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Abstract

It is proved that the Chebyshev polynomial T,(x)=T,(xcos 2—7:-‘ )y has the greatest uni form

norm on [—1,1] of its third derivative among the real polynomials of degree at most ny which

are bounded by 1 in [ —1,1] and vanish in —1 and 1.
1 Introduction

Let m, be the set of all real algebraic polynomials of degree not exceeding n. We denote by
[ fli oyt =max{|f(z)]:x€[—1,1]} the uniform norm of f on [—1,1].

According to the inequality of V. A. Markov, the Chebyshev polynomial of first kind T,
(x) : =cos(narccosz) has the greatest norm of &-th derivative (k=1,++,n) among all polyno-
mials from =, for which [ p |l or_, ;<1

This result was extended by Duffin and Schaeffer'’. They showed that

@+ iy TP +iy) |y k= 1,0n
for every z€[—1,1],y€ (—0o0,%0) and every polynomial from , provided
i<, j=0,-,n,

bLs
n
Extremal problems of Markov’s type, under additional restrictions on the polynomials at

where 7" =cos = are the extremal points of T (x) in [—1,1].

the endpoints of the interval, have been investigated by Schur'®.

Later problems of Schur’s type have been considered by many authors, including Bo-
janov™™, Bojanov and Rahman'®, Frappier'®.
Denote by {&”}7 the zeros of T,(x). Precisely, & = cos Sz—k—z_—nm, k=1,,n Leta

():[—1,11>[—&",&"7 be the linear transformation on (—1.1] o [—&7,87], alz)=

&7z Set To(z) + =T.(a(z)).
Suchur™ proved that if f€ ., f(— 1)=f(1)=0 then
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I f’ h cl-1.11 nCOt ”f" cl-11)°

The equality is attained if and only if f(z) =cT.(x).

Bojanov"! considered the set P, of all algebraic polynomials of degree n, which have n ze-
rosin [—1,1]. He proved that if f€ P, and f(—1)=f(1)=0, then
”‘f(‘)“LEIU ”T“)“L[“]hf”c[“]

for each k=1, ,n,1<{g<<oc. He also proved that these inequalities hold for £=1 in n,, and
stated the question: Do the inequalities hold in . for 2>17
We showed in [6] that if f€m,,f(—1)=f(1)=0 then

T
I/ W eerar S T epmrn 1S W egeray = oot = f leronae

In this paper we prove the following sharp inequality for the third derivative
[ A PRl S | PV [ | P

(3 — (n* + 2)sin? -—) I F N epage
sin®
2n

provided f€ x,, f(—1)=f(1)=0. The equality is attained if and only if f(z)=cT.(z).

2 Some inequalities for the Chebyshev polynomials

Let 7, : =cos & T =040 m be the extremal points of 7".(x) in [—1,1].

Lemma 1 The Chebyshev polynomials satisfy the inequality
1T ()| < T (™)

for each € [ 7,1\ ). For n>>2 the equality is attained if and only if z=—1," or z=1;".

Proof For n=2,3 the assertion is verified directly on the polynomials T, (z)=2xr*—1
and T';(x)=4x'—3x. Suppose now that n=>4.

After a change of the variable z=cos§, the wanted inequality is equivalent to

L] < g®
for each 6€ [’—7: YT -:—], where
f(0) = sinnficosd — ncosnfsing,

n

g(®) =csin’d, ¢, =
sin? —

The function | f(8) | is even with respect to Z?f Since f’ () = (n*— 1)sinbsinng, it is

. T 2 n 3r .
clear that f(8) decreases in [-;1— ,—n—], increases in [ — 1 et The local maxima of

L . km .
{f(@)| are attained in the points - and the corresponding extremal values are
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If(k;”)l = nsin &7

) k= 1yoyn—1.
n

kn w2} . . . . . . .
The sequence { If(;l*) I }E_’,” is increasing and the sequence { ]f(%) | Yimtwsay+: is decreasing.
. . . nn . T nw . .
The function g(#) increases in [—; ,'é-] and decreases in [-2- yT— ;].g(ﬂ) is even with re-
™ . n 4
spect to 7. It is seen that f(—;)—g(—n—).
We shall consider two cases.

Case 1; 6€ [%,%]U[("';Z)”, ("—l)ﬂl

n

Without loss of generality we may assume that € [%,2711 J. Let us denote by 6, the

unique zero of f(#) in this interval. For n=>4 we have

e, o 1lr 11x Ur . 117
f(8n)—sm g 08 T — meos —o=sin -

11 11 l1l=m
> sin 8 i cos e >0,
hence

11w
8, > _8‘7—1—

Taking into account the attitude of | f(9) | and g(#) in [—:——,2;”], it is sufficient to prove
that

2n L
lf(n)|<g(8n),

which is eqiuvalent to

. 2. n . n
sin —sin? — < sin? 1—1-—.
n n 8n

The last inequality is verified directly for n=4,5,6 and for n=>7 it follows from the in-
equalities

. 2.,
sin —sin? — <
n

or’

n)

and

11w 85 ®
sin —8n > 8nsm 5
Case 2. 06[%15.@:2—”].

n
We may assume that n226. It is sufficient to prove that

(k + D ket =9, [27] =
or, equivalently,

sin (k—+~lﬂsin’ X < sin® —kf,
n n n

n
k= 29"’,[2]"‘ 1.
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and the inequality for k=2 is established.
Let £23. Then

sin B DTG0 X < Tkt D j_ D > &
n n n

< S—k,’ <sin® —,
n n

as desired.

This completes the proof of l.emma 1.

We shall denote by P&# (z) the Jacoby polynomials. Precisely, P.® (x) is the polyno-
mial from n, which is orthogonal in [ —1,1] with a weight

w(z) = (1 — 2)°(1 + 2)°,

to every polynomial of degree n— 1 and normalized by the condition
{ n + aj

PEP(1) = \

n
. CESTEIR
Ising the fact that except for a constant factor T’ (z) is P,_.} ~ * "(z) and some results

for ultrspherical polynomials (see [7] and [9]), we obtain the following properties of the k-th
derivative of the Chebyshev polynomial .

(i) The function y=T<"(z) satisfies the differential equation

(1 —xDy" — 2k + Dzy + (i — k)y = 0,

(ii) The largest zero z; of T(" () satisfies the inequality

n—k—1
n+4 '

(it follows from the inequality (6.2.13) in [9], p. 119).

(iii) The sequence formed by the relative maxima of [T ()| in the interval [0,1] and

x, >

by the value of this function at x=1 is increasing.
Theorem 1 The Chebyshev polynomials satisfy the inequality
IT.7 (2| < TE")
for each € [— & 6" ). For n>>3 the equality is attained if and only if z=—8" or z= -

Proof Al interior local maxima of T, (x) are located in the interval (—&”,£™). By
virtue of (iii), the inequality is equivalent to
[T (x| <T@, ¢!
where z, is the largest zero of 7% (z).
For n=4,+,7 the assertion is verified directly on the polynomials T, (z),++,T;(x). We
suppose that n>8.

Using differential equation (i), we obtain



* 60 ° L. Milev: An Inequality of Schur's Type

(’l2 - 4)Tn” (Il)

T,. (Il) = le .
Let us note that
x
ncos 271
T"I (5;.)) — n , T.” (e;u)) = o
sin — sin? z
2n 2n
Hence, by (i), we get
woptndy n _ 2 2
TrE") = —x (3 — (n* + 2)sin zn).
sin® —
2n
Therefore the inequality (1) may be written in the form
(= T (@) <5z —"—(3 = (a* + Dsin® 7)., (@)
sin® "
2n
Since x; € [~ 7,7 ], Lemma 1 implies that
2
|T." (x,) ] <T."(77§") =_n =
sin® =

On the other hand, by (i),

n—>5
T > n—+ 4

Now, it sufficient to prove the stronger inequality
2 — 4Ysin® ~ P =8 st Tea — (it 4 int
n(n 4)sin o < 20 w4 2’2(3 (n* + 2)sin Zn)'
We have for n=>8.;

n—25
n+4

20 cos? 1(3 — (n? 4 2)sin? -E) >
2n 2n
> 10cos? (3 — (n® + 2) Ll ) >
16 4n?

mt i od
T

: T oa
> 10cos 16(3
3
> 4> > ant — ¢)sin? =,
8 2n
The theorem is proved.

3 The inequality

We shall recall some resuts, connected with the extremal problem
No(® = max{|fP®j.f€n, | fll <1},
where 1<kb<ln,6€[—1,11.
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The interval [ —1.1] can be partitioned into two groups of subintervals;

([ BB =1 B = 1,
called Chebyshev intervals, and their complements (B Pt
M

It was shown in (3] that

N,(&) = |ITP®], 3
for 56[ (‘)9ﬂ;(‘)]’i=1,"'on—k+1 and
N < max{IT (B ], ITP @) 1), (4)

fol' 66( » ,(i)l),i;‘l,"'m—k.
(%) (€)]

Lemma 21! Let pE m, such that p(—&)=p&")=0. If |p(x)I<l on [—4",8"]

[€)]

then | p(2) IITW(2) ]| for each |z | 2=6)".
Lemma 3™ The points—&," and & are located in the two end Chebyshev intervals. Pre-
cisely, —5;')6 (—1,8") B e (a:‘_),“ W1,
Theorem 2 Suppose that f(x) is a real algebraic polynomial of degree at most n, satis-
fving the conditions f(—1)=f(1)=0. Then
cos? —

2n inf =
- __imeg (nz + 2)sin? EZ;) ” f ” Cl~1.1]*

sin® —
2n
Sfor each x€ [~ 1,1]. The equality is attained if and only if f(z)=cT,(z) and z=+1.

Proof Without loss of generality we may assume that || f |l o(_, ;<1 Let p(z2)=

1P <n

f(f"") Lemma 2 implies that | p(z)[<{1 on [—1,1]. Let x be an arbitrary point in [~ &,

£ 7. By (3),(4) and Lemma 3, there is y€ [— £.”,6"7 such that | p"() I<|T" () |.
Applying Theorem 1 we obtain |T,* (y) |<<|T." (&) ].
We conclude that | p" (x) |<T,"(&") on [—fi'), 7. It follows that

Lf7(x) | = (§7) | p" (6" x) | < (&7 )’T." (&™)
COS 2 -
= %3 — (nt + 2)sin’ o) = T," (1)
sm —_ n
n

for each r€[—1,1].
It is seen from Theorem 1 that the equality is attained if and only if f(x)=cT.(z) and x

=+ 1. The theorem is proved.
4 Additional results and comments

We obtain here the following inequality of Duffin-Schaeffer-Schur type;
Theorem 3  Suppose that p€ r, such that p(—a)=p(a)=0 for some a>0. Let | p(x)|
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<1 for x=a %. j=1,,n—1. Then
1
ip (x4 iy) | < E7 /TP A + iy(€7 /a)) |
for —a/&"<z<a/8” —00<y<0oo and k=1, vn. The equality is possible if and only if
p()=2T.((&" /a)2).

As particular case of Theorem 3 (for a=1) we get an earlier result of Frappier [5, Theo-
rem 2'].

Our approach is essentially different and is based on the

Lemma & Let g€ x, such that g(—£€")=q(&")=0. If |g(x*) |1 for j=1,+,n—
1, then

lg(x) | < T ()|
for each || 26",

Lemma 4 may be considered as a discrete version of Lemma 2. The proof of Lemma 4 is
similar to that of Lemma 2 and we omit it.

Proof of Theorem 3.

Let us consider the polynomial ¢(z) + = p((a/&”)z). It follows that g( — &) =g (&™)
=0and |g(7”) <1 for j=1,++,n—1. Lemma 4 implies that |g(7”)|<1 and |¢(3\") | <
1. Then the Theorem of Duffin and Schaeffer [4, Theorem I ] gives

1@z + i < ITP A + iy) ]
for each x€[—1,1],y€ (—o0,00) and k=1, ,n with equality if and only if ¢(2)=+T,
(2). But p*(2)=(&"/a)"q* (& /a)2), hence
1p® (x + iy) | = (&7 /) ¢ (& Ja)z + iy(€]” /a)) |
S E7/MTE A + iy /a) |
for each 7€ [—a/&” 1a/8" ),y € (—00,00) and k=1, ,n.

The proof is completed.

Remark The estimates for the derivatives of the polynomial, resulting from Theorem 3,
are not exact on the smaller interval [ —a,a]. That is why Theorem 3 does not contain Theo-
rem 2. This may be seen from the following example, too:

Let the polynomial f€ =, satisfies the conditions of Theorem 2, i.e. f(—1)=f(1)=0.
Without any restriction we may assume that [ /1 o, ;<1

Then we may apply Theorem 3 (for a=1) to f. In particular, for £=3 and y=0 this
gives

|f"(x) < 7)T," (1)
for each z€ [—1/&",1/8"], with equality if and only if f(z)=+T.(z)=+T.(&"z) and

(n)

X = :t 1/61 B
This estimate is not sharp for z€ [ —1,1]-the interval where the conditions on f are im-

posed. The sharp inequality
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(] <T.") = EPPT.2E)

for each z€ [ -1,1], with equality if and only if f(x)=+T,(x) and r= %1, is given in
Theorem 2.
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