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Abstract 

~ )  It is proved that the Chebyshev polynomial T , ( x  )=T,(xcos 2n ' has the greatest uniform 

norm on [-- 1,1 ] o f  its third derivative among the real polynomials o f  degree at most n, which 

are bounded by 1 in [ -  1,1 ] and vanish in -- 1 and 1. 

1 Introduction 

Let 7r. be the set of all real algebraic polynomials of degree not exceeding n. We denote by 

l! f li ct-,,]~ : =max{ I f ( z )  I -wE [-1,13} the uniform norm of f on [ - - 1 , 1 ] .  

According to the inequality of V.A.  Markov, the Chebyshev polynomial of first kind T. 

(x) : =cos(narccosx) has the greatest norm of k-th derivative ( k =  1 ,... ,n) among all polyno- 

mials from tr. for which I[ p t[ c~-H~<l .  

This result was extended by Duffin and Schaeffer t'~. They showed that 

I f r  ~ iT]*:(1 + i y ) [ ,  k =  1 , ' " ,n  

for every x E  [ - -  1 , 1 ] , y E  ( - o o , o o )  and every polynomial from ft. provided 

[f(r/~'>)[ ~ 1, j = O, - " ,n ,  

where r/i =-cos - -  are the extremal points of T . ( x )  in 1"-- 1,1].  
71 

Extremal problems of Markov's type, under additional restrictions on the polynomials at 

the endpoints of the interval, have been investigated by Schur cSl. 

Later problems of Schur's type have been considered by many authors, including Bo- 

janov c~3, Bojanov and Rahman c2J, Frappier Es). 

<.) . ~(.) (2k-- 1)z Denote by {~; }, the zeros of T . (x ) .  Precisely, -b : c o s  , k = l , ' " , n .  Let a 
2n 

( x ) : [ - - 1 , 1 ] - ~ [  ~(") r r ~ ' )7  a ( x ) =  --.~ ,.~ . be the linear transformation on [ - 1 , 1 ]  to [ - . ~  ,.] j ,  
~Cn) 

, x. Set T . ( x ) ,  = T . ( a ( x ) ) .  

Suchur cs~ proved that if f e a r . ,  f ( - l ) = f ( 1 ) = 0  then 
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II f '  )l c t -Hj  ~ ncot ~ II f II c[-,.,]- 

The equality is attained if and only if f ( x )=cT . ( x ) .  

Bojanov EIJ considered the set P.  of all algebraic polynomials of degree n, which have n ze- 

ros in [ - 1 , 1 " ] .  He proved that if f t P .  and f ( - 1 ) = f ( 1 ) = 0 ,  then 

II f<*' II L,c-~.,a ~< II Tr > [1 ~,c-~.~: I[ f II ~c-,.,J 

for each k =  1 ,"" ,n, l ~ q ~ o o .  He also proved that these inequalities hold for k =  1 in rt., and 

stated the question: Do the inequalities hold in ~r. for k >  1? 

We showed in 1-6] that if f t J r . , f ( - 1 ) = f ( 1 ) = O  then 

71" 

II f "  II ~c-,.,J ~< II T / '  It cr-~,~ II f II c t -Hj  = n c o t '  ~n II f II cC-,.~a" 

In this paper we prove the following sharp inequality for the third derivative 

l[ i f '  II cc-,.~a~< II 7 ' ."  11 cc-~.~= [I f I1 c[-,.12 

cos' 2"n (3 n" ) 
= n -- (n 2 + 2)sin z II f II ct-l,l], 2n rr 

sins 2-n 

provided f E  r r , , f ( -  1 )=f (1)=O.  The equality is attained if and only if f(x)=cT",(x).  

2 Some inequalities for the Chebyshev polynomials 

Let r/: "> fir �9 =cos --,j= 0,... ,n be the extremal points of T. (x) in [-I, I ]. 
n 

Lemma 1 The Chebyshev polynomials satisfy the inequality 
I f "  Cm)- IT." (x) ] ~< 1 .  (~/ , )  

for each x E [--r/: "> ">- ,r/l J. For n > 2  the equality is attained i f  and on l y / f x=  --r/[" or x:7/~".  

Proof For n =  2,3  the assertion is verified direcdy on the polynomials T2 ( x ) =  2x z -  1 

and Ta(x)=4xS-3x.  Suppose now that n~4 .  

After a change of the variable x = co s0 ,  the wanted inequality is equivalent to 

If(O) I <~ g(0)  

for each OE in" ,Tr- ~ ] ,  where 
n 71 

f(O) = s i n n & o s 0 -  ncosn0sin0, 

n g(O) = c.sinS0, c. = - -  
sinZ __n 

n 

The function I f ( 0 )  I is even with respect to ~-. Since i f ( 0 )  = (n z -  1)sin~sin,~, it is 

, n - i ,  2rr [2__~, 3a" clear that f ( ~ )  decreases in -n[rr increases in -~-], etc. The local maxima of 
n 

{f(0)  [ are attained in the points ~ and the corresponding extremal values are 
n 
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I f ( ~ ) ]  = nsin kJr - - 9  k = 1 9 " " 9 n -  1. 

~ [ . / z ]  . - 1  The sequence { I f (  ) l , J - i  is increasing and the sequence {] f(k--~) I }l.t,/:]+: is decreasing. 
12 

The function g(a) increases in [ - n ' 2 - ]  and decreases in [ 2 , r -  ],g(a) is even with re- 

spect to ~-. It is seen that f (  ) = g (  ). 

We shall consider two cases. 
r 21r [ (n- 2),r, (n- l)~r] 

Case 1: OE['-~-9--a--]U ' n n " 

Without Ross of generality we may assume that 0E [--~-~ ,2rr] Let us denote by 01 the 
F/ n " 

unique zero of f(O) in this interval. For n ~ 4  we have 

f ( 1 D r  1Dr ll lr  1Dr.  l l n  -~-n ) = sin -~--cos - ~ - - -  ncos - -~sm 

> sin 1Dr 11 1Dr ~-cos > O, 
s - T  

hence 

1Dr 0, > &--~. 

Taking into account the attitude of If(O) ] and g(O) in [ ' n '  "], it is sufficient to prove 

that 

which is eqiuvalent to 

lla-) tf(2a')ln < g(-~-n ' 

sin 2=sinZ a- < sin3 11.~ 
TI n 8 t l  " 

The last inequality is verified directly for n= 4,5 ,6  and for n>~7 it follows from the in- 

equalities 

sin -~sin z rt < 2n a 
t l  n $ 

and 

l l ~ r  55  �9 ~r 
sin >  s,n T" 

Case 2: 0E[2 r r , (n - -2 ) r r ] .  
t l  n 

We may assume that n ~ 6 .  It is sufficient to prove that 

/f((k + 1),r)l <g(kn),  k = 2 , " .  [ 2 3  - 1 9 9 
?1 n 

or, equivalently, 

sin ( k +  1 sin z n- < s i n 3 k _ ~ ,  
n n n 

k = - 1 .  
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The following inequalities are true for n ~ 6 . c o s  __n ~___~_~ n ~" 2 , s i n ~ > ~ - .  Hence 

sin _3_n < 3.__~ < _ _  

and the inequality for k =  2 is established. 

Let k ~ 3 .  Then 

6 J 3  < 8sin -~-cos ~ K 
~'l FI ? ,  

as desired. 

sin (k + l)lrsinZ n" < na(k + 1) 8k ~ kn 
n n 3 "< ~ -  "( sin~ --'n 

This completes the proof of Lemma 1. 

We shall denote by Pc,"P~(x) the Jacoby polynomials. Precisely, P~"P: (x) is the polyno- 

mial from n. which is orthogonal in [ -  1,1-] with a weight 

w(x)  = (1 - x ) ' (1  + x)  p, 

to every polynomial of degree n -  1 and normalized by the condition 

InCa} P'."P'(1)=/ " 

Using the fact that except for a constant factor T ~ ( x )  is P._~ (x) and some results 

for ultrspherical polynomials (see [7"] and ['9"]), we obtain the following properties of the k-th 

derivative of the Chebyshev polynomial: 

(i) The function y=T~ ~(x)  .~tisfies the differential equation 

(1 - xZ)y " - (2k + 1)xy' + (n 2 - kZ)y = O. 

(ii) The largest zero x, of 7".( j~ (x) satisfies the inequality 

/ n  - k - 1 
,2:1 > q 

(it follows from the inequality (6. 2 .13)  in [9"], p. 119). 

(iii) The sequence formed by the relative maxima of [T~J~(x) [ in the interval [ 0 , 1 ]  and 

by the value of this function at x = l  is increasing. 

Theorem 1 The Chebyshev polynomials satisfy the inequality 

[T ." (x)  [ ~ T,~'<$~ ",) 

for each x e  [--~I" ,$I'~] �9 For n> 3 the equality is attained i f  and only i f  x =  --$1"or x=$~ "~. 

Proof All interior local maxima of T~ are located in the interval (--$I'~,8~'~). By 

virtue o{ (iii), the inequality is equivalent to 

IT ." (x , ) I  < ~ .  ~r ) ,  (1) 

where xl is the largest zero of T~ ~ (x).  

For n =  4 , " " ,  7 the assertion is verified directly on the polynomials T, ( x ) , ' "  ,T7 (x) .  We 

suppose that n~8 .  

Using differential equation ( i) ,  we obtain 
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Let us note that 

Hence, by ( i ) ,  we get 

T .~  (xl)  = 
(n z - -  4)T." (x , )  

5x~ 

7l" 
n C O S  - -  

Tn t . ( . )  n ( c , ) -  , T . " (~ I " )  = 2n 

sin ~" sin 3 ~" 
2n 2n 

w ( / ~ c . )  /2 T .  , .a ) = ~ ( 3 - -  (n = + 2 ) s i n  z r t)  
2 n  " 

sins 2n 

Therefore the inequality (1) may be written in the form 

(n z - 4) IT." ( x l )  I < 5x, '__.._L__' 
lr  

sin52n 

Since xl 6 [- '/I ") (.)7 -- ,rh 3, Lemma 1 implies that 

T tr ( i )  x I T . " ( x , ) I  < - .  ( r h )  = - -  

71" 
(3 -- (n' + 2)sin' ~n ). 

712 

sin2 n" 
n 

On the other hand, by (ii),  

x ~ >  + 4" 

Now, it sufficient to prove the stronger inequality 

ir ^^ ~ - 5  , rr __=) 
n(n z -- 4)sin 3 ~ < zu~] n - - ~ c o s  ~n(3 -- (n z + 2)sin' 2n " 

•/n-5 z ,r .E) 
n- - -~  c~ 2n (3 - (nZ + 2)sinZ 2n > 

~r n a 
> 10cos 2 ~ ( 3  - (n z + 2) 4n--q) > 

> 10cos z ~--~ (3 4 128 ) ~ 

~3 7I" 
> 4 >  ~ > n(n  z -  4)sin 32n. 

We have for n ~ 8 :  

20 

The theorem is proved. 

(2) 

3 The inequality 

We shall recall some resuts, connected with the extremal problem 

N, (~)  = max{ [f~*)(~)i : f  6 ,r., I l f l l  ~< 1}, 

where l ~ k ~ n , ~ E  [ -  1,1].  
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The interval [ - 1 , 1  ] can be partitioned into two groups of subintervals: 

f [ ~ " , P : " ; 1 2 ? ' ,  al" = -  ~, ~'.'_',., = ~, 

called Chebyshev intervals, and their complements { (fl~*~,a,+,)}._,.~*~ "-* 

It was shown in 1-3] that 

N,(~)  = [T'.*'(~)I, (3) 

for gE [a~" ,fl~"],i= 1 ,"" , n - - k+  l and 

N,($)  ~ max(IT~"(~,.")  1, IT~*'(a~+):) [ }, (4) 

for ~E"~c*~ ~*~ " ,n--k. ~p~ ,a i+l ) , i=l ,""  

Lemma 2 Cq Let pE~r. such that p(--~e[">)=p((x ' ) )=0.  I f  I p ( x ) [ E l  on [ - - - ~ " , ~ " ]  

then Ip(x)I~< IZ, (x)  I for each Ixl>~#~ ">. 

Lemma 3 t*~ The points-$~ "~ and ~I" are located in the two end Chebyshev intervals. Pre- 

. , a s ,  -~'," ~ ( -  1,01"),~I" ~ (~'.~,+, ,a ). 
Theorem 2 Suppose that f (x)  is a real algebraic polynomial o f  degree at most n, satis- 

fying the conditions f (  - 1 ) = f (  1 ) =- O. Then 

COS 3 
2n 

I f " ( x )  I ~< n - - ( 3  - (n t + 2)sin ~ a') sins rr 2n II f II c t -H~,  
2n 

for each x ~  [--1,1-].  The equality is attained i f  and only i f  f ( z ) = c T , ( x )  and x=- t -  1. 

Proof Without loss of generality we may assume that l! f I} cc_,.~3~<1. Let p ( x ) =  

f($c--~)- Lemma 2 implies that 

$'~'~-]. By (3 ) ,  (4) and Lemma 

Applying Theorem 1 we obtain 

We conclude that Ip" (x)  J 

I f " ( x )  I -= 

for each x E [ - - 1 , 1 ] .  

.QCn) Ip(x) I<~1 on [ - 1 , 1 ] .  Let z be an arbitrary point in [ - r  , 

3, there is y E  ['--~(t"',~ "~] such that p " ( x ) ! ~ t T , * ' ( y ) I .  

IZ." ( y) l<~ lZ," (g~'~) [. 

~ < T , " ( ~ " )  on [ - g l  "~,g~''-]. It follows that 

(ei'~) ' }P"(~I"x) I ~< (e[") 'T ."(~ ' , " )  

1r 

c~ 2,'--z (3 ~--- ) 
= n  �9 -- (nZ4- 2)sin~2n = T . ' ( 1 )  

sins a" 
2n 

It is seen from Theorem 1 that the equality is attained if and only if f ( x ) = c T . ( x )  and x 

= -+- 1. The theorem is proved. 

4 Additional results and comments 

We obtain here the following inequality of DuHin-Schaeffer Schur type: 

Theorem 3 Suppose that p e n .  such that p ( - a ) = p ( a ) = O  for some a>O. Let lpCr) J 
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•(i ")  

<~1 for x = . a ~ ,  j = l , - " , n - 1 .  Then 

I p c*' (z  -4- iy) 1 ~ (81">/a) * IT'. j' (1 + iy(g~"/a) ) ] 

for -a/8~" ~x~a/~r "~ , - -co< y<co  and k= l ," ,  ,n. The equality is possible i f  and only i f  

p(z) = + T.( (~l" /a)z). 

As particular case of Theorem 3 (for a =  1) we get an earlier result of Frappier [5 ,  Theo- 

rem 2' ]. 

Our approach is essentially different and is based on the 

Lemma 4 Let q6  tr. such that q ( - - ~ l ' ) ) = q ( ~ " ) = 0 .  I f  lq(T/~")1-~1 for j = l , ' " , n - -  

],  then 

Iq(x) I ~< IT . (x )  I 

for each Ix I >.~8~". 

Lemma 4 may be considered as a discrete version of Lemma 2. The proof of Lemma 4 is 

similar to that of Lemma 2 and we omit it. 

Proof o f  Theorem 3. 

Let us consider the polynomial q(z) , =p  ((a/81")z). It follows that q( - ~el'~) = q  (8~1") 

= 0  and Iq( r / / ' )1~1  for j = l  , " ' , n -  1. Lemma 4 implies that tq(r/0 r I~<1 and ]q(r/C. "') 1~  

1. Then the Theorem of Duffin and Schaeffer [-4, Theorem I "] gives 

for each x 6: [ - - 1 , 1  ] ,y 6 ( -  co,  co) and k = 1 , ' "  ,n with equality if and only if q ( z )=  • T.  

(z). But p~*~ (z) = (81")/a)*q c~ ((8~'~/a)z), hence 

I P"' (x + iy) J = (~c,')/a)'lq"~((~l"/a)x + i y ( ~ " / a ) )  I 

(~'>/a)* IT<.'>(1 + iy(~<i'>/a))] 

for each x 6  [ -a /g~"  ,a/8C~"],yE ( - c o , o o )  and ~ = 1  ,.-. , - .  

The proof is completed. 

Remark The estimates for the derivatives of the polynomial, resulting from Theorem 3, 

are not exact on the smaller interval [ - a , a ] .  That is why Theorem 3 does not contain Theo- 

rem 2. This may be seen from the following example, too. 

Let the polynomial f 6 r r .  satisfies the conditions of Theorem 2, i.e. f ( - - 1 ) = f ( 1 ) = 0 .  

Without any restriction we may assume that 1[ f ]1 c [ _ H ] ~ l .  

Then we may apply Theorem 3 (for a = l )  to f .  In particular, for k = 3  and y = 0  this 

gives 

]fw(x)  l < <r ,~T."(1) 

for each z E  I - - 1 / ~ I " ,  1/8c~'~], with equality if and only if f ( x ) =  •  •  and 

= + 1 / ~ " .  

This estimate is not sharp for xq: 1 - -1 ,1 ] - the  interval where the conditions on f are im- 

posed. The sharp inequality 
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(~) 3 W (~) I f ' ( x )  l ~ T . ' ( 1 )  = ( ~ x )  T .  ( ~ , )  

for each x E [  - 1 , 1 ] ,  with equality if and only if f ( x ) - - - •  and x :  •  is given in 

Theorem 2. 

Acknowledgment  The author thanks Professor Dr. Borislav Bojanov for many helpful 
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