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Abstract

We investigate the relationship between best approximations by elements of closed convex
cones and the esttmation of functionals on an inner product space (X,{ + , *)) in terms of the

imner product on X.
1 Introduction

In some variational problems with inequality constraints one often encounters functionals
defined on closed convex cones in an incomplete inner product space (X,{ + , « }). It then be-
comes of paramount importance to be able to estimate such functionals in terms of the inner
product on X. The first author™ developed somewhat weaker estimation for such functionals.
In this paper we exploit the techniques of Approximation Theory to estimate these functionals
in terms of the inner product on X.

This section establishes the notation and terminology that is used throughout. Section 2
investigates the relationship between best approximations by elements of closed convex cones
and the estimation of functionals on an inner product space (X,¢ ¢, * }). Unless otherwise
stated, X will always be a real linear space.

Defintion 1. 1. A nonempty subset K of X is said to be a convex cone in X if the follow-
ing conditions hold ;

(K1) z+y€K for all z,yEK;

(K2) ar€X for all z€ X and all € R, a20.

Defintion 1.2'9 Let (X,¢+, * ) be an inner product space over the real number field
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R. An element € X is called sukarthogonal over an element y€ X if (y,7)<0. We use the
notaticn xSy to meai that z is suborthogonal over y.
I A is a nonempty subset of X, we shall denote by A° the set of all elements of X that are
suborthogonal over all elements of A. That is,
A= {y € X|(y,x) KL 0forall z € A}.
Clearly, for every nonempty subset A of X,A°is a closed convex cone in X.
Defintion 1.3 Let K be a closed convex subset of an inner product space (X,( ¢ , * )).
For a given € X, the best approximation to z from K is an element Px(z) € K such that
lz=Pe(x)ll =inf{llz—yl |y € K}.
(It is well-known that if (X,(+, * ) is actually a Hilbert space then each x& X\K has a u-
nique best approximation in K).
De fintion 1. 4
(1) A function f:X—R on a linear space X is called sublinear if
flaxr + By) L ef(x) + Bf(y) forall z,y € X and all ¢ > 0,8 > 0.
(2) An extended real-valued function F on a real linear space X is called convex if
F(ar + By) < aF(x) + BF(y)
for all r,y€ X and all a220, 8220 such that a+8=1.

2 Best Approximations and Estimation of Functionals

In this section we investigate the relationship between best approximations by elements of
closed convex cones and the estimation of functionals on an inner product space (X,{ ¢+, * })
in terms of the inner product on X. We need the following powerful result.

Theorem 2.1 Let (X,(*, *)) be an inner product space over the real number field R
and C a closed convex subset of X with X7C. 1f x,€ X\C and g, € C, then the following
Statements are equivalent.

(1) go=Pc(xe)s

(2) 2,—8o€E(C—go)°;

(3) We have that

:gﬁ(g—xo,g,,—xo)= Hgo — zo Il 2. (2.1.D

Proof (1)=(2). This implication is a classical result (See, for example, [2,Corollary
3.1]). We include its proof for the sake of completeness. Assume that g, is the best approxi-
mation to x, in C. Then, for any g€ C and 0<<A<1, Ag+ (1 —A)g, EC since C is convex.
Thus,
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lzo — g 'S o — [Ag+ (1 = Dged 1= || (x, — g0) — Ag — go) || ?
= ((xo ~ o) — A(g — o) (To — &) — A(g — &)
=z — 8l — 24Kzy — 8018 — 8 + 2l g — g | ?
22z, go0r8— <A l g—go fl ?

=><xo—go,g-go><~% hg—goll %
As A>0,(xo—gor8— g0) 0.
That is x,— g, € (C—go)°.
(2)=>(3). By (2) we have that for all g€C,
0 (T — o180 — &) = Xy — G018 — To + ZTo — &)
= (Zy — ForXo — &) — Xy — LorZo — &)

=A{Zy — gorZe — &) ~ Nz — gl %
whence
| 2o — go il 2 < (xy — gorxo — g) forall g € C.
Thus,
2o — go Il *< inf(zo — goy20 — )
S(xo— orZo — o) = 2 — &l 2
Therefore

20— go Il * = inf(zy — 0,20 — £)-
(3)=(1). H (3) holds, then for all g&€C
2o — 8ol * <z — Borxo — &) < 2o — goll lxo— g1l
where the second inequality is the Cauchy—Bunyakowsky-Schwarz Inequality. Thus,
hzo —goll < llzo— gl forall g € C.

That is go=Pc(x,).

In the case of closed convex cones the above theorem assumes the following sharper form.

Theorem 2.2 Let (X,( +, ¢ )) be an inner product space over the real number field R,
K a closed convex cone in X with X¥#K. If 2,€ X\K and g,€ K, then the following state-
ments are equtvalent.

(1) go=Px(x0)s

(2) 2o—go €EK5Ngo » where gt ={x€ X |(x,g,)=0}4

(3) 1= g €EK’ and (xorgo)= Il go Il %;

Proof The equivalence of (2) and (3) is clear.

To prove the equivalence of (1) and (2) it suffices, by Theorem 2. 1, to show that (K—
£20°=K*(gi+. To that end, let A€ (K—g,)°. Then
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(hyg — g) K 0forall g € K, 2.2.1)
Thus, for any k€K,
02 (h,(k+ go) — go) = (h,k),
That is, h€ K°. Taking g=0 in (2. 2. 1) we get that (h, — g,)<C0 and, with g=2g, we
have that (h,g0)<0. Thus, (k,g,)=0, i.e. , hEg¢, and so h€ K*() gt , which shows that
(K—g)°CK*Ngé.

If h€K°Ngt, then hREK*and hE€ g¢. Thatis, (h,g)<0 for all g€ K and (h,g,)=0.

This implies that
(hyg — g0 K 0forall g € K,
i.e., hE (K—go)°, and so K N gi C(K—g,)°.

Remark 2.3 Note that the above theorem improves Lemma 2. 1 [3] in which additional
conditions were imposed.

Remark 2.4 If K is a linear subspace then X°=K1 and so condition (2) of the above
theorem reduces to the classical condition that g, is the best approximation to x, in K if and on-
ly if zo—gol K.

Let (X,{*, *)) be an inner product space over the real number field R and let F. X—+R
be a continuous convex mapping on X. Denote by

FS(r)y ={z€ X|F(x)<r}, r€R.
Assume that r is such that F<5#d®.

The following theorem characterises best approximations by elements of the “level set”
F=<(r). This result can also be viewed as an estimation theorem for a continuous convex map-
ping defined on an inner product space in terms of the inner product which generates the norm

et

Theorem 2.5 Let (X,( + , + ) be an inner product space over the real number field R
and let F;X—R be a continuous convexr mapping on X. Let 1,€ X\F<(r) and g, € F< (r).
Then the following statements are equrvalent.

(1) go=Pp(,, (25)3

(2) One has the estimation

Fx)=zr+ Had — r,(x — BosTo — &) forallz € FC (), (2.5.1)
2o — 8ol
or equivalently,
Fxy) — r (
lzo — &Il 2
Proof (1)=>(2); Assume that go=P;<(, (x,). Observe that F(z,) >r since 1, € X\

F(x) = F(g,) + T — gorZy — go) forall r € FS (r). (2.5.1)
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F<(r). Let z€ F<(r). Then F(z)<r. Set a=F(z,)—r and f=r—F(z). Then a>0,8>

0 and 0<<a+B=F(z,) — F(x). Consider the element u=‘2:+_—%r°. By convexity of F we
have that
_ fax + Bx,\ _ aF(x) + BF(z,)
F(“)*F( at B )g at P
_ (F(xo) = NF(x) + (r — F(x))F(x,)
- F(zy) — F(x) -

That is, «€ F<(r). As go=P<,,(z,), we have by Theorem 2.1 that z,—g,€ (F<(r)—
go) s ice.y (g—gorTo—go)<0 for all g€ F<(r). In particular, {u— govxo— go)<<0. That

is,
0= (u — gor Ty — &o) = (&z—:% — £o02%o — &o)
= “1—_:_'5(‘11' + Bz, — (a+ Bgoyxo — &)
= a_*l_ p<a(x — &) + Blx, — 80)+Zy — o)
= B x — gorze — g0) + —Brizy — ~ &)
T e+ B T — BorZg &go a+ B Zy 8oLy -4
 F@)-n, C—=F@) ,
- F(.Z'o) _ F(I) (.ZI 8orZo go> + F(xo) _ F(x) ” Ty 8o " .
Thus

F(r)}-ﬁ—ilt-;—(ﬂ_)—;—l%(x—go,xo — g +r for all x € F< (),
0 [}

which verifies (2.5.1). Since (2.5.1) holds for all 2€ F<(r), we have that F(g,)=>=r. But
F(go)<r since g,€ F<(r). Thus F(g,)=r and so

(if:z(xfg_ﬁ')i(x—go,xo—go)+F(go) forall r € F‘(r),
| Zg [

which verifies (2.5.1)".
(2)=>(1): Assume that (2.5.1) holds. Then for all x€ F<(r),

(F(xy) — 1)
I Ty — Ko Il 2

F(z) >

0=2Flzx)—r=>

{xr — gorxy — £o).

Since F(x,)—r>0, we have that
(X — ZosXo — o) < O forall x € F< (r).
That is, z,—go€ (F<(r)—g,)°, whence go=Pj<,(zo).
Corollary 2. 6 Let p;: X—>R be a continuous sublinear functional on the inner product
space (Xy(+y*)). Put K(p)+ ={z€ X|p(z2)<0}. Let 20€ X\K(p) and g, € K(p).
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Then the followmg statements are equivalent.
(1) go=Pg(xo)s
(2) One has the estimation

p(z,)
= -
pix) = it x, — goll :

(X - gorTo — ga) for all x € K(p), (2.6. 1)

or equrvalently .

P(I°)7\I - 80Ty — g foradl x € K(p)., (2.6.1)

p(x) = p(ge) + m 7
The proof follows from the above theorem by takmg F=p and r=0.

Remark 2.7 The above corollary improves Theorem 2. 4 [3].

Theorem 2.8 Lez f: X—R be a continuous linear functional on the inner product space
(X, (e, e, K=ker(f)t ={x€X|f(2)=0}. Let z,€ X\K and g,€ K. Then the fol-
lowing statements are equrvalent.

(1) go=Pr(xo)s

(2) One has the representation

f(x).:—f(i"—)-——,(z,xo—go) forall x € X. (2.8.1D
flzg —~ goll
Moreover
NVAC 1
”f” - ”In B g°||'

Proof (1)=>(2).: Assume that go,=P(x,). Then 1,—g. | K since K is a closed sub-
space of X. Now, for each € X, the element f(x)r,— f(x,)x belongs to K, and so
(f(x)xy — flx)xoxe — go) = O forall x € X.
Thus,
S {xpexy — go) = flx)(xyxy — o).
Since {(go110 ~ge) =0, we have that
I x, — gooo — &) = S(x)(xyxs — &0V
whence

flo) = %—f—(-ﬂ)—-—-,(z..to — gy forall x € X,

hxy — gol!
which verifies (2. 8. 1).
(2)=>(1); Assume that (2.8.1) holds. Then for each xr€ K,

f(x)

0= f(x) = 77—
SO =

(IgIo - go>:>(xoxc - go> = 0.

That is xro,— g, ] K. and so go=Px(x,).
Rewrite (2.8.1) as
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f(x) = (x,z) where z = M"—_—g;_)
e
Then by the Cauchy-Bunyakowsky-Schwarz Inequality | f(z) | = [(z,2) <z || Il z .

Thus || S| <zl . Since f(z)=(z,2)= | z || ?, we have that || f| = [ z| . Hence

v S
1A=zl = o2

Theorem 2.9 Let (X,{ *, * )) be an inner product space over the real number field R
and let F: X—>R be a continuous convex mapping on X. Let 2,€ X\F<(r) and go€ F<(r) such
that go=P<,(x4)»—2,EF<(r), and || xo | > || go Il . Then we have the estimation

r+L‘r°).,;'2<x—go»xo-go), for all z € F< (),
o — & |l
F(z) 2 r )
r— — I
S g°o ”,<x—go,zo ~ go), forallz € X\F* (r).

Proof The first part is restatement of Theorem 2. 5.
If z€E X\F<(r), then F(2)>r. Also, —z,€ F<(r) implies that F(—1,)<r. Let a=
F(z)—rand f=r—F(—z,). Then a>0,820 and 0<a+B=F(x) — F(—x,). Consider

the element w= ‘%ﬂf. By convexity of F,
= a('—Io) +ﬂ1‘ GF(—I°)+BF(I)
_ (F(z) = n)F(—x)) + (r — F(= z,))F(z)
= F(x) — F(— z) -r
That is, w€ F<(r). Since &o=Ps<y(x0) s (w—go>20—go) 0. That is,
0= (w — gorTo — £o) = (:ifi-;ﬂx — 8osXy — &)

1
= a—_*—_-p(— azy, + Br — agy, — Pgorxo — &)
=1
a+ g
1
a+ B
D0 22— alxy + gorxo — §o) + Bz — gosTy — &)

—a(x, + g,) + B(I - go)vxo — &)

[_ alxy + gosXo — £o) + Blx — gorzo — go)]

=—a(llzo | — [ goI1®) + Blz — govzo — £0)
= —F@Nxll®— gl
+ (r — F(— 2))(x — go:2y — &)
= F@(lzll®>— llgolHDZr(lxli?— gl
+ (r— F(= 2)4x — g4r x5 — £o)>»
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whence
r— F(— z,)
lzo 12— Hgoll?
Corollary 2.10 Let p: X—+R be a continuous sublinear functional on the inner product
space (X, (o0 40), K(p)+ ={2€X|p(x)K0}. Let 2,€ X\K(p) and g, € K(p) such
that go="Pr,,(xs)s —2,€K(p)s and || 2, || > || go Il then we have the estimation

F(x)=2r+ (X~ gorTo — &o) for all z € X\F< (r).

Pf:’to) (T — gorZo — £ Jor all x € K(p),
p( > “Io 8o i
X) =2
— p(= 1) (T — gosZo — o)y foral x € X\K(p).
Mz 12— 1 goll

Corollary 2. 11 Let p: X R be a continuous sublinear functional on the inner product
space (X,¢ e, * ), K(p)+ ={z€ X! p(2)K0}, 2,€ X\K(p) and g€ K(p) such that
8o=Py(,,(x0) and go— 2, € K(p). Then we have the estimation

p(z,)

”l'o"‘go“2

(I-go'Io“‘go)o fOfaIlIE‘K(P),

plz) =

:ﬂ%(f_o;.__jlo_z’u — gor%o — 800 forall z € X\K(p).

Proof The first part is restatement of Corollary 2. 6.

Recall that go=Pyx,,(z,) if and only if z,— g, € K(p)*Ng¢. Let 2€ X\K(p). Then
p(x)>0. Set wo=1x,—g, and v=p(z) (—w,) — p(—w,)z. Note that, since g,—z,€
K(p), it follows that p(—1v,) = p(go— x,)<0. Furthermore, since

P(0) = p(p(2)(— wy) — p(— wy)x) < p(x) p(— wy) — p(— wy) p(x) = 0,
we have that v€ K(p). Thus,
02 (v,x, — go)= {P(x)(— wy) — p(— wo)xx — &o)
=~ plxX{worxo — go) — p(— wo){z,x4 — )
> px)(xy — LorTo — &)= P(80 — T){XyXy — £o?»
whence

— p(ge — z,)

=
p(z) fzo — goll?

(Z,2, — &o).
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