AN INEQUALITY OF SCHUR'S TYPE^{*}

L. Miler *(University of Sofia, Bulgaria)*

Received Dec. 18, 1996

Abstract

It is proved that the Chebyshev polynomial $\overline{T}_n(x) = T_n(x\cos{\frac{\pi}{2n}})$, has the greatest uniform norm on $[-1,1]$ of its third derivative among the real polynomials of degree at most n, which are bounded by 1 in $[-1,1]$ and vanish in -1 and 1.

1 Introduction

Let π_n be the set of all real algebraic polynomials of degree not exceeding n. We denote by $|| f ||_{c[-1,1]} := max\{ |f(x)| : x \in [-1,1]\}$ the uniform norm of f on $[-1,1]$.

According to the inequality of V.A. Markov, the Chebyshev polynomial of first kind T_n (x) : $=\cos(\arccos x)$ has the greatest norm of k-th derivative $(k=1, \dots, n)$ among all polynomials from π_n for which $||p||_{C(-1,1)} \leq 1$.

This result was extended by Duffin and Schaeffer^{$[4]$}. They showed that

$$
|f^{(k)}(x+iy)| \leq |T_{n}^{(k)}(1+iy)|, \quad k=1,\cdots,n
$$

for every $x \in [-1,1], y \in (-\infty,\infty)$ and every polynomial from π , provided

 $|f(\eta_j^{(n)})| \leq 1, \quad j = 0,\dots,n,$

where $\eta_i^{(n)} = \cos \frac{j\pi}{n}$ are the extremal points of $T_n(x)$ in $[-1,1]$.

Extremal problems of Markov's type, under additional restrictions on the polynomials at the endpoints of the interval, have been investigated by $Schur^[8]$.

Later problems of Schur's type have been considered by many authors, including Bojanov^[1], Bojanov and Rahman^[2], Frappier^[5].

Denote by $\{\xi_k^{(n)}\}_1^n$ the zeros of $T_n(x)$. Precisely, $\xi_k^{(n)} = \cos \frac{(2k-1)\pi}{2n}$, $k=1,\cdots,n$. Let a $(x):[-1,1] \rightarrow [-\xi_1^{(n)}, \xi_1^{(n)}]$ be the linear transformation on $[-1,1]$ to $[-\xi_1^{(n)}, \xi_1^{(n)}]$, $\alpha(x) =$ $\xi_1^{(n)}x$. Set $\overline{T}_n(x) := T_n(a(x))$.

Suchur^[8] proved that if $f \in \pi_*$, $f(-1)=f(1)=0$ then

[•] Research Supported by the Solia University Science Foundation under Project No. 153/95.

$$
|| f' ||_{c[-1,1]} \leqslant n \cot \frac{\pi}{2n} || f ||_{c[-1,1]}.
$$

The equality is attained if and only if $f(x) = cT_x(x)$.

Bojanov^[1] considered the set P_n of all algebraic polynomials of degree n, which have n zeros in $[-1,1]$. He proved that if $f \in P_n$ and $f(-1)=f(1)=0$, then

$$
\| f^{(k)} \|_{L_{\mathfrak{q}}[-1,1]} \leqslant \| T_{\mathfrak{n}}^{(k)} \|_{L_{\mathfrak{q}}[-1,1]} \| f \|_{c[-1,1]}
$$

for each $k=1, \dots, n$, $1\leqslant q\leqslant \infty$. He also proved that these inequalities hold for $k=1$ in π_n , and stated the question: Do the inequalities hold in π_n for $k>1$?

We showed in [6] that if $f \in \pi$, $f(-1)=f(1)=0$ then

$$
\| f'' \|_{C[-1,1]} \leq \| \overline{T}_s'' \|_{C[-1,1]} \| f \|_{C[-1,1]} = n \cot^3 \frac{\pi}{2n} \| f \|_{C[-1,1]}.
$$

In this paper we prove the following sharp inequality for the third derivative

$$
\|f^{\prime\prime}\|_{C[-1,1]}\leq \|T_{n}^{\prime\prime}\|_{C[-1,1]}\|f\|_{C[-1,1]}
$$

$$
=n\frac{\cos^{3}\frac{\pi}{2n}}{\sin^{5}\frac{\pi}{2n}}(3-(n^{2}+2)\sin^{2}\frac{\pi}{2n})\|f\|_{C[-1,1]},
$$

provided $f \in \pi_n$, $f(-1) = f(1) = 0$. The equality is attained if and only if $f(x) = cT_n(x)$.

2 Some inequalities for the Chebyshev polynomials

Let $\eta_i^{(n)}$: $=\cos \frac{\pi}{n}, j=0,\dots, n$ be the extremal points of $T_n(x)$ in $[-1,1]$. **Lemma** *1 The Chebyshev polynomials satisfy the inequality*

$$
|T_{\mathbf{a}}^{\prime\prime}(x)|\leqslant T_{\mathbf{a}}^{\prime\prime}(\eta_1^{(\mathbf{a})})
$$

for each $x \in [-\eta_1^{(n)}, \eta_1^{(n)}]$ *. For n>2 the equality is attained if and only if* $x = -\eta_1^{(n)}$ *or* $x = \eta_1^{(n)}$ *. Proof* For $n=2,3$ the assertion is verified directly on the polynomials $T_2(x)=2x^2-1$ and $T_3(x) = 4x^3 - 3x$. Suppose now that $n \ge 4$.

After a change of the variable $x = \cos\theta$, the wanted inequality is equivalent to

$$
|f(\theta)|\leqslant g(\theta)
$$

for each $\theta \in \left[\frac{m}{n}, \pi-\frac{m}{n}\right]$, where

$$
f(\theta) = \sin n\theta \cos \theta - n\cos n\theta \sin \theta,
$$

$$
g(\theta)=c_n\sin^3\theta,\ c_n=\frac{n}{\sin^2\frac{\pi}{n}}.
$$

The function $|f(\theta)|$ is even with respect to $\frac{\pi}{2}$. Since $f'(\theta) = (n^2-1)\sin\theta\sin{\theta}$, it is clear that $f(\theta)$ decreases in $\left[\frac{n}{n}, \frac{\pi}{n}\right]$, increases in $\left[\frac{\pi}{n}, \frac{3^n}{n}\right]$, etc. The local maxima of $|f(\theta)|$ are attained in the points $\frac{m}{n}$ and the corresponding extremal values are

$$
|f(\frac{k\pi}{n})| = n\sin\frac{k\pi}{n}, \qquad k=1,\cdots,n-1.
$$

The sequence $\{ |f(\frac{c\kappa}{n})|\}_{k=1}^{\lfloor n/2\rfloor}$ is increasing and the sequence $\{ |f(\frac{c\kappa}{n})|\}_{k=\lfloor n/2\rfloor+1}^{n-1}$ is decreasing. The function $g(\theta)$ increases in $\left[\frac{\pi}{n},\frac{\pi}{2}\right]$ and decreases in $\left[\frac{\pi}{2},\pi-\frac{\pi}{n}\right]$, $g(\theta)$ is even with respect to $\frac{\pi}{2}$. It is seen that $f(\frac{\pi}{n})=g(\frac{\pi}{n})$.

We shall consider two cases.

Case 1:
$$
\theta \in \left[\frac{\pi}{n}, \frac{2\pi}{n}\right] \cup \left[\frac{(n-2)\pi}{n}, \frac{(n-1)\pi}{n}\right].
$$

Without loss of generality we may assume that $\theta \in \left[\frac{n}{n}, \frac{2n}{n}\right]$. Let us denote by θ_1 the unique zero of $f(\theta)$ in this interval. For $n \geq 4$ we have

$$
f(\frac{11\pi}{8n}) = \sin \frac{11\pi}{8} \cos \frac{11\pi}{8n} - n\cos \frac{11\pi}{8} \sin \frac{11\pi}{8n}
$$

> $\sin \frac{11\pi}{8} - \frac{11}{4} \cos \frac{11\pi}{8} > 0$,

hence

$$
\theta_1 > \frac{11\pi}{8n}.
$$

Taking into account the attitude of $|f(\theta)|$ and $g(\theta)$ in $\left[\frac{\pi}{n}, \frac{2\pi}{n}\right]$, it is sufficient to prove that

$$
|f(\frac{2\pi}{n})|
$$

which is eqiuvalent to

$$
\sin\frac{2\pi}{n}\sin^2\frac{\pi}{n} < \sin^3\frac{11\pi}{8n}.
$$

The last inequality is verified directly for $n=4,5,6$ and for $n\geq 7$ it follows from the inequalities

$$
\sin \frac{2\pi}{n} \sin^2 \frac{\pi}{n} < \frac{2\pi^3}{n^3}
$$

and

$$
\sin\frac{11\pi}{8n} > \frac{55}{8n}\sin\frac{\pi}{5}.
$$

Case 2: $\theta \in \lceil \frac{2\pi}{n}, \frac{(n-2)\pi}{n} \rceil$. tl n

We may assume that $n \geq 6$. It is sufficient to prove that

$$
|f(\frac{(k+1)\pi}{n})|
$$

or, equivalently,

$$
\sin\frac{(k+1)\pi}{n}\sin^2\frac{\pi}{n}<\sin^3\frac{k\pi}{n},\qquad k=2,\cdots,\left[\frac{n}{2}\right]-1.
$$

The following inequalities are true for $n \ge 6$:cos $\frac{\pi}{n} \ge \frac{\sqrt{3}}{2}$, sin $\frac{\pi}{n} > \frac{2}{n}$. Hence

$$
\sin\frac{3\pi}{n} < \frac{3\pi}{n} < \frac{6\sqrt{3}}{n} < 8\sin\frac{\pi}{n}\cos^3\frac{\pi}{n}
$$

and the inequality for $k=2$ is established.

Let $k \geqslant 3$. Then

$$
\sin \frac{(k+1)\pi}{n} \sin^2 \frac{\pi}{n} < \frac{\pi^3(k+1)}{n^3} < \frac{8k^3}{n^3} < \sin^3 \frac{k\pi}{n},
$$

as desired.

This completes the proof of Lemma 1.

We shall denote by $P_n^{(e,\beta)}(x)$ the Jacoby polynomials. Precisely, $P_n^{(e,\beta)}(x)$ is the polynomial from π_n which is orthogonal in $[-1,1]$ with a weight

$$
w(x) = (1-x)^{e}(1+x)^{\beta},
$$

to every polynomial of degree $n+1$ and normalized by the condition

$$
P_n^{(e,\beta)}(1) = \binom{n+\alpha}{n}.
$$

Using the fact that except for a constant factor $T^{(k)}_n(x)$ is $P^{(\frac{2k-1}{2},\frac{2k-1}{2})}_{n-1}(x)$ and some results for ultrspherical polynomials (see $\lceil 7 \rceil$ and $\lceil 9 \rceil$), we obtain the following properties of the k-th derivative of the Chebyshev polynomial:

(i) The function $y=T_n^{(k)}(x)$ satisfies the differential equation

$$
(1-x2)y'' - (2k+1)xy' + (n2 - k2)y = 0.
$$

(ii) The largest zero x_1 of $T_n^{(k)}(x)$ satisfies the inequality

$$
x_1>\sqrt{\frac{n-k-1}{n+k}},
$$

(it follows from the inequality $(6. 2.13)$ in $\lceil 9 \rceil$, p. 119).

(iii) The sequence formed by the relative maxima of $|T_{\bullet}^{(k)}(x)|$ in the interval [0,1] and by the value of this function at $x=1$ is increasing.

Theorem 1 *The Chebyshev polynomials satisfy the inequality*

$$
|T_{\bullet}'''(x)| \leqslant T_{\bullet}'''(\xi_1^{(n)})
$$

for each $x \in [-\xi_1^{(n)}, \xi_1^{(n)}]$. For $n > 3$ the equality is attained if and only if $x = -\xi_1^{(n)}$ or $x = \xi_1^{(n)}$.

Proof All interior local maxima of $T^{\pi}(x)$ are located in the interval $(-\xi_1^{(n)}, \xi_1^{(n)})$. By virtue o{ (iii), the inequality is equivalent to

$$
|T''_n(x_1)| < T''_n(\hat{\xi}_1^{(n)}), \tag{1}
$$

where x_1 is the largest zero of $T^{(4)}_{n}(x)$.

For $n=4,\dots,7$ the assertion is verified directly on the polynomials $T_{\bullet}(x),\dots,T_{7}(x)$. We suppose that $n \geq 8$.

Using differential equation (i), we obtain

$$
T_{n}^{''}(x_{1}) = \frac{(n^{2} - 4)T_{n}^{''}(x_{1})}{5x_{1}}
$$

Let us note that

$$
T_n'(\xi_1^{(n)}) = \frac{n}{\sin \frac{\pi}{2n}}, \quad T_n''(\xi_1^{(n)}) = \frac{n \cos \frac{\pi}{2n}}{\sin^3 \frac{\pi}{2n}}
$$

Hence, by (i), we get

$$
T_{n}^{w}(\xi_{1}^{(n)}) = \frac{n}{\sin^{5} \frac{\pi}{2n}}(3 - (n^{2} + 2)\sin^{2} \frac{\pi}{2n}).
$$

Therefore the inequality (1) may be written in the form

$$
(n^{2} - 4)|T_{n}''(x_{1})| < 5x_{1} \frac{n}{\sin^{5} \frac{\pi}{2n}} (3 - (n^{2} + 2)\sin^{2} \frac{\pi}{2n}).
$$
 (2)

Since $x_1 \in [{} -\eta_1^{\text{\tiny(n)}} ,\eta_1^{\text{\tiny(n)}}]$, Lemma 1 implies that

$$
|T_{n}^{''}(x_{1})| < T_{n}^{''}(\eta_{1}^{(n)}) = \frac{n^{2}}{\sin^{2} \frac{\pi}{n}}.
$$

On the other hand, by (ii),

$$
x_1 > \sqrt{\frac{n-5}{n+4}}.
$$

Now, it sufficient to prove the stronger inequality

$$
n(n^{2}-4)\sin^{3}\frac{\pi}{2n}<20\sqrt{\frac{n-5}{n+4}}\cos^{2}\frac{\pi}{2n}(3-(n^{2}+2)\sin^{2}\frac{\pi}{2n}).
$$

We have for $n \ge 8$:

$$
20\sqrt{\frac{n-5}{n+4}}\cos^2\frac{\pi}{2n}(3-(n^2+2)\sin^2\frac{\pi}{2n})>
$$

>
$$
10\cos^2\frac{\pi}{16}(3-(n^2+2)\frac{\pi^2}{4n^2}) >
$$

>
$$
10\cos^2\frac{\pi}{16}(3-\frac{\pi^2}{4}-\frac{\pi^2}{128}) >
$$

>
$$
4 > \frac{\pi^3}{8} > n(n^2-4)\sin^3\frac{\pi}{2n}.
$$

The theorem is proved.

3 The inequality

We shall recall some resuts, connected with the extremal problem

$$
N_{\lambda}(\xi) = \max\{|f^{(k)}(\xi)|: f \in \pi_{\lambda}, \|f\| \leq 1\},
$$

where $1 \leq k \leq n, \xi \in [-1,1].$

The interval $[-1,1]$ can be partitioned into two groups of subintervals:

$$
\{ \big[\alpha_i^{(k)}, \beta_i^{(k)} \big] \}_{i=1}^{n-k+1}, \quad \alpha_1^{(k)} = -1, \quad \beta_{n-k+1}^{(k)} = 1,
$$

called Chebyshev intervals, and their complements $\{(\beta_i^{(k)}, \alpha_{i+1}^{(k)})\}_{i=1}^{n-k}$.

It was shown in $\lceil 3 \rceil$ that

$$
N_{\ell}(\xi) = |T_{\lambda}^{(k)}(\xi)|, \tag{3}
$$

for $\xi \in [\alpha^{(k)}, \beta^{(k)}_i], i = 1, \dots, n-k+1$ and

$$
N_{k}(\hat{\xi}) \leqslant \max\{ |T_{n}^{(k)}(\beta_{i}^{(k)})|, |T_{n}^{(k)}(a_{i+1}^{(k)})| \}, \tag{4}
$$

for $\xi \in (\beta_i^{(4)}, \alpha_{i+1}^{(k)})$, $i=1, \cdots, n-k$.

Lemma 2^[1] Let $p \in \pi_n$ such that $p(-\xi_1^{(n)}) = p(\xi_1^{(n)}) = 0$. *If* $|p(x)| \leq 1$ on $[-\xi_1^{(n)}, \xi_1^{(n)}]$ then $|p(x)| \leq |T_n(x)|$ for each $|x| \geq \xi_1^{(n)}$.

Lemma 3^[6] *The points* $-\xi_1^{(n)}$ *and* $\xi_1^{(n)}$ *are located in the two end Chebyshev intervals. Pre* $cisely, -\xi_1^{(n)} \in (-1, \beta_1^{(n)})$, $\xi_1^{(n)} \in (\alpha_{n-k+1}^{(k)}, 1)$.

Theorem 2 Suppose that $f(x)$ is a real algebraic polynomial of degree at most n, satis*f* ving the conditions $f(-1) = f(1) = 0$. Then

$$
|f'''(x)| \leqslant n \frac{\cos^3 \frac{\pi}{2n}}{\sin^5 \frac{\pi}{2n}} (3 - (n^2 + 2) \sin^2 \frac{\pi}{2n}) \| f \|_{C[-1,1]},
$$

for each $x \in [-1,1]$ *. The equality is attained if and only if* $f(x) = c\overline{T}_n(x)$ *and* $x = \pm 1$.

Proof Without loss of generality we may assume that $|| f ||_{c(-,1)} \le 1$. Let $p(x) =$

 $f(\frac{x}{\epsilon^{(n)}})$. Lemma 2 implies that $|p(x)| \leq 1$ on $[-1,1]$. Let x be an arbitrary point in $[-\hat{\epsilon}_1^{(n)},$ ξ_i^{--} J. By (3), (4) and Lemma 3, there is $y \in [-\xi_i^{--}, \xi_i^{--}]$ such that $|p'''(x)| \le |T_*'''(y)|$ Applying Theorem 1 we obtain $|T_*^{\bullet}(\mathfrak{y})| \leq |T_*^{\bullet}(\xi_1^{\circ\circ})|$.

We conclude that $|p'''(x)| \leq T_*'''(\xi_1^{'''})$ on $[-\xi_1^{'''}, \xi_1^{'''}]$. It follows that

$$
|f'''(x)| = (\xi_1^{(n)})^3 |p'''(\xi_1^{(n)}x)| \leq (\xi_1^{(n)})^3 T_{\pi}'''(\xi_1^{(n)})
$$

$$
= n \frac{\cos^3 \frac{\pi}{2n}}{\sin^5 \frac{\pi}{2n}} (3 - (n^2 + 2)\sin^2 \frac{\pi}{2n}) = \overline{T}_n^{\ \pi}(1)
$$

for each $x \in [-1,1]$.

It is seen from Theorem 1 that the equality is attained if and only if $f(x) = cT_n(x)$ and x $=\pm 1$. The theorem is proved.

4 Additional results and comments

We obtain here the following inequality of Duffin-Schaeffer Schur type:

Theorem 3 *Suppose that* $p(\pi_n)$ *such that* $p(-a) = p(a) = 0$ *for some* $a > 0$ *. Let* $|p(x)|$

$$
\leqslant 1 \text{ for } x=a \frac{\eta_j^{(n)}}{\xi_1^{(n)}}, \ j=1,\cdots,n-1. \text{ Then}
$$

 $|p^{(i)}(x+iy)| \leqslant (\xi_1^{(n)}/a)^k |T_*^{(i)}(1+iy(\xi_1^{(n)}/a))|$

 $for -a/\xi_1^{(n)} \leq x \leq a/\xi_1^{(n)}, -\infty < y < \infty$ and $k=1, \cdots, n$. The equality is possible if and only if $p(z) = \pm T_x((\xi_1^{(n)}/a)z).$

As particular case of Theorem 3 (for $a=1$) we get an earlier result of Frappier [5, Theorem 2'].

Our approach is essentially different and is based on the

Lemma 4 Let $q \in \pi$, such that $q(-\xi_1^{(n)})=q(\xi_1^{(n)})=0$. If $|q(\eta_i^{(n)})| \leq 1$ for $j=1,\dots,n-1$], then

$$
|q(x)|\leqslant |T_{\bullet}(x)|
$$

for each $|x| \geq \xi_1^{(n)}$.

Lemma 4 may be considered as a discrete version of Lemma 2. The proof of Lemma 4 is similar to that of Lemma 2 and we omit it.

Proof of Theorem 3.

Let us consider the polynomial $q(z)$: $=p((a/\hat{\xi}_1^{(n)})z)$. It follows that $q(-\hat{\xi}_1^{(n)})=q(\hat{\xi}_1^{(n)})$ =0 and $|q(\eta_i^{(n)})| \leq 1$ for $j=1, \dots, n-1$. Lemma 4 implies that $|q(\eta_0^{(n)})| \leq 1$ and $|q(\eta_2^{(n)})| \leq$ 1. Then the Theorem of Duffin and Schaeffer $[4,$ Theorem I $]$ gives

 $|q^{(k)}(x + iy)| \leq |T_{\bullet}^{(k)}(1 + iy)|$

for each $x \in [-1,1]$, $y \in (-\infty,\infty)$ and $k=1,\dots,n$ with equality if and only if $q(z)=\pm T$. (z). But $p^{(4)}(z) = (\xi_1^{(4)}/a)^k q^{(4)}((\xi_1^{(4)}/a)z)$, hence

$$
|p^{(4)}(x+iy)| = (\xi_1^{(4)}/a)^4 |q^{(4)}((\xi_1^{(4)}/a)x+iy(\xi_1^{(4)}/a))|
$$

$$
\leq (\xi_1^{(4)}/a)^4 |T_*^{(4)}(1+iy(\xi_1^{(4)}/a))|
$$

for each $x \in [-a/\xi_1^{(*)}, a/\xi_1^{(*)}]$, $y \in (-\infty, \infty)$ and $k=1, \dots, n$.

The proof is completed.

Remark The estimates for the derivatives of the polynomial, resulting from Theorem 3, are not exact on the smaller interval $[-a,a]$. That is why Theorem 3 does not contain Theorem 2. This may be seen from the following example, too:

Let the polynomial $f \in \pi$, satisfies the conditions of Theorem 2, i.e. $f(-1)=f(1)=0$. Without any restriction we may assume that $|| f ||_{c[-1,1]} \leq 1$.

Then we may apply Theorem 3 (for $a=1$) to f. In particular, for $k=3$ and $y=0$ this gives

$$
|f'''(x)| \leq (\xi_1^{(n)})^3 T_n'''(1)
$$

for each $x \in [-1/\xi_1^{(n)}, 1/\xi_1^{(n)}]$, with equality if and only if $f(x) = \pm T_n(x) = \pm T_n(\xi_1^{(n)}x)$ and $x = \pm 1/\xi_1^{(n)}$.

This estimate is not sharp for $x \in [-1,1]$ -the interval where the conditions on f are imposed. The sharp inequality

for each $x \in [-1,1]$, with equality if and only if $f(x) = \pm T_a(x)$ and $x = \pm 1$, is given in Theorem 2.

Acknowledgment The author thanks Professor Dr. Borislav Bojanov for many helpful suggestions regarding this paper.

References

- [1] Bojanov, B. , Polynomial Inequalities, In :'Open Problems in Approximation theory", (B. Bojanov Ed.), pp. $25-42$, SCT Publishing, Singapore, 1994.
- [2~ Bojenov, B. and Rahman, Q. , On Certain Extremal Problems for Polynomials. J. Math. Anal. Appl. , 189(1995), 781-800.
- [3] Gusev, V., Functionals of Derivatives of an Algebraic Polynomials and V. A. Markov's Theorem, Izv. Akad. Nauk SSSR Ser. Mat. 25(1961), 367- 384 (in Russian), English transhtion: Appendix, The Functional Method and Its Applications (E. V. Voronovskaja, Ed.), Transl. of Math. Monographs, Vol. 28, Amer. Math. Soc., Providence, RI, 1970.
- [4] Duffin, R. and Schaeffer, A., A refinement of an Inequality of the Brothers Markoff, Trans. Amer. Math. Soc., 50(1941), 517-528.
- [5] Frappier, C. , On the Inequalities of Bernstein-Markov for an interval, Journal d'Analyse Math. , $43(1983/84)$, $12-25$.
- [6] Milev, L. , A note on Schur's Theorem, Facta Universitatis, Series: Mathematics and Irdormatics, $9(1994)$, $43-49$.
- E7] Rivlin, T. , The Chebyshev Polynomials, John Wiley g. Sons, Inc. New York, 1974.
- [8] Schur, 1. , lJber das Maximum des Absoluten Betrages eines Polynoms in Einem Gegebenen Intervall, Math. Z., 4(1919), 217-287.
- [-9] Szego, G.. Orthogonal Polynomials, 4th ed. , American Mathematical Society, Providence, RI, 1975.

Department of Mathematics University of Sofia Blvd. James Boucher 5 1126, Sofia Bulgaria