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Abstract

A new maximal function is introduced in the dual spaces of test function spaces on spaces
of homogeneous type. Using this maximal function, we get new characterization of atomic H*

spaces.

1 Introduction

The purpose of this paper is to give a new maximal function characterization for H” spaces
defined on spaces of homogeneous type. With this aim, we first define a Hardy-type spaces H,
in the dual space of the test function spaces .# (8,7). Then we prove that every element in
H, have a decomposition in series of p-atoms, conversely, each distribution on # ( B8,7)
which can be denoted by a series of p-atoms with coefficients satisfy some conditions belongs to
H,. Finally, we show that the atom H’ spaces, as defined in™?, can be identified with A,
The results in this paper are generalization of theory of Macia and Segovial*’.

We begin by recalling spaces of homogeneous type. Let X be a set. A quasi-metric 4 on
X is a function d(z,y): X X X—+[0,00] satisfying

(1. 1.1) d(xyy)=0if and only if r=1y,

(1.1.1) d(z,y) =d(y,x) for all z,yE X,

(1. 1.iii) There exists a constant A<{oo such that for all r,y and z in X,

d(z.v) < Ald(z,z) +d(z,y)]. (1.2)
Any quasi-metric defines a topology, for which the balls B(z,r)={y€ X.:d(y,z)<r} form a
base. However, the balls themselves need not to be open when A>1.

* This work is supported by NSF,
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Definition 1. 313 A space of homogeneous type (X,d,u) is a set X together with a
quasi-metric d and a nonnegative measur x on X such that 4(B(z,r))<{co for all z€ X, and
all r>0, and there exists a constant A’ < oo such that for all z€ X and all »>0

pu(Blx,2r)) <A pu(B(x,r)). (1. 4)
In [3] Macia and Segovia have shown that one can replace & by another quasi-metric p such
that there exist ¢>>0 and some §,0<<#<1 satisfying
p(z,y) ~ inf{u(B):B is a ball containing x and y} (1.5)
p(x,y) — p(x' v y) | < C(x,2') [p(x,y)
+ oty for all r,2' and y € X. (1.6)
In this paper we assume that p#({r})=0 for all € X and p(X)=+oc0. For the case u(X)<
oo, see the Remark (5.11) below.

Now we introduce a class of test functions on X.

Definition 1.7 Fix two exponents 0< <, see [2], and ¥>0. A function ¢ defined on
X is said to be a test function of type (z,,d,f8,7),x,€ X and d>0, if ¢ satisfies the following

conditions;

d)'
. < i
@O WDISC Gy
p(z,y) i

]
d+p(zx,2,) ) d+p(x, 2z )’

(i) 1g(x)—g(y) i<c(

for p(z.y)gziA[dﬁ-p(x,ro):].
If ¢ is a test function of type (x,,d,f8,7) we write ¢ € A (z,,d,8,7) and the norm of ¢

in A (x50d,B3,7) is defined by
(X aegd D inf{C; (i) and (i1) hold}.

For fixed z,€ X, we denote #(B,Y) =M (x15,1,8,7). It is easy to check that A4 (B,7) isa
Banach space with respect to the norm in «#(8,7). The dual sapce (.#(8,7))' consists of all
linear function { from .#(B,7) to € with the property that there exists a finite constant C
such that for all ¢€ AZ(B,7), W IKC ¢ | esr,» We denote the natural pairing of ele-
ments f€ (A (B.7)) and € A (B.7) by (f,¢>. It is also easy to see that A (x,,4,8,7)
=.4(B,7) with equivalent norms for x, € X and d>0. Thus, (f,¢) is well defined for all f
€(A(B,7)) and ¢ € A (z2,d,8,Y) with x€ X and d>0.

For the convenience, sometime, we call a linear functional on .4 (8,7) to be a distribu-

tion. Given a function f(x) in L'(X,du),1< g oo, clearly,
(o) = Jf(x)t//(x)dﬂ(x)

defines a linear functional on .# {8,7), we shall say that f is a distribution induced by the
function f(z).

Denote A (z.,d,8,7)={$€E A (x,d,B,7): Js&(z)d,u(z) = 0}.

For f€ (A (B,7)) ,0<CB<H,7>0, we define the maximal function f~ (z) of f as
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[ (z) = sup{|{f,¢)]|:for some d > 0, ¢ € A (x,d,B,7) and | ¢ || wiupm < 1)
For (14+8)'<p<oo, we define the maximal function spaces H, as

B,=1{f€ 4B .f € LX)}
If f€ B,, we define || f| n= W,

2 The completeness of H,

Obviously, (H,, || « | g') is a quasi-metric space for (1+ 8) ' <<p<1, and metric
space for 1{p<<oo. In the following, we will show that &, with the metric || « || n, is com-
plete, so (A, || - | n)isa Banach space when 1<{p<<co.

Theorem 2.1 (H,, | « | n,) is complete, i.e., Sor any Cauchy sequence {f,} is H,
there exists f in H o such that

W) {f.) comverges to f in (A(B,7)),

@ i fi=rfI a0 when n—>o0.

In ordere to prove the Theorem (2. 1), we need the following Lemma.

Lemma 2. 2 There exists dy>0,M =1, such that for any $ € A (x5,1,8,7), || ¢

I x(xo.l.ﬂ.r><1v and any y,€ B(z,,d,y) » we have %G\ﬁ(yoylyﬁ,Y).

Proof Take d,= (2C)-%, where C and & are constants in (1. 6). Let & ={xr€ X,
P xe, )], p(y,x)C1}. When € &, we have that
|p(1'o ,I) - P(yo,x)l < C,(Io,yo)‘[P(xo y-r) + p()’o,l‘)]l.—, g 2-‘1

SO,
o(yy, 1) < plxg,x) + 277
and
1 < 1
(1 + p(Z, 2 ((1 = 27 + plyy, )™
1 1
< .
TA =279+ plag, o))
When r & o,
100r2) = PC30s2) | 5 [(2002) + £(3002) ]
S p(xy,x) + P(yo’x)]9_2‘P(yo’x) ES ‘Z‘P(xo'x) ’
SO,

1 < 9
(1 + p(zs)™  (1 + plyo,z))™”
(1..21-')”"9} y then for any y, € B(z,,d,) and any ¢ € A (x,,1,8,7),
“ SI’ “ ,((,0.1.,9.7)<1 , we have

We take M, =max{
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M,
(A + oy x)™”

[¢(x)] <

For any x any y in X,P(z,y)gziA[l +p(yeox) ] If p(r,y)<z~%[l+p(xo,x)], then

o(x,y) s 1
1+ p(z5,1)" (1 + plze, 200

[¢p(x) — (<

<M2+7 o(x,y) 2 1 .
! (l + 00y, 2)" (1 + p(ye, )Y

If P(Iy_}’)}ﬁ[l*‘ﬂ(lo ,I)J; then p(l‘o ,I)gp(yo,x) , and p(yo ,I)<A[p(yo ,y)+

p(y,x)]éA,(yo,y)+%[l+p(yo,x)], S0 %[1+p(yo,z)]€A[p(yo.y)+1]. Thus

[(x) — (W |< P ] + ¢}
1 1

< M ( +
T plyee ) (1+p<yo.y>)‘*’)

< 2AM, (M M) (LT g : :
2 1( 1+(2 ) 1 (1+P(yo,1')) (1+P(yov1'))1+’

Let M =2AM,(M,+ (2A4)'*"M,), then the result of Lemma is true. We complete the proof
of Lemma (2. 2).

Now, we prove Theorem 2.1. For any ¢€ A (B.7), || ¢ | #p.n <1, and any z€
B(zy,d,) by Lemma (2. 2),

(o= fost | SMILL = funde) | <MY, = £ @),

Then
Ilfn_f-”(_x(‘.y)y:\i sup '<fu—fa’¢>lgM(f._f.).(x)’

LB

for £€ B(x,,d,). Taking the p-power and integrating on B(xz,,d,), we obtain

b 3

1S = £l iy < M| eBddIDT ] (f = S @Vdpta)

Blzy.dy)

-1
SMpu(B(z0,d)) * 1| fo— full .

This shows that {f.} is a Cauchy sequence in (.#(8,7))', therefore, there exists f€
(A(B,7)) such that f is the limit of the sequence {f,}.—,. This proves (i). The proof of

(ii) is the same as in {4] and omited here. We complete the proof of Theorem 2. 2.
3 Calderon-Zygmund type lemma

Lemma 3. 1 (covering lemma') Let Qbean open set of [inite measure strictly contained
in X and d(x)=imflplx,y):y& D). Given C=1, let r(x)=(2AC) 'd(z). Then there ex
ists a natural number M, which depends on C, and a sequence {x.} such that, denoting r(x,)

by r.s we have
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(3. 2.1) the balls B(z,,(4A)7'r,) are pairwise disjoint ,

(3.2.1) U.B(z.,r)=10,

(3. 2.1ii) for every n, B(z.,Cr,) C81,

(3. 2.iv) for every n, 1€ B(x,,Cr.) implies that Cr,<d(x)<34Cr.,

(3.2.v) for every n, there exists y,& Q such that p(x.,y,)<<3ACr,,

(3.2.vi) for every n, the number of balls B(xy,Cr,) whose intersections with B(x,,Cr.)
are non-empty is at most M.

Lemma 3. 3 (partition of the unity) Let £ be an open set of finite measure strictly con-
tained in X. Consider the sequence {z,} and {r.} given by Lemma 3.1 for C=5A. Then, there
exists a sequence {@.(x)} of non-negative functions satisfying

(3.4.1) supp @CB(x.,2r.),

(3.4.0) Q)25 for 2€ Blzr),

(3. 4. 111) there exists C such that for every n, @€ M (2,s70s8,7) and | @ || <Cr.,

(3. 4.1v) 2 () =Yp(2).

Proof Let 7(s) be an infinitely differentiable function on [0,00) such that 0<{7(s)<1,
7(s)=1 if 0<{s<C1 and 7(s) =0 for s222. For every n, we define
(p(x,x.) ).

r

dulx) =79

These functions ¢, are non-negative, with supp ¢.C B(x.,2r.) and by (3. 2. i) and (3. 2. vi),

satisfy
1< Z‘/’.(x) < M, forevery x € Q.

It is easy to prove that ¢,€ # (x,,r.,8,7) and ||¢.|11(,_.r_.;.n<Cr. where C is independent of

n.

We define @ (z) by g(2)=0if z& D and @u(z) = $u(2)/ D 4u(2)if zE€H.  Then

{@(x)} satisfies Lemma 3. 3.
Lemma 3.5 Let {@(x)} be the partition of unity in Lemma 3. 3 associated to some open

set £, then for every n, the linear mapping
S (P (x) = ¢,.(x)[]ﬂ(z)dp(z)]“f@(x) — $(2))p.(2)du(2)

ts continuous from AL (B,7) to A (B,7).

Proof Considering that A4 (8,Y)=._#(z,d.f,7) with the equivalent norms for all z€
X and d>0, we can easily prove the Lemma for #(z,,r,,8,7). The details are omited.

Lemma 3.6’ Let 0<B,1<<q(1+8) and M a positive integer. There exists a constant
Cp.q.u such that given any sequence of points {x.} and any sequence of positive number {r.}, sat-
isfymg the condition that no point in X belongs to more than M balls B(x.,r.), then

1+ 847
J [ Z( r_+—;2x,75 } ] dp(2) < Cp st U.B(z,ss7)).
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Lemma 3. 7(Calderon-Zygmund type Lemma) Suppose that f€ H,,(1+8) ' <p<
0o, Let t>0 and O={rE€ X . f* (x)>t}. This set is open set and p(0)<oo. Let {@(2)} be
the partition of the unity in Lemma 3. 3 associated to {3 and let {S.} be the linear trans formations
defined in Lemma 3. 5. 1f we define the distribution b, by

b ) = (f,S.(9)), for g € A(B,7), (3.8)
then
r 1+
b () < Ct( r——m) Xe s, anry (2D + cf (I)XB(,__W')(I) ) (3.9)
and
jb; (D*dp(z) < CL( @dpt). (3.10)

Moreover, the series z”b. converges in (A (B,7)) to a distribution b satis fying

r

b (2) < C:Z{ e e

J'b' (x)*du(x) < CLf' (x)?dp(x). 3.12)

1+8
] +Cf‘(x)Xn(x)' (3-11)

The distribution g = f —b satis fies

. <c:2( Sl ,:Ex -

Proof First, we prove (3.9). Let x& B(xz.,4Ar.). We shall show that there exists a

1+

+ Cf* (2) X (2). (3.13)

constant C independent of » such that for any ¢€ A (2,d,8,7), ¢l 2..0.5.n <1, we have
S, () E A (y,r.,8,7) and

, 148

HS.(¢)Il4<,_.,,.p.n < C( m} , (3.14)

where y, is the point in ¥ given by (3. 2. v).
From supp S.(¢)CB{(x,,2r.), we can assume z€ B(x,,2r,). Then it follows that

p(z.x.)éZr.SzLAp(r,,1‘)<2iA[d+p(x".1‘)J’ we have
1S, () () << @ (2) 1P(z) — ¢z |
+ ‘/’.(z)(J‘}’.(z)d#(z})_ljltll(x.) — ¢() | (2)du(z)

elz,x,) )‘ d . A
<
- (d F oz @+ plz,z)™ ¢ d + p(x,, )
A
p(x..x)m.

1

For z.z’EX,p(z.z’)Qé—A

B(zx,,2r,).

(r.+p(y.,2)]. Without loss of generality, we assume that z€

[S.(9) (2) = S ()] S a.(2) [¢(z) — ¢(2)]
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+ l@(2) — ¢.(z')l(j%(y)d#(y))_‘jlsb(z) — Mg (y)duly)
=14 11
Notice that 7,40z, ,x) <r.+ Alp(x,,2) + p(x,2) J<Cp(x,2) , we have

o(z,2') \* d p(z,2)"
Is (d + p(x,2)| (d + p(z,2))'" s¢ (7o + p(zyy )

If p(z,z')éz%(i[r.—kp(x,,z)], then

g o r
(r. + (2002 (ry + plza,2))

o(z,2')
re + p(x,,2)

1+8

1< Cr,(

p(z,2')
(ra + p(x,,x))H

If p(z,2 )>é—1;1[r.+;0(x. ,z)]?é—'q , then

r’ 77 7!
1< Cr, . L -
S ( (r, + plxar )Y + (ra + p(Zas 2] (ra + plzay 2™’
p(zyz’)’

(ry + plza )"
For every n, by (3.2.v), y.€ B(x.,15A%.), then p(y.,2) SA[p(z.y 34) +p (20, 2) I
17A%.. We have

1+8
r. ) r

SODISAG D] e saar™

and when p(z,z')éz%ifr.—{*p(y,,z)],
[S. (@) (2) — S, (P) (2|

plz,z') \* r

r. 1+8
C( r. + p(r,,r)] (r. + p(y,,z)} (re + pCyrz)'™
This proves (3. 14). By (3. 8), we get that

<

bt (x) < Cf* (3. < Celry/r, + plz,, 2

)( _r,.___) 1+8
r. + p(z,.2)
Let € B(z,,4Ar,) and ¢€ A (x,d,B,7)li¢ll €;.0,0.»,<1. Assume that d=r,, by the same
way as above, we can prove that S,({) € A (z,7,,8,7) and IS, (Pl o(.., 51 SC. We as-
sume that d<lr,, then

S. () (2) = q(2)¢(z) — g?.(z)[J’%(y)d;t(y)]-ljsb(y)?.(y)d;t(y) = h(2) — h,;(2).
Using the same way above we can prove that h, € 4 (x,d,8,7) ,h, € A (x,r,,8,7) and
IRl et sy SCollhal .., 5.y SC where C is independent of n and ¢. Then we have

[<bas ) | <L SaN I S D |+ 1(fLh) | SCF° (o).

We complete the proof of (3. 9).
Taking the p-th power of (3. 9) and integrating on X, by Lemma 3. 6, we get
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T

t(x..tﬂr')( T + P(I. Qx)

U+Me
) du(x)

jb.’ () du(x)<< CI’J

+C [ (x)ydp(z)

Bs, - 4Ar,)
L Ct?u(B(x,,4Ar,)) + CJ [ (x)tdu(z).
B(r 4Ar)

Taking into account that B(z,,4Ar,) {2, we get
o @ran < cj f(@rdpa.

Btz .4Ar)
This proves (3. 10).

Next, let us study the convergence of the series of b,. From Lemma (3. 1), (3. 10) and
the fact that f* (z) isin L?(X,du), we get that the partial sum of 2, is a Cauchy sequence,
by Theorem (2.1), Zb, converges in (.# (f8,7))' to a distribution . Estimates (3. 11) and
(3.12) for b* (x) are obtained by adding up the estimates (3. 9), (3. 10) and Lemma 3. 6.

It remains to prove the inequality (3. 13). Assume that 2 € {2, then there exists & such
that £ € B(zs,r). By (3. 2. vi) we know that the set J of all integers n such that B(z,,
4Ar. YN Bz, 2Ar) 7% D has at most M elements. Moreover, by (3. 2.1v), for every n€J,r.,
satisfies (34%) 7'ri<r. <34, Let ¢€ A (2,d,8,7) and ||¢gll (., 5, <1. U d<r4, then

()= So) = D (b
o) = DL28.9)) — D (b

n€J a&J
= (fod) = D) — Db,
nEJ &J

where

== D)

a€J

@(z) = %(Z)[J%(y)d#(y)]"J’s&(y)%(y)d#(y). forn € J.

Notice that $(z)=0 for z€ B(xs,2Ar,), it is easy to prove that §€ A (y,,d,f,7) and @€
A (yorrisBo1) for n€ TN L, 45 0 SCIRLs,, 0, ., SC» where C is independent of n,k
and ¢. When n&J, we have z& B(x,,44r,), using the proof of (3.9), we have

D148

rﬂ
S| <oy )

Ty &J

So
g IS K |+ D@01+ D) b |

€ J &/
14+
r J

< Cf. (y.) + ZCt{ ;—TPE_JTT;)-

n&J

r 1+8
< Ctz_:( r. + p(x.,z))
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If d>r., then
g | = 1o L+ D0 1badd [ + DL 1B .
n€J n&J
It is easy to prove that $€ A (y1,d,8.7) and ||¢ll 4, 4., <C» we obtain,

1+8

Kf I SCf G <G C‘(‘Tma‘))

and

Db | <CD0b ()

a€J n€J

rll
< CZZ( r. + o(x.,3)

n€J

148

1+48
A} I 4
< -2 .
= C‘%{ .+ P(x.,x))

On the other hand

1+4
Z I (bu‘l’)g < Zb: (x) ZCl(r + p(l‘,,l‘)} )

&S n&J &/

Therefore we have shown that if x€ 3, then (3. 13) holds.
If z& 0. then
g I (o) | + <6 |

18
- » L] r-
<P @+b0 @< f @+ CzZ(r————" o)
This completes the proof of Lemma 3. 7.
Lemma 3. 15 Let 7(s) be an infinitely dif ferentiable function defined on [0,00) such

that 0()<LL, () =1 for 051 and 7(s) =0 for s222. For t>0, x,y€ X, we define
Sz = [[1ptz, 0 IDdu T etz /1),

Then we have
Q) supp Sz, W CT{(x,y): plx,y) K2},

t’

(t+p(z, y)™""
Git) {Szsy) =8z, y) 1+ 1S (y12) =S (y,x") IQC‘

(i) 0SS, (z,y)C

o(x,z') |* v

t+p(x,y) (z+,o(x,y))””

for all x,7' and y€ ch(x,z')éz%q[t%-p(x,y)]v

(iv) JS,(x.y)dﬂ(y) =1, J.S,(.z',y)d/z(x) <c
Lemma 3.16 Let {S,(x,y)},5, be the family of functions as in Lemma 3.15. Then for
any 0B <B, and for y€ A (B,7),

¢ (2) = JS,(z,y)sll(y)dp(y)

comverges to ¢(z) in A (' ,7) ast goes to zero.
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Corollary 3. 17 Let k(z) belong to the closure of A (B,7) in L'(X) , 1< p<<oo. Then,
if
k(z) = J'S.(z.y)k(y)d#(y),

where {S,(z,y) },5o as in Lemma 3. 15, we have
lim”k, - k”, = 0,
1544
moreover, |k(z) | <<Ck* (2) for almost every where on z€ X.
The proofs of Lemma 3. 15, Lemma 3. 16 and Corollary 3. 17 are simple computations

and omited here.
4 Some properties of H,

In the following, we assume that for all 7>>0,C7(X) is dense in L'(X), so C3(X) is
dense in L?(X) for 1<{p<<co. Furthermore for all 0<8<8,7>0, -4 (5.,7) is dense in
LX) A p<oo, see [2].

Theorem 4.1 For any f(z) in L*(X),1<p<oo, the dstribution | induced by f(z) in
H, and there exists a constant C independent of f(z) such that

1flla, < CIfl,.

Proof For € X,¢€ A (2:d,8,7) ¢l eisa 5.y <1, we have
[fo)|= :Jf(zw(z)dp(zn

d
d + p(x,2))
where M is the Hardy-Littlewood maximal function. So f* (z)SCM(f)(x), and |If

< Jlf(z)l du(z) < CMP) (),

In,
<CIM O L, LCIA,, for 1<p<loo.

Theorem 4.2 If a distribution f€ H, for 1<<p<<oo, then there exists a function J(z)
such that |J()1<Cf* (z) and

o) = J?(z)dl(z)dp(z)

Sfor every y€ A (8,7).

Proof For €0, let {¢(z)} be a partition of the unity for X such that supp ¢(z)C
B(z},¢) and for any give n 2€ X,¢(2) 70 holds for no more than N values of & If
{S,(zyy)},, is the family of functions in Lemma 3. 15, then when ¢ is small enough, for ¢ €
AP ,7), 8>, we have

d(2) = JS.(z.y)¢(y)dﬂ(y) = lim _5_ ¢(z:)j5,(z,y)¢§(y)dp(y), (4.3)
—0
where the limit is taken in A(8,7).
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For z€ X, let 0<<e<<(24)7', we have
)= 24D [S. e A Iu) |
A

< D fs.cnd) o — 9t lduty

4
(1 + P(Io ,2:)

< CZJ‘S,(Z,y)ﬁ()’)“S"“ )1+I+7d/‘(y)

K CIPIE 7Q1 + plzou2) ) P K CllPle /(L + plzorz))' .

(4.4)

The last inequality comes from the fact that 1+ p(25,2) <1+ ALp(20,21) +p(28,2) <1+

Alp(xez) +CIKCL 1+ plx, .z;)].

For z,2 € X, and p(z,2' )< [1+p(xo,z)], we have

|4 (2) — Zs&(zﬁ)JS,(z.y)#(y)d#(y) — g2
&
+ D[S AR
']

< T 1829 = 8,6 119 — $e 1)ty
&p(z,2')F 1
1+ p(xe02))” (A + plzyy 2
So (4.4) and (4.5) imply (4. 3).
Now, by Lemma 3. 16, given A>>0, for ¢€ .4 (S,7),
Ko | < [frgl + 4
holds for ¢ small enough. On the other hand, by (4. 3), we have

[Fo92] < DD | = 1 [S,Canhduin | + A

<CWI 7

4.5

(4.6)

4.7

for € small enough. We can assume that e<z. Let 4;(2) = JS,(z,y)ﬁ(y)d;t(y). It is easy to

show that there exists a constant C such that (CJ%(y)d/t(y))"A{(-) € A (x,t,B.7) for all

x€ B(zi,€). Therefore, we get for every 2€ B(z}.¢€),
$SAD 1K CF @ dmduy < C[F AmIdu.
Going back to (4. 7), we get
S| SCT D [£* @terdute) + &

On the other hand, since g€ 4 (f',7), for every z€ B(z},¢),

r
| £y 1
|¢(2A) (Z)l ”¢"(l + p(z.xo)) 1+ p(z,xo))nr.

So,
gz | < 19| + gl /(1 + plzyze))F,
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for every 2€ B(zi,£). Thus
(IS CS[f @19 Ih@dace)
&

dpu(z)
(1 + P(Z,Io)

+ Clglle 35 [£* (o) o+ A
[}

< ij' () |¢(2) ldp(z) + Clldxile’Jf' (2)/ (1 + plz,2))'  dpu(z) + A
Since ¢ is small, we obtain
S| SC[F @ 19t ldnto) + A 4.8
From (4. 6) and (4. 8), and taking into account that A is any positive number, we get

o | <cjf' (2) |¢(2) |dp(2) s 4. 9)

for any ¢E€ A (B V), fEH,,B<B 1< p<oo. Because A (B ,7) is dense in L (X),— +

1
?
1_ 1, so the distribution f can be extended into a continuous linear functional on L* (X).
Thus there exists a unique function F(z) in L*(X), such that for any g(2) in L (X),(f,g)
= j? (2)g(2)dp(z). Specially, for ¢ € 4 (B,7), we have (f,¢) = Jf(zw(z)dp(z). By
Corollary 3. 17, we have | F(z) |<KCF* (2)=Cf" (2), this ends the proof of Theorem (4. 2).

From Theorem 4.1 and Theorem 4. 2, we get that H, can be identified with L* for 1<<p
< oo, By the Lemma 3. 7 and Theorem 4. 2, we can prove the following results as in [4].

Theorem 4. 10 For 1<<q<o0 and (1+ ) '<p<1, we have that L'\ B, is dense in
H,.

Lemma 4.11 If f(2)€LY(X)NH,, (1+8) 7 <p<K1,1<<g<00, then with the same
notations used in Lemma 3.7, we have

(4.11.0D) if m.=[J¢.(z)d#(z)]“'Jf(y)¢.(y)d/l(y)'l’w’l Im,| < Ct,

(4.11.1i1) if b, (2)=[f(2) —m.Ja(2), then the distribution induced by b,(2) coincided
with by

(4. 11.1i1) the series 2, b,(z) comverges for every z€ X and in LY(X) ,if Z.b.(2)=b(2),
then the distribution induced by b(z) coincided with b,

(4. 11.1v) let g(z)=f(2) —b(2),then

g(2) = [ () + D mp(2),
lg(2)| < Ct,

moreover, the distribution induces by g(z) cotncided with g.

S Atomic decomposition of H, and atomic H” space for (1+8) ' <p<1

Definition 5.1 Let 0<f<f and (1+8)"'<p<1. We say that a function a(z) is a p-
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atom, if there exists a ball B such that
(i) supp a(z)CB,

(i) flall.<p(B) %

(i) J.a(z)d;l(z) = 0.

Lemma 5. 2 Let h(2) € L' (X), 1< g o0, with support in B= B (zo,r) and
Jh(z)d/t(z) = 0. Then h€ A, for 1+B) ' <p<1, and

Ikl < C#(B)T'Fllhll

where C does not depend on h(z).
Prwf Assume that ¢E —/”(l"dap’y) ’ “9””/(:.4.;,7)<1- Let x&€ B(xy,2Ar), then

dY
d + plz,2)

|[ru@dnt < [In@)| rsrdia) < CM(R) (@),

h* (z) <K CM ) (z).
Now considering the case x & B(zq,2Ar), then p(x,2,) =2Ar, for any 2€ B(x4,r), we have

p(z,xo)<r\2A[d+p(Io yI)]y and

1<h,¢>l<j|h<z>u¢<z> — 9y |dp(z)

< i ( rf d’ [4 ) 5]7
< Ikl Js( (d + plx,x))" (d + P(I.xo))Hn) d#(Z))

”h“ #(3)7 (—,_O‘)T;;

(in which ~+L=1). so,
q q
o’
Thus, we have

—-‘L’—);;jq)'d#(z)

s, <C| MM @duo + [ drlue?
B(zy.247) plx,x,

Bz,.2

< Cu(B)Y TR,
This ends the proot of Lemma 5. 2.
By Lemma 5. 2, we obtain
Lemma 5.3 Let a(z) be a p-atom, and (14 8) " <p<1, then the distribution a on
A (B,7) induced by a(z) belongs to H, and

Ja' (2Ydu(z) < C < o0,

where C is independent of the p-atom.
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Theorem §. 4 Let (1+83) 7 '<p<{1. For any sequence {a,(z)} of p-atoms and a sequence
{A} of numbers satisfying Z,|k|'<00, then there exists f€ H, such that f = Z’/\,a; and
Jf' ()*dp(z) < CD 1AL
Proof For any large positive integers n and m v'vith n<m, by Lemma 5. 3 we get

[(S330)* @rdu <31l

f—n iwa

Then, by Theorem 2.1, there exists f€ (.#(8,7)) such that f = Z'&a; and f° (z)<z.~
[Ala® (z). This implies that Theorem 5. 4 is true.

In the following, we shall prove that if f€ H , then f can be expanded into a series of
multiples of p-atoms. In order to do this, we need the following Lemma.

Lemma 5.5 Let h(z) in L*(X), |h(2) | 1. Assume that for some (1+ ) '<q<1,h
€ H,. Then for every p with g< p<1, there exist a sequence of p-atoms {ay(2)}, and a nu-

merical sequence {A} such that h= Z&a., and
(1175 < Cllhla,.
Theorem 5.6 For 0<C3<<8,(1+3)'<p<]. If f€ H,. then there exist a sequence of

p-atoms {a,} and a numerical sequence {A,} such that f= Z&a., and there exist two constants
C' and C" independent of [ such that

Clif g, < CIAINF S C I S,

Theorem 5.7 For 0<<3<<8,7>0, (1+8) ' <p<1,#,(B,7) is dense in H,.

The proofs of Lemma 5. 5, Theorem 5. 6§ and Theorem 5. 7 are similar to the proofs in
[4], we omit the details.

In the following, we recall the basic theory of atomic H? spaces defined in {1]. Let 0<8
< oo, lip(B) denote the set of all functions ¢(z) defined on X such that there exists a constant
C satisfying

lg(x) — ¢ | < Colx,y)*,
for every x and y in X.  The least constant C for which this condition holds is denoted by
Hllpsy It is easy to prove that lip(8) with this norm |} +]l,,,, is a Banach space. When 8=0,
lip(0) is defined as the Banach space of all function ¢ in BMO such that for every ball B and ¢

>0 there exsts a bounded continuous function g satisfying

Ll(//(z) — ¢(2) |dp(z) <k,
endowed with the norm ||+ llguo-

Let a(2) be a p-atom and ¢(z) in Iip(%*l). Then (a,¢) = Ja(z);b(z)dp(z) defined a

linear functional on lip( % —1), and
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@) | < Cldllget (5.8)

where C is independent of ¢(z) and a(z). Moreover, for every sequence of p-atoms {a,(z)}

and every numerical sequence {4}, we have
| 25A4as ) T < C 1A ek -
This shows that

o) = D AP (5.9)

is a bounded linear functional on lip(;l)- —1). The norm of f as an element of the dual space of
lip(-~ 1) is bounded by CC, 1417 .

We define H* as the linear space of all bounded linear fnctionals f on lip(% —1) which

can be represented as (5. 9) where {q;} is a sequence of p-atoms and {A} is a numerical se-

quence such that Z'MI’ < oo. For f€ H?, we define
1
11l = inf{ 23141717,

where the infimum is taken over all possible representation of f of the form (5. 9). Using the
methed in {4], we can prove
Theorem 5. 10 Let 0<<f<8 and (1+B) '<p<1. For every f in H?, we denote by T
the restriction of f to A (B,7). Then & (f)=7T defines an injective linear transformation
from H* onto B,. Moreover, there exist two positive numbers C, and C, such that
Cillf e < WFlla, < Coll fllar

holds for every f in H’.

Remark 5. 11 The theory above is studied for spaces of homogeneous type X with infi-
nite measure. In fact,.we can prove that the all results in this paper is true for the case that
p(X)<oco, We omit the details.

Remark 5.12 From the Theorem 5. 10, we can see that for fixed p,(1+6) ' <p<1,
H, do not depend on the choice of # and ¥ which define the basic test function space
A([,7), as long as B and 7 satisfy 0<<3<6,7>0 and (1+8) "' <p.

Remark 5.13 From the Theorem 5. 10, the space H, can be identified with the atomic
H? space. so the theory above essentially give a maximal function characterization of atomic H?
on spaces of homogeneous type.

Remark 5. 14 For the case X=R", Hardy space H? have definition for all 0<{p<C1. In
order to study the similiar characterization of H? for R*, we need some new test function
spaces. We will discuss these details elsewhere.
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