $[b, T_{CZ}]$ the commutator generated by T_{CZ} and the function b. It is well known that $[b, T_{CZ}]$ is neither of weak type (1, 1) nor bounded from $H^1(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$, see [8] and [9] for instance, where $H^1(\mathbb{R}^n)$ stands for the Hardy space on \mathbb{R}^n . Instead of the weak type (1, 1)and the (H^1, L^1) estimates, Alvarez^[1] and Peréz^[9] studied boundedness properties of $[b, T_{CZ}]$ on a kind of subspaces of Hardy spaces. Recently, Chen and Hu^[4] proved that $[b, T_{CZ}]$ is bounded from $H^1(\mathbb{R}^n)$ into weak $L^1(\mathbb{R}^n)$.

Motivated by [4] and [9], we consider the same problems for commutators of multiplier operators in this paper. More precisely, we shall prove that [b, T] is bounded from the Hardy space $H^1(\mathbb{R}^n)$ into the weak $L^1(\mathbb{R}^n)$ space and from a kind of atomic Hardy type space $H^1_b(\mathbb{R}^n)$

21:3, 2005

into $L^1(\mathbb{R}^n)$. We would like to remark that, in [4] and [9], under some conditions imposed on the kernels of T_{CZ} , the Calderón-Zygmund singular integral operator T_{CZ} can be realized by a multiplier. So, we believe that the commutator [b, T] of the multiplier operator T is also neither of weak type (1, 1) nor of type (H^1, L^1) . To state our results, we first recall the definition of the space $H^1_b(\mathbb{R}^n)$.

Definition $1.2^{[9]}$. A function *a* is called a *b*-atom if there is a ball $B = B(x_B, r_B)$ centered at x_B with radius r_B such that $supp(a) \subset B$ and

(i)
$$||a||_{L^{\infty}(\mathbb{R}^n)} \le |B|^{-1};$$
 (ii) $\int a(y) dy = \int a(y) b(y) dy = 0.$

The space $H_b^1(\mathbb{R}^n)$ consists of all functions $f \in L^1(\mathbb{R}^n)$ which can be written as $f = \sum_j \lambda_j a_j$, where a_j 's are *b*-atoms and λ_j 's are complex numbers with $\sum_j |\lambda_j| < \infty$. Furthermore, we define the quasi-norm on $H_b^1(\mathbb{R}^n)$ by $||f||_{H_b^1(\mathbb{R}^n)} = \inf \left\{ \sum_j |\lambda_j| \right\}$, where the infimum is taken over all the above decompositions of f.

Theorem 1.1. Let $b \in BMO(\mathbb{R}^n)$, T be defined as in (1.1) and ℓ a positive integer. If $m \in M(s,\ell)$, $1 < s \leq 2$ and $n/s < \ell \leq n$, then there is a positive constant C > 0, independent of b such that for any $\lambda > 0$ and any $f \in H^1(\mathbb{R}^n)$,

$$\left|\left\{x \in \mathbb{R}^{n} : |[b,T]f(x)| > \lambda\right\}\right| \le C\lambda^{-1} ||b||_{*} ||f||_{H^{1}(\mathbb{R}^{n})}.$$

Theorem 1.2. Let $b \in BMO(\mathbb{R}^n)$, T be defined as in (1.1) and ℓ a positive integer. If $m \in M(s, \ell)$, $1 < s \leq 2$ and $n/s < \ell \leq n$, then [b, T] is bounded from $H_b^1(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$, there is a positive constant C > 0, independent of f and b such that

$$||[b,T]f||_{L^1(\mathbb{R}^n)} \le C||b||_*||f||_{H^1_b(\mathbb{R}^n)}.$$

Our paper is arranged as follows. In §2, we give some preliminary materials and prove Theorem 1.1. In the last section, we prove Theorem 1.2.

2 Proof of Theorem 1.1

As in [6] and [12], we denote by K(x) the kernel that corresponds to the inverse Fourier transform of m in the sense of distribution, this says, $K(x) = m^{\vee}(x)$ in the sense of distribution. Then for $f \in S(\mathbb{R}^n)$ we have Tf(x) = (K * f)(x), where g^{\vee} denotes the inverse Fourier transform of the function g. To prove Theorem 1.1, it is natural to consider how the behavior of K reflects the fact that $m \in M(s, \ell)$. We have the following estimates for the kernel K from Strömberg and Torkinsky^[12].

Denote by $|x| \sim t$ the fact that the value of x lies in the annulus $\{x \in \mathbb{R}^n : at < |x| < bt\}$, where $0 < a \le 1 < b < \infty$ are constants specified in each instance.

Lemma 2.1^([12],p.152). Suppose $m \in M(s, \ell)$, $1 \leq s \leq 2$. Given $1 \leq \tilde{s} < \infty$, let $r \geq 1$ be such that $1/r = \max\{1/s, 1-1/\tilde{s}\}$ and $\tilde{\ell} = \ell - n/r$. Then $K \in \tilde{M}(\tilde{s}, \tilde{\ell})$, this says that K satisfies

$$\left(\int_{|x|\sim R} |D^{\tilde{\alpha}} K(x)|^{\tilde{s}} \mathrm{d}x\right)^{1/\tilde{s}} \leq C R^{n/\tilde{s}-n-|\tilde{\alpha}|},\tag{2.1}$$

for all R > 0 and all multi-indices $|\tilde{\alpha}| < \tilde{\ell}$. And in addition, if μ denotes the largest integer strictly less than $\tilde{\ell}$ and $\tilde{\ell} = \mu + \nu$,

$$\left(\int_{|x|\sim R} |D^{\tilde{\alpha}}K(x) - D^{\tilde{\alpha}}K(x-z)|^{\tilde{s}} dx \right)^{1/\tilde{s}} \\
\leq \begin{cases} C\left(\frac{|z|}{R}\right)^{\nu} R^{n/\tilde{s}-n-\mu}, & \text{if } 0 < \nu < 1, \\ C\left(\frac{|z|}{R}\right) \left(\log \frac{R}{|z|}\right) R^{n/\tilde{s}-n-\mu}, & \text{if } \nu = 1, \end{cases}$$
(2.2)

for all |z| < R/2, R > 0, and all multi-indices $\tilde{\alpha}$ with $|\tilde{\alpha}| = \mu$.

To prove our result, we also need the atomic decomposition theorem of the Hardy space, which can be found in [7] and [11].

Definition 2.1. Let $0 . A function a defined in <math>\mathbb{R}^n$ is called a (p, 2)-atom, if

- 1) supp $a \subset B(x_0, r) \equiv \{x \in \mathbb{R}^n : |x x_0| < r\}$, for some r > 0;
- 2) $||a||_{L^2(\mathbb{R}^n)} \leq |B(x_0,r)|^{1/2-1/p};$

3) $\int_{\mathbb{R}^n} a(x)x^{\gamma} dx = 0$, for all multi-indices γ with $0 \le |\gamma| \le [n(1/p-1)]$. Lemma 2.2. Let 0 . A distribution <math>f belongs to $H^p(\mathbb{R}^n)$ if and only if $f = \infty$ $\sum_{i=-\infty}^{\infty} \lambda_j a_j \text{ in the sense of distribution, where } a_j \text{ 's are } (p,2)\text{-atoms and } \lambda_j \in \mathbb{C} \text{ with } \sum_{i=-\infty}^{\infty} |\lambda_j|^p < \infty$ ∞ . Furthermore,

$$||f||_{H^p(\mathbb{R}^n)} \sim \inf\left\{\left(\sum_{j=-\infty}^{\infty} |\lambda_j|^p\right)^{1/p}\right\},\$$

where the infimum is taken over all the above atomic decompositions of f.

In the sequel, for a ball $B \subset \mathbb{R}^n$ and a locally integrable function b, we denote by $b_B =$ $\frac{1}{|B|} \int_{B} b(x) dx$. Now, we are at the position to prove Theorem 1.1.

Proof of Theorem 1.1. For any given $f \in H^1(\mathbb{R}^n)$, by Lemma 2.2, $f = \sum_j \lambda_j a_j$, where a_j 's are (1,2)-atoms with $\operatorname{supp}(a_j) \subset B_j \equiv B(x_j, r_j)$ and furthermore, $\|f\|_{H^1(\mathbb{R}^n)} \sim \inf \left\{ \sum_j |\lambda_j| \right\}$. Denote by $b_j = b_{B_j}$, then

$$[b,T]f(x) = \sum_{j=-\infty}^{\infty} \lambda_j (b(x) - b_j) T a_j(x) \chi_{2B_j}(x)$$

+
$$\sum_{j=-\infty}^{\infty} \lambda_j (b(x) - b_j) T a_j(x) \chi_{(2B_j)} c(x)$$

-
$$T \Big(\sum_{j=-\infty}^{\infty} \lambda_j (b - b_j) a_j \Big)(x)$$

:=
$$I_1(x) + I_2(x) + I_3(x).$$

To prove our theorem, it suffices to establish the following estimates,

$$\left| \left\{ x \in \mathbb{R}^n : |I_i(x)| > \lambda/3 \right\} \right| \le C \lambda^{-1} ||b||_* ||f||_{H^1(\mathbb{R}^n)}, \quad i = 1, 2, 3.$$
(2.3)

Since $b \in BMO(\mathbb{R}^n)$, then for any nonnegative integer k and any ball B, there holds $|b_{2^{k+1}B} - b_B| \le C(k+1)||b||_*$ (see [11], p.141), and then

$$\left(\frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} |b(x) - b_B|^p \mathrm{d}x\right)^{1/p} \le C(k+1) ||b||_*, \quad \text{for all } 1 \le p < \infty.$$
(2.4)

Since $n/s < \ell \leq n$ and $1 < s \leq 2$, by Theorem A, T is bounded from $L^2(\mathbb{R}^n)$ into itself. Applying the Hölder inequality, (2.4) and the size condition of a_j , we obtain

$$\begin{aligned} \|(b-b_j)T(a_j)\chi_{2B_j}\|_{L^1(\mathbb{R}^n)} &\leq C\bigg(\int_{2B_j} |b(x)-b_j|^2 \mathrm{d}x\bigg)^{1/2} \|a_j\|_{L^2(\mathbb{R}^n)} \\ &\leq C\bigg(\frac{1}{|2B_j|}\int_{2B_j} |b(x)-b_j|^2 \mathrm{d}x\bigg)^{1/2} \leq C \|b\|_{*} \end{aligned}$$

Consequently,

$$\begin{aligned} |\{x \in \mathbb{R}^{n} : |I_{1}(x)| > \lambda/3\}| &\leq 3\lambda^{-1} \sum_{j=-\infty}^{\infty} |\lambda_{j}| ||(b-b_{j})T(a_{j})\chi_{2B_{j}}||_{L^{1}(\mathbb{R}^{n})} \\ &\leq C\lambda^{-1} ||b||_{*} \sum_{j=-\infty}^{\infty} |\lambda_{j}| \leq C\lambda^{-1} ||b||_{*} ||f||_{H^{1}(\mathbb{R}^{n})}. \end{aligned}$$

By Theorem A, T is of weak type (1,1). Applying the Hölder's inequality and the size condition of a_j , we have

$$\begin{aligned} |\{x \in \mathbb{R}^{n} : |I_{3}(x)| > \lambda/3\}| &\leq C\lambda^{-1} \sum_{j=-\infty}^{\infty} |\lambda_{j}| ||(b-b_{j})a_{j}||_{L^{1}(\mathbb{R}^{n})} \\ &\leq C\lambda^{-1} \sum_{j=-\infty}^{\infty} |\lambda_{j}| \left(\int_{2B_{j}} |b(x) - b_{j}|^{2} dx \right)^{1/2} ||a_{j}||_{L^{2}(\mathbb{R}^{n})} \\ &\leq C||b||_{*}\lambda^{-1} \sum_{j=-\infty}^{\infty} |\lambda_{j}| \leq C\lambda^{-1} ||b||_{*} ||f||_{H^{1}(\mathbb{R}^{n})}. \end{aligned}$$

To check (2.3) for i = 2, firstly, we consider the case of $0 < \ell - n/s \leq 1$. Set $\tilde{s} = s$ and $\tilde{\ell} = \ell - n \cdot \max\{1/s, 1/\tilde{s}'\}$. Noting that $1 < s \leq 2 \leq s' = \tilde{s}'$, we have $\tilde{\ell} = \ell - n/s$. This fact and Lemma 2.1 imply $K \in \tilde{M}(s, \tilde{\ell})$. Denote by $K_j(x, y) = K(x - y) - K(x - x_j)$ for simplicity.

If $0 < \tilde{\ell} < 1$, by (2.2), then for any $y \in B_j$ and any positive integer k,

$$\left(\int_{2^{k+1}B_j \setminus 2^k B_j} |K_j(x,y)|^s \mathrm{d}x\right)^{1/s} \le C 2^{-(k+1)(\ell-n/s)} (2^{k+1}r_j)^{-n/s'}.$$
(2.5)

If $\tilde{\ell} = 1$, we choose a real number ε with $0 < \varepsilon < 1$ such that $t^{1-\varepsilon} \log(1/t) \leq C$ when $0 < t \leq 1/2$. Then by (2.2), for any $y \in B_j$ and any positive integer k, we can obtain

$$\left(\int_{2^{k+1}B_{j}\setminus2^{k}B_{j}}|K_{j}(x,y)|^{s}\mathrm{d}x\right)^{1/s} \leq C\left(\frac{|y-x_{j}|}{2^{k+1}r_{j}}\right)\left(\log\frac{2^{k+1}r_{j}}{|y-x_{j}|}\right)(2^{k+1}r_{j})^{n/s-n} \leq C\left(\frac{|y-x_{j}|}{2^{k+1}r_{j}}\right)^{\varepsilon}(2^{k+1}r_{j})^{n/s-n} \leq C2^{-(k+1)\varepsilon}(2^{k+1}r_{j})^{-n/s'}.$$
(2.6)

Noting that $\int_{B_j} |a_j(y)| dy \le |B_j|^{1/2} ||a_j||_{L^2(\mathbb{R}^n)} \le 1$. By the cancellation condition of a_j , the Hölder inequality, (2.4), (2.5) and (2.6), we have

$$\begin{split} \left\| (b-b_{j})(Ta_{j})\chi_{(2B_{j})}c \right\|_{L^{1}(\mathbb{R}^{n})} &= \int_{(2B_{j})^{C}} |b(x) - b_{j}| \left| \int_{B_{j}} K_{j}(x,y)a_{j}(y)dy \right| dx \\ &\leq C \int_{B_{j}} |a_{j}(y)| \sum_{k=1}^{\infty} \int_{2^{k+1}B_{j} \setminus 2^{k}B_{j}} |b(x) - b_{j}| |K_{j}(x,y)| dxdy \\ &\leq C \int_{B_{j}} |a_{j}(y)| \sum_{k=1}^{\infty} \left\{ \left(\int_{2^{k+1}B_{j}} |b(x) - b_{j}|^{s'}dx \right)^{1/s'} \right. \\ & \left. \times \left(\int_{2^{k+1}B_{j} \setminus 2^{k}B_{j}} |K_{j}(x,y)|^{s}dx \right)^{1/s} \right\} dy \\ &\leq C ||b||_{*} \int_{B_{j}} |a_{j}(y)| dy \sum_{k=1}^{\infty} (k+1)2^{-\varepsilon(k+1)} \leq C ||b||_{*}, \end{split}$$

where ε is the same as in (2.6) when $\tilde{\ell} = 1$ and $\varepsilon = \ell - n/s$ when $0 < \tilde{\ell} < 1$ as in (2.5).

Then

$$\begin{aligned} \left| \{ x \in \mathbb{R}^n : |I_2(x)| > \lambda/3 \} \right| &\leq C \lambda^{-1} \left\| \sum_{j=-\infty}^{\infty} \lambda_j (b-b_j) (Ta_j) \chi_{(2B_j)^C} \right\|_{L^1(\mathbb{R}^n)} \\ &\leq C \lambda^{-1} \|b\|_* \sum_{j=-\infty}^{\infty} |\lambda_j| \leq C \lambda^{-1} \|b\|_* \|f\|_{H^1(\mathbb{R}^n)}. \end{aligned}$$

This shows that (2.3) is true for i = 2 and $0 < \ell - n/s \le 1$.

Next, we consider the case of $\ell - n/s > 1$. Set $\ell_1 = n/s + 1$ if n/s is an integer, then $n/s < \ell_1 \le \ell$ and $\ell_1 - n/s = 1$. If n/s is not an integer, we choose $\ell_1 = \ell - [\ell - \frac{n}{s}]$, where $[\ell - \frac{n}{s}]$

is the integer part of $\ell - \frac{n}{s}$, says, $[\ell - \frac{n}{s}]$ is the greatest integer which is less than or equals to $\ell - \frac{n}{s}$, and it easy to see that $n/s < \ell_1 < \ell$ and $\ell_1 - n/s < 1$. Noting that $m \in (s, \ell)$ implies $m \in M(s, \ell_1)$, instead of considering $m \in M(s, \ell)$, we consider $m \in M(s, \ell_1)$ in the estimates of (2.3) for i = 2. So, (2.3) is true when i = 2 and $n/s < \ell \le n$.

Thus, the proof of Theorem 1.1 is completed.

3 Proof of Theorem 1.2

Proof of Theorem 1.2. We need to prove that there is a constant C > 0 independent of b, such that for any $f \in H_b^1(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} |[b,T]f(x)| dx \leq C ||b||_* ||f||_{H_b^1(\mathbb{R}^n)}$.

To this end, by a standard argument, it suffices to prove that there exists a positive constant C such that for each *b*-atom *a*, the following inequality holds

$$\int_{\mathbb{R}^n} |[b,T]a(x)| \mathrm{d}x \le C ||b||_*.$$
(3.1)

Fix a b-atom a, by the homogeneity, we can assume that a is supported in a ball $B \equiv B(0, d)$ centered at the origin with radius d. Then,

$$\int_{\mathbb{R}^n} |[b,T]a(x)| \mathrm{d}x \le \left(\int_{2B} + \int_{(2B)^C}\right) |[b,T]a(x)| \mathrm{d}x := J_1 + J_2.$$
(3.2)

By Theorem B, [b,T] is bounded from $L^2(\mathbb{R}^n)$ into itself. Applying the Hölder's inequality and the size condition of a, we get

$$J_{1} \leq \left(\int_{2B} \left| [b,T]a(x) \right|^{2} \mathrm{d}x \right)^{1/2} |2B|^{1/2} \leq C ||b||_{*} ||a||_{L^{2}(\mathbb{R}^{n})} |B|^{1/2} \\ \leq C ||b||_{*} ||a||_{L^{\infty}(\mathbb{R}^{n})} |B| \leq C ||b||_{*}.$$

$$(3.3)$$

Now, let us consider the second term J_2 . By the cancellation condition of a, we have

$$J_{2} \leq \int_{(2B)^{C}} \int_{B} |K(x-y) - K(x)| |b(x) - b_{B}| |a(y)| dy dx + \int_{(2B)^{C}} \int_{B} |K(x-y) - K(x)| |b(y) - b_{B}| |a(y)| dy dx$$
(3.4)
$$:= J_{2}' + J_{2}''.$$

Without loss of generality, we assume $0 < \ell - n/s \leq 1$. Set $\tilde{s} = s$ and $\tilde{\ell} = \ell - n/s$. From Lemma 2.1 we have $K \in \tilde{M}(s, \tilde{\ell})$. Similar to (2.5) and (2.6), there is a real number ε with $0 < \varepsilon < 1$, then for any positive integer k and $y \in B$,

$$\left(\int_{2^{k+1}B\setminus 2^kB} |K(x-y) - K(x)|^s \mathrm{d}x\right)^{1/s} \le C2^{-\varepsilon(k+1)} (2^{k+1}d)^{-n/s'}.$$
(3.5)

By the size condition of a and using the Hölder's inequality, (2.4) and (3.5), we have

$$J_{2}' \leq \sum_{k=1}^{\infty} \int_{2^{k+1}B\setminus 2^{k}B} \int_{B} |K(x-y) - K(x)| |b(x) - b_{B}| |a(y)| dy dx$$

$$\leq \int_{B} |a(y)| \sum_{k=1}^{\infty} \left\{ \left(\int_{2^{k+1}B} |b(x) - b_{B}|^{s'} dx \right)^{1/s'} \times \left(\int_{2^{k+1}B\setminus 2^{k}B} |K(x-y) - K(x)|^{s} dx \right)^{1/s} \right\} dy$$

$$\leq C ||b||_{*} |B|^{-1} \int_{B} \sum_{k=1}^{\infty} (k+1) 2^{-\epsilon(k+1)} dy \leq C ||b||_{*}.$$

(3.6)

Similarly, by the size condition of a, (2.4) and (3.5), we can obtain

$$\begin{aligned} J_{2}^{\prime\prime} &\leq |B|^{-1} \sum_{k=1}^{\infty} \int_{B} |b(y) - b_{B}| \int_{2^{k+1} B \setminus 2^{k} B} |K(x-y) - K(x)| dx dy \\ &\leq C|B|^{-1} \sum_{k=1}^{\infty} \int_{B} |b(y) - b_{B}| |2^{k+1} B|^{1/s'} \left(\int_{2^{k+1} B \setminus 2^{k} B} |K(x-y) - K(x)|^{s} dx \right)^{1/s} dy \\ &\leq C \sum_{k=1}^{\infty} 2^{-\epsilon(k+1)} |B|^{-1} \int_{B} |b(y) - b_{B}| dy \leq C ||b||_{*}. \end{aligned}$$

This together with (3.4) and (3.6) we have $J_2 \leq C ||b||_*$. And then, by (3.2) and (3.3), we obtain (3.1). So the proof of Theorem 1.2 is complete.

Acknowledgement. The authors would like to thank the referee for his valuable suggestions.

References

- Alvarez, J., Continuity Properties for Linear Commutators of Calderón-Zygmund Operators, Collect. Math., 49(1998), 17-31.
- [2] Alvarez, J., Bagby, R. J., Kurts, D. K. and Pérez, C., Weighted Estimates for Commutators of Linear Operators, 104:2(1993), 195-209.
- [3] Chen, J. C. and Zhang, P., Boundedness Properties for Commutators of Multiplier Operator, Manuscript.
- [4] Chen, W. G. and Hu, G., Weak Type (H¹, L¹) Estimates for a Multiliner Singular Integral Operator, Adv. in Math. (China), 30:1(2001), 63-69.
- [5] Hörmander, L., Estimates for Translation Invariant Operators in L^p-Spaces, Acta Math., 104(1960), 93-139.
- [6] Kurtz, D. S., and Wheeden, R. L., Results on Weighted Norm Inequalities for Multipliers, Trans. Amer. Math. Soc., 255(1979), 343-362.
- [7] Lu, S. Z., Four Lectures on Real H^p Spaces, New York, Singapore: World Scientific Publishing Co Pte Ltd, 1995.

- [8] Paluszyński, M., Characterization of the Besov Spaces via the Commutator Operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44:1(1995), 1-17.
- [9] Pérez, C., Endpoint Estimates for Commutators of Singular Integral Operators, J. Funct. Anal., 128(1995), 163-185.
- [10] Stein, E. M., Singular Integral and Differentiability Properties of Functions, Princeton N J: Princeton Univ. Press, 1970
- [11] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton N J: Princeton Univ. Press, 1993.
- [12] Strömberg, J. O. and Torkinsky, A., Weighted Hardy Spaces, In: Lecture Notes in Math., Vol. 1381. Springer-Verlag, 1989
- [13] You, Z., Results of Commutators Obtained from Weighted Norm Inequalities, Adv. in Math. (China), 17:1(1988), 79-84. In Chinese.
- [14] Zhang, P. and Chen, J. C., The $(L^p, \dot{F}_p^{\beta,\infty})$ -Boundedness of Commutators of Multipliers, Acta Math. Sinica (English Series), to appear.

Zhang Pu

Institute of Mathematics Zhejiang Sci-Tech University Hangzhou 310018 P. R. China Email: puzhang@sohu.com

Hua Jiukun Department of Computational Science Zhejiang Gongshang University Hangzhou 310035 P. R. China