A MAXIMAL FUNCTION CHARACTERIZATION OF HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE"

Li Wenming

(Z hong shan University, China)

Received June. 30, 1996 Revised Nov. 14, 1996

Abstract

A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H' spaces.

1 Introduction

The purpose of this paper is to give a new maximal function characterization for H' spaces defined on spaces of homogeneous type. With this aim, we first define a Hardy-type spaces H_{ρ} in the dual space of the test function spaces $\mathcal{M}(\beta, \gamma)$. Then we prove that every element in \hat{H}_{ℓ} have a decomposition in series of p-atoms, conversely, each distribution on $\mathscr{M}(\beta, \gamma)$ which can be denoted by a series of p -atoms with coefficients satisfy some conditions belongs to \tilde{H}_r . Finally, we show that the atom H' spaces, as defined in^[1], can be identified with \tilde{H}_r . The results in this paper are generalization of theory of Macia and Segovia^[4],

We begin by recalling spaces of homogeneous type. Let X be a set. A quasi-metric d on X is a function $d(x,y): X \times X \rightarrow [0,\infty]$ satisfying:

 $(1. 1. i)$ $d(x,y)=0$ if and only if $x=y$,

 $(1.1. \text{ii}) d(x,y) = d(y,x)$ for all $x, y \in X$,

(1.1. iii) There exists a constant $A<\infty$ such that for all x, y and z in X,

$$
d(x,y) \leqslant A\big[d(x,z) + d(z,y)\big].\tag{1.2}
$$

Any quasi-metric defines a topology, for which the balls $B(x,r)=\{y\in X; d(y,x) form a$ base. However, the balls themselves need not to be open when $A > 1$.

^{*} This work is supported by NSF.

$$
\mu(B(x,2r)) \leqslant A'\mu(B(x,r)).\tag{1.4}
$$

In [3] Macia and Segovia have shown that one can replace d by another quasi-metric ρ such that there exist $c>0$ and some θ , $0<\theta<1$ satisfying

$$
\rho(x,y) \sim \inf\{\mu(B)\}.
$$
 B is a ball containing *x* and *y*\n
$$
(1.5)
$$

$$
|\rho(x,y)-\rho(x',y)|\leqslant C_{\rho}(x,x')'\big[\rho(x,y)
$$

 $+ \rho(x', y)]^{1-t}$, for all x, x' and $y \in X$. (1.6)

In this paper we assume that $\mu({x}) = 0$ for all $x \in X$ and $\mu(X) = +\infty$. For the case $\mu(X) <$ ∞ , see the Remark (5.11) below.

Now we introduce a class of test functions on X.

Definition 1.7 Fix two exponents $0 < \beta < \theta$, see [2], and $\gamma > 0$. A function ψ defined on X is said to be a test function of type (x_0,d,β,γ) , $x_0 \in X$ and $d > 0$, if ψ satisfies the following conditions:

(i)
$$
|\psi(x)| \leq C \frac{d^{\gamma}}{(d+\rho(x,x_0))^{1+\gamma}}
$$
;
\n(ii) $|\psi(x) - \psi(y)| \leq C \left(\frac{\rho(x,y)}{d+\rho(x,x_0)}\right)^{\beta} \frac{d^{\gamma}}{(d+\rho(x,x_0))^{1+\gamma}}$,
\nfor $\rho(x,y) \leq \frac{1}{2A} [d+\rho(x,x_0)].$

If ψ is a test function of type (x_0,d,β,Y) we write $\psi \in \mathcal{M}(x_0,d,\beta,Y)$ and the norm of ψ in $\mathcal{M}(x_0, d, \beta, \gamma)$ is defined by

$$
\|\psi\|_{\mathscr{M}(x_1,d,\beta,Y)} = \inf \{C_1(i) \text{ and } (ii) \text{ hold}\}.
$$

For fixed $x_0 \in X$, we denote $\mathcal{M}(\beta,\gamma) = \mathcal{M}(x_0,1,\beta,\gamma)$. It is easy to check that $\mathcal{M}(\beta,\gamma)$ is a Banach space with respect to the norm in $\mathscr{M}(\beta,\gamma)$. The dual sapce $(\mathscr{M}(\beta,\gamma))'$ consists of all linear function l from $\mathcal{M}(\beta,Y)$ to $\mathcal C$ with the property that there exists a finite constant C such that for all $\psi \in \mathcal{M}(\beta, \gamma)$, $\vert l(\psi) \vert \leq C \Vert \psi \Vert_{\mathcal{A}(\mathbf{0}, \gamma)}$. We denote the natural pairing of elements $f \in (A(\beta, \gamma))'$ and $\psi \in A(\beta, \gamma)$ by $\langle f, \psi \rangle$. It is also easy to see that $A(x_1, d, \beta, \gamma)$ $=\mathscr{M}(\beta,\gamma)$ with equivalent norms for $x_1 \in X$ and $d>0$. Thus, $\langle f,\psi \rangle$ is well defined for all f \in ($\mathcal{M}(\beta, \gamma)$)' and $\psi \in \mathcal{M}(x,d,\beta,\gamma)$ with $x \in X$ and $d>0$.

For the convenience, sometime, we call a linear functional on $\mathcal{M}(\beta, \gamma)$ to be a distribution. Given a function $f(x)$ in $L^{(0)}(X,d\mu)$, $1 \leq q \leq \infty$, clearly,

$$
\langle f,\psi\rangle=\int f(x)\psi(x)d\mu(x)
$$

defines a linear functional on $\mathcal{M}(\beta, \gamma)$, we shall say that f is a distribution induced by the function $f(x)$.

Denote
$$
\mathcal{M}_0(x, d, \beta, \gamma) = \{ \psi \in \mathcal{M}(x, d, \beta, \gamma) : \int \psi(z) d\mu(z) = 0 \}.
$$

For $f \in (\mathcal{M}(\beta, \gamma))'$, $0 < \beta < \theta, \gamma > 0$, we define the maximal function $f^*(x)$ of f as

 $f'(x) = \sup\{|\langle f, \psi\rangle| : \text{for some } d > 0, \psi \in \mathcal{M}(x,d,\beta,Y) \text{ and } \|\psi\|_{\mathcal{M}(x,d,\beta,Y)} \leq 1\}.$ For $(1+\beta)^{-1}$ \leq ρ \lt ∞ , we define the maximal function spaces \widetilde{H}_* as $\widetilde{H}_e = \{f \in \mathcal{M}(\beta, Y))': f' \in L^p(X)\}.$

If $f \in \tilde{H}_r$, we define $|| f ||_{\tilde{H}_r} = || f^* ||_{\rho}$.

2 The completeness of \widetilde{H} .

Obviously, $(\tilde{H}_p, \| \cdot \|_{\tilde{H}_p})$ is a quasi-metric space for $(1+\beta)^{-1} < p < 1$, and metric space for $1 \leq p \lt \infty$. In the following, we will show that \widetilde{H}_r with the metric $\|\cdot\|_{H_r}$ is complete, so $(\widetilde{H}_r, \| \cdot \|_{\widetilde{H}_s})$ is a Banach space when $1 \leq p < \infty$.

Theorem 2. 1 $(\widetilde{H}_p, \|\cdot\|_{R_n})$ *is complete, i.e., for any Cauchy sequence* $\{f_n\}$ *is* \widetilde{H}_p *there exists f in* \hat{H}_s such that

(i) $\{f_n\}$ *converges to f in* $(\mathcal{M}(\beta, \gamma))'$,

(ii) $|| f_n - f ||_{B_p} \rightarrow 0$ when $n \rightarrow \infty$.

In ordere to prove the Theorem (2. 1), we need the following Lemma.

Lemma 2. 2 *There exists* $d_0 > 0, M \ge 1$, such that for any $\psi \in \mathcal{M}(x_0, 1, \beta, \gamma)$, $\|\psi\|$

 \parallel _{*A*(x_0 , 1, β , y)} \leq 1, and any $y_0 \in B(x_0, d_0)$, we have $\frac{\psi}{M} \in \mathcal{M}(y_0, 1, \beta, \gamma)$.

Proof Take $d_0 = (2C)^{-\frac{1}{2}}$, where C and θ are constants in (1.6). Let $\mathscr{A} = \{x \in X:$ $\rho(x_0,x) \leq 1, \rho(y_0,x) \leq 1$. When $x \in \mathcal{A}$, we have that

$$
|\rho(x_0,x)-\rho(y_0,x)|\leqslant C_{\rho}(x_0,y_0)^{\rho}[\rho(x_0,x)+\rho(y_0,x)]^{1-\rho}\leqslant 2^{-\rho},
$$

SO,

$$
\rho(y_0,x)\leqslant\rho(x_0,x)+2^{-\theta}
$$

and

$$
\frac{1}{(1+\rho(x_0,x))^{1+\gamma}} \leq \frac{1}{((1-2^{-1})+\rho(y_0,x))^{1+\gamma}}
$$

$$
\leq \frac{1}{(1-2^{-1})^{1+\gamma}} \frac{1}{(1+\rho(x_0,x))^{1+\gamma}}.
$$

When $x \notin \mathscr{A}$,

$$
|\rho(x_0,x) - \rho(y_0,x)| \leq \frac{1}{2} [\rho(x_0,x) + \rho(y_0,x)]^{1-\theta}
$$

$$
\leq \frac{1}{2} [\rho(x_0,x) + \rho(y_0,x)] \cdot \frac{1}{2} \rho(y_0,x) \leq \frac{3}{2} \rho(x_0,x),
$$

SO,

$$
\frac{1}{(1+\rho(x_0,x))^{1+\tau}} \leq \frac{9}{(1+\rho(y_0,x))^{1+\tau}}.
$$

We take $M_1=\max{\{\frac{1}{(1-2^{-1})^{1+\gamma}},9\}}$, then for any $y_0\in B(x_0,d_0)$ and any $\psi\in\mathscr{M}(x_0,1,\beta,Y)$, $\|\psi\|_{\mathscr{M}(x_0,1,\beta,T)} \leq 1$, we have

$$
|\psi(x)| \leq \frac{M_1}{(1 + \rho(y_0, x))^{1+\gamma}}.
$$

For any x any y in X, $\rho(x, y) \leq \frac{1}{2A}[1 + \rho(y_0, x)]$. If $\rho(x, y) \leq \frac{1}{2A}[1 + \rho(x_0, x)]$, then

$$
|\psi(x) - \psi(y)| \leq (\frac{\rho(x, y)}{1 + \rho(x_0, x)})^{\beta} \frac{1}{(1 + \rho(x_0, x))^{1+\gamma}}
$$

$$
\leq M_1^{2+\gamma} (\frac{\rho(x, y)}{1 + \rho(y_0, x)})^{\beta} \frac{1}{(1 + \rho(y_0, x))^{1+\gamma}}.
$$
If $\rho(x, y) \geq \frac{1}{2A}[1 + \rho(x_0, x)]$, then $\rho(x_0, x) \leq \rho(y_0, x)$, and $\rho(y_0, x) \leq A[\rho(y_0, y) + \rho(y, x)] \leq A_{\rho}(y_0, y) + \frac{1}{2}[1 + \rho(y_0, x)]$, so $\frac{1}{2}[1 + \rho(y_0, x)] \leq A[\rho(y_0, y) + 1]$. Thus

$$
|\psi(x) - \psi(y)| \leq |\psi(x)| + |\psi(y)|
$$

$$
\leq M_1(\frac{1}{(1 + \rho(y_0, x))^{1+\gamma}} + \frac{1}{(1 + \rho(y_0, y))^{1+\gamma}})
$$

$$
\leq 2AM_1(M_1 + (2A)^{1+\gamma}M_1)(\frac{\rho(x, y)}{1 + \rho(y_0, x)})^{\beta} \frac{1}{(1 + \rho(y_0, x))^{1+\gamma}}.
$$

Let $M=2AM_1(M_1+(2A)^{1+\gamma}M_1)$, then the result of Lemma is true. We complete the proof of Lemma (2.2).

Now, we prove Theorem 2.1. For any $\psi \in \mathcal{M}(\beta, \gamma)$, $\|\psi\|_{\mathcal{M}(\beta, \gamma)} \leq 1$, and any $x \in$ $B(x_0, d_0)$, by Lemma (2.2),

$$
|\langle f_n-f_n,\psi\rangle|\leq M|\langle f_n-f_n,\frac{\psi}{M}\rangle|\leq M(f_n-f_n)^*(x).
$$

Then

$$
\|f_n-f_m\|_{\langle \mathcal{M}(\beta,r)\rangle}=\sup_{\|\phi\|_{\mathcal{M}(\beta,r)}\leqslant 1}|\langle f_n-f_n,\phi\rangle|\leqslant M(f_n-f_m)^*(x),
$$

for $x \in B(x_0, d_0)$. Taking the p-power and integrating on $B(x_0, d_0)$, we obtain

$$
\|f_{n} - f_{m}\|_{(A(\beta, r))} \leq M \left| (\mu(B(x_{0}, d_{0})))^{-1} \int_{B(x_{0}, d_{0})} (f_{n} - f_{m})^{*}(x)^{r} d\mu(x) \right|^{\frac{1}{p}}
$$

$$
\leq M \mu(B(x_{0}, d_{0}))^{-\frac{1}{p}} \|f_{n} - f_{m}\|_{B_{p}}.
$$

This shows that $\{f_n\}$ is a Cauchy sequence in $({\mathscr{M}}(\beta,Y))'$, therefore, there exists $f \in$ $(\mathcal{M}(\beta,\gamma))'$ such that f is the limit of the sequence $\{f_n\}_{n=1}^{\infty}$. This proves (i). The proof of (ii) is the same as in [4] and omited here. We complete the proof of Theorem 2.2.

3 Calderon-Zygmund type lemma

Lemma 3. 1 (covering lemma⁽⁴⁾) Let Ω be an open set of finite measure strictly contained in X and $d(x) = inf\{\rho(x,y): y \notin \Omega\}$. Given $C \ge 1$, let $r(x) = (2AC)^{-1}d(x)$. Then there ex*ists a natural number* M , which depends on C , and a sequence $\{x_n\}$ such that, denoting $r(x_n)$ *by r., we have*

(3.2. i) the balls $B(x_n, (4A)^{-1}r_n)$ are pairwise disjoint,

 $(3.2 \text{ ii}) \cup B(x_1, r_2) = \Omega$,

 $(3.2. \text{iii})$ *for every n,* $B(x_n, Cr_n) \subset \Omega$ *,*

(3.2. iv) for every n, $x \in B(x_n, Cr_n)$ implies that $Cr_s \le d(x) \le 3A^2Cr_s$,

(3.2. v) for every n, there exists $y_n \notin \Omega$ such that $p(x_n, y_n) \leq 3ACr_n$,

(3.2. vi) *for every n, the number of balls* $B(x_k, Cr_k)$ whose intersections with $B(x_k, Cr_k)$ *are non-empty is at most M.*

Lemma 3.3 **(partition of the** unity) *Let 0 be an open set of finite measure strictly contained in X. Consider the sequence* $\{x_n\}$ *and* $\{r_n\}$ *given by Lemma 3. 1 for C*=5A. Then, there *exists a sequence* $\{ \varphi_n(x) \}$ *of non-negative functions satisfying*

 $(3.4. i)$ supp $qCD(x_n, 2r_n)$,

(3. 4. ii) $q_{\text{s}}(x) \geq \frac{1}{M}$, for $x \in B(x_{\text{s}}, r_{\text{s}})$,

(3.4. iii) *there exists C such that for every n,* $q_i \in \mathcal{M}(x_n, r_n, \beta, \gamma)$ *and* $||q_i|| \leq Cr_n$,

$$
(3.4.iv) \sum_{n} \varphi_n(x) = \chi_n(x).
$$

Proof Let $\eta(s)$ be an infinitely differentiable function on $[0,\infty)$ such that $0 \leq \eta(s) \leq 1$, $\eta(s) = 1$ if $0 \le s \le 1$ and $\eta(s) = 0$ for $s \ge 2$. For every n, we define

$$
\psi_n(x)=\eta(\frac{\rho(x,x_n)}{r_n}).
$$

These functions ψ_n are non-negative, with supp $\psi_n \subset B(x_n, 2r_n)$ and by (3.2. ii) and (3.2. vi), satisfy

$$
1 \leqslant \sum_{\bullet} \psi_{\bullet}(x) \leqslant M \text{, for every } x \in \Omega.
$$

It is easy to prove that $\psi_s \in \mathcal{M}(x_s, r_s, \beta, \gamma)$ and $\|\psi_s\|_{\mathcal{M}(x_s, r_s, \beta, \gamma)} \leqslant Cr_s$ where C is independent of n.

We define $\varphi_n(x)$ by $\varphi_n(x)=0$ if $x \notin \Omega$ and $\varphi_n(x) = \psi_n(x) / \sum \psi_n(x)$ if $x \in \Omega$. Then $\langle \phi_{\alpha}(x) \rangle$ satisfies Lemma 3. 3.

Lemma 3.5 Let $\{q_k(x)\}$ be the partition of unity in Lemma 3.3 associated to some open *set O, then for every n, the linear mapping*

$$
S_n(\psi)(x) = \varphi_n(x) \left[\int_{-\infty}^{\infty} \varphi_n(z) d\mu(z) \right]^{-1} \int_{-\infty}^{\infty} (\psi(x) - \psi(z)) \varphi_n(z) d\mu(z)
$$

is continuous from $\mathcal{M}(\beta, \gamma)$ *to* $\mathcal{M}_0(\beta, \gamma)$.

Proof Considering that $\mathcal{M}(\beta, \gamma) = \mathcal{M}(x, d, \beta, \gamma)$ with the equivalent norms for all $x \in$ X and $d>0$, we can easily prove the Lemma for $\mathcal{M}(x_*,r_*,\beta,\gamma)$. The details are omited.

Lemma 3. $6^{[4]}$ Let $0 < \beta, 1 < q(1 + \beta)$ and M a positive integer. There exists a constant $C_{\beta,q,M}$ such that given any sequence of points $\{x_n\}$ and any sequence of positive number $\{r_n\}$, satis fying the condition that no point in X belongs to more than M balls $B(x_n, r_n)$, then

$$
\int \left[\sum_{r_n} \left(\frac{r_n}{r_n + \rho(x_n, z)} \right)^{1+\beta} \right]^{\nu} d\mu(z) \leqslant C_{\beta, q, M} \mu(U_n B(x_n, r_n)).
$$

Lemma 3. 7(Calderon-Zygmund type Lemma) *Suppose that* $f \in \tilde{H}_*$, $(1 + \beta)^{-1} < p <$ ∞ . Let $t>0$ and $\Omega = \{x \in X : f^*(x) > t\}$. This set is open set and $\mu(\Omega) < \infty$. Let $\{\varphi_n(x)\}\$ be *the partition of the unity in Lemma 3.3 associated to* Ω *and let* $\{S_n\}$ be the linear transformations defined in Lemma 3.5. If we define the distribution b_n by

$$
\langle b_n, \psi \rangle = \langle f, S_n(\psi) \rangle, \text{ for } \psi \in \mathcal{M}(\beta, \gamma), \tag{3.8}
$$

then

$$
b_{n}^{*}(x) \leq C t \left(\frac{r_{n}}{r_{n} + \rho(x_{n}, x)} \right)^{1+\beta} \chi_{b^{*}(x_{n} + A r_{n})}(x) + C f^{*}(x) \chi_{b(x_{n} + A r_{n})}(x), \qquad (3.9)
$$

and

$$
\int b_{\star}^{\star}(x)^{\prime} d\mu(x) \leqslant C \int_{B(x_{\star}, 4M_{\star})} f^{\star}(x)^{\prime} d\mu(x). \tag{3.10}
$$

Moreover, the series $\sum_{n}b_n$ converges in $({\mathcal{M}}(\beta,\gamma))'$ to a distribution b satisfying

$$
b^{*}(x) \leqslant Ct \sum_{n} \left(\frac{r_{n}}{r_{n} + \rho(x_{n}, x)} \right)^{1+\beta} + cf^{*}(x) \chi_{n}(x), \qquad (3.11)
$$

$$
\int b^{*}(x)^{p} d\mu(x) \leqslant C \int_{a} f^{*}(x)^{p} d\mu(x). \tag{3.12}
$$

The distribution $g = f - b$ satisfies

$$
g^{\star}(x) \leqslant Ct \sum_{n} \left(\frac{r_n}{r_n + \rho(x_n, x)} \right)^{1+\beta} + Cf^{\star}(x) \chi_{\rho}(x). \tag{3.13}
$$

Proof First, we prove (3.9). Let $x \notin B(x_n, 4Ar_n)$. We shall show that there exists a constant C independent of n such that for any $\psi \in \mathcal{M}(x,d,\beta,Y)$, $\|\psi\|_{\mathcal{M}_x,d,\beta,Y} \leq 1$, we have $S_n(\psi) \in \mathcal{M}(y_n, r_n, \beta, \gamma)$ and

$$
\|S_n(\psi)\|_{\mathscr{A}(y_n,r_n,\beta,T)} \leqslant C \Big(\frac{r_n}{r_n+\rho(x_n,x)}\Big)^{1+\beta},\tag{3.14}
$$

where y_n is the point in Ω' given by (3.2. v).

From supp $S_n(\psi) \subset B(x_n, 2r_n)$, we can assume $\psi \in B(x_n, 2r_n)$. Then it follows that $\rho(z, x_n) \leq 2r \leq \frac{1}{2A} \rho(x_n, x) \leq \frac{1}{2A}[d + \rho(x_n, x)].$ we have $|S_{\bullet}(\psi)(z)| \leqslant \varphi_{\bullet}(z)|\psi(z) - \psi(x_{\bullet})|$ $+ \varphi_{\mathbf{a}}(z) \left(\varphi_{\mathbf{a}}(z) d\mu(z) \right)^{-1} \left[|\psi(x_{\mathbf{a}}) - \psi(z)| \varphi_{\mathbf{a}}(z) d\mu(z) \right]$ $\leqslant \left(\frac{\rho(z,x_n)}{d+\rho(x,x)}\right)^{\beta} \frac{d^{\prime}}{(d+\rho(x,x))^{1+\gamma}} + C \frac{r_n^{\beta}}{(d+\rho(x,x))^{1+\gamma}}$ $\leqslant C \frac{r_n^{\beta}}{\rho(x_n,x)^{1+\beta}}$.

For $z, z' \in X$, $\rho(z, z') \leq \frac{1}{2A} [r_a + \rho(y_a, z)]$. Without loss of generality, we assume that $z \in$ $B(x_n, 2r_n)$.

$$
|S_{\kappa}(\psi)(z) - S_{\kappa}(\psi)(z')| \leqslant \varphi(z')|\psi(z) - \psi(z')|
$$

$$
+ |\varphi_{\alpha}(z) - \varphi_{\alpha}(z')| \langle \int \varphi_{\alpha}(y) d\mu(y) \rangle^{-1} \int |\psi(z) - \psi(y)| \varphi_{\alpha}(y) d\mu(y)
$$

= $I + II$.

Notice that $r_n + \rho(x_n,x) \leq r_n + A[\rho(x_n,x) + \rho(x,x)] \leq C\rho(x,x)$, we have

$$
I\leqslant \left(\frac{\rho(z,z')}{d+\rho(x,z)}\right)^{\beta}\frac{d'}{(d+\rho(x,z))^{1+\gamma}}\leqslant C\,\frac{\rho(z,z')^{\beta}}{\left(r_{\alpha}+\rho(x_{\alpha},x)\right)^{1+\beta}}.
$$

If
$$
\rho(z, z') \leq \frac{1}{2A} [r_n + \rho(x_n, z)],
$$
 then
\n
$$
II \leq C r_n \left(\frac{\rho(z, z')}{r_n + \rho(x_n, z)} \right)^{\beta} \frac{r_n^{\gamma}}{(r_n + \rho(x_n, z))^{1+\gamma}} \frac{r_n^{\beta}}{(r_n + \rho(x_n, x))^{1+\beta}}
$$
\n
$$
\leq C \frac{\rho(z, z')^{\beta}}{(r_n + \rho(x_n, x))^{1+\beta}}.
$$
\nIf $\rho(z, z') > \frac{1}{2A} [r_n + \rho(x_n, z)] \geq \frac{r_n}{2A}$, then
\n
$$
II \leq C r_n \left(\frac{r_n^{\gamma}}{(r_n + \rho(x_n, z))^{1+\gamma}} + \frac{r_n^{\gamma}}{(r_n + \rho(x_n, z'))^{1+\gamma}} \right) \frac{r_n^{\beta}}{(r_n + \rho(x_n, x))^{1+\beta}}
$$
\n
$$
\leq C \frac{\rho(z, z')^{\beta}}{(r_n + \rho(x_n, z))^{1+\beta}}.
$$

For every *n*, by (3.2. *v*), $y_x \in B(x_x, 15A^2r_x)$, then $\rho(y_x, z) \leq A[\rho(x_x, y_x) + \rho(x_x, z)] \leq$ *17A3r..* We have

$$
|S_n(\psi)(z)| \leqslant C \left(\frac{r_n}{r_n + \rho(x_n, x)} \right)^{1+\beta} \frac{r_n^{\gamma}}{\left(r_n + \rho(y_n, z)\right)^{1+\gamma}},
$$

and when $\rho(z, z') \leq \frac{1}{2} \lfloor r, +\rho(y_n, z) \rfloor$

$$
|S_n(\psi)(z) - S_n(\psi)(z')|
$$

\n
$$
\leq c \Big(\frac{r_n}{r_n + \rho(x_n, x)} \Big)^{1+\beta} \Big(\frac{\rho(z, z')}{r_n + \rho(y_n, z)} \Big)^{\beta} \frac{r_n^{\gamma}}{(r_n + \rho(y_n, z))^{1+\gamma}}.
$$

This proves (3.14) . By (3.8) , we get that

$$
b_{\kappa}^*(x) \leqslant C f^*(y_{\kappa}) \left(\frac{r_{\kappa}}{r_{\kappa} + \rho(x_{\kappa}, x)} \right)^{1+\beta} \leqslant C t (r_{\kappa}/r_{\kappa} + \rho(x_{\kappa}, x))^{1+\beta}.
$$

Let $x \in B(x_n, 4Ar_n)$ and $\psi \in \mathcal{M}(x,d,\beta,Y)$, $\|\psi\|_{\mathcal{M}_x,d,\beta,Y} \leq 1$. Assume that $d \geq r_n$, by the same way as above, we can prove that $S_n(\psi) \in \mathcal{M}(x, r_n, \beta, \gamma)$ and $||S_n(\psi)||_{\mathcal{M}(x, r_n, \beta, \gamma)} \leq C$. We assume that $d \leq r_n$, then

$$
S_n(\psi)(z) = \varphi_n(z)\psi(z) - \varphi_n(z)\left[\int_{-\infty}^{\infty} \varphi_n(y)d\mu(y)\right]^{-1}\int_{-\infty}^{\infty} \psi(y)\varphi_n(y)d\mu(y) = h_1(z) - h_2(z).
$$

Using the same way above we can prove that $h_1 \in \mathcal{M}(x,d,\beta,Y)$, $h_2 \in \mathcal{M}(x,r_s,\beta,Y)$ and $||h_1||_{\mathcal{A}(x,d,\ell,\nu)} \leqslant C$, $||h_2||_{\mathcal{A}(x,r_1,\ell,\nu)} \leqslant C$, where C is independent of n and ψ . Then we have $|\langle b_n, \psi \rangle| \leqslant |\langle f, S_n(\psi) \rangle| \leqslant |\langle f, h_1 \rangle| + |\langle f, h_2 \rangle| \leqslant C f^*(x).$

We complete the proof of (3.9).

Taking the p -th power of (3.9) and integrating on X, by Lemma 3.6, we get

$$
\int b_{\bullet}^{\bullet}(x)^{r} d\mu(x) \le C t^{p} \int_{B(x_{\bullet}, 4A_{\bullet})} \left(\frac{r_{\bullet}}{r_{\bullet} + \rho(x_{\bullet}, x)} \right)^{(1+\beta)p} d\mu(x)
$$

+ $C \int_{B(x_{\bullet}, 4A_{\bullet})} f^{\bullet}(x)^{r} d\mu(x)$
 $\le C t^{p} \mu(B(x_{\bullet}, 4A_{\bullet})) + C \int_{B(x_{\bullet}, 4A_{\bullet})} f^{\bullet}(x)^{p} d\mu(x).$

Taking into account that $B(x_n, 4Ar_n) \subset \Omega$, we get

$$
\int b_{n}^{*}(x)^{p} d\mu(x) \leqslant C \int_{B(x_{n}, (Ax_{n})} f^{*}(x)^{p} d\mu(x),
$$

This proves (3.10).

Next, let us study the convergence of the series of Σb_n . From Lemma (3.1), (3. 10) and the fact that $f'(x)$ is in $L^p(X,d\mu)$, we get that the partial sum of Σb_n is a Cauchy sequence, by Theorem (2.1), Σb , converges in $(\mathcal{M}(\beta, \gamma))'$ to a distribution b. Estimates (3.11) and $(3. 12)$ for $b^*(x)$ are obtained by adding up the estimates $(3. 9)$, $(3. 10)$ and Lemma 3.6.

It remains to prove the inequality (3.13). Assume that $x \in \Omega$, then there exists k such that $x \in B(x_k, r_k)$. By (3. 2. vi) we know that the set J of all integers n such that $B(x_n, r)$ $4Ar_n \cap B(x_4, 2Ar_k) \neq \emptyset$ has at most M elements. Moreover, by (3. 2. iv), for every $n \in J \cdot r_n$ satisfies $(3A^2)^{-1}r_1\leqslant r_n\leqslant 3A^2r_1$. Let $\psi\in\mathcal{M}(x,d,\beta,Y)$ and $\|\psi\|_{\mathcal{M}(x,d,\beta,Y)}\leqslant 1$. If $d\leqslant r_k$, then

$$
\langle g, \psi \rangle = \langle f, \psi \rangle - \sum_{n} \langle b_{n}, \psi \rangle
$$

= $\langle f, \psi \rangle - \sum_{n \in J} \langle f, S_{n}(\psi) \rangle - \sum_{n \in J} \langle b_{n}, \psi \rangle$
= $\langle f, \widetilde{\psi} \rangle - \sum_{n \in J} \langle f, \widetilde{\varphi}_{n} \rangle - \sum_{n \in J} \langle b_{n}, \psi \rangle$,

where

$$
\widetilde{\psi} = (1 - \sum_{x \in J} \varphi_x) \psi,
$$

$$
\widetilde{\varphi}_x(z) = \varphi_x(z) \left[\int \varphi_x(y) d\mu(y) \right]^{-1} \left[\psi(y) \varphi_x(y) d\mu(y) \right], \quad \text{for } n \in J.
$$

Notice that $\tilde{\phi}(z)=0$ for $z \in B(x_k, 2Ar_k)$, it is easy to prove that $\tilde{\phi} \in \mathcal{M}(y_k, d, \beta, \gamma)$ and $\tilde{\phi} \in$ $\mathscr{M}(y_k,r_k,\beta,\gamma)$ for $n \in J$, $\|\tilde{\psi}\|_{\mathscr{M}(y_k,\beta,\gamma)} \leqslant C$, $\|\tilde{\phi}_k\|_{\mathscr{M}(y_k,r_k,\beta,\gamma)} \leqslant C$, where C is independent of n,k and ψ . When $n\notin J$, we have $x \notin B(x_n, 4Ar_n)$, using the proof of (3.9), we have

$$
\sum_{n\in J} |\langle b_n, \psi \rangle| \leq C \epsilon \sum_{n\in J} \left(\frac{r_n}{r_n + \rho(x_n, x)} \right)^{1+\beta}.
$$

So

$$
|\langle g, \psi \rangle| \leq |\langle f, \widetilde{\psi} \rangle| + \sum_{i \in J} |\langle f, \widetilde{\varphi}_i \rangle| + \sum_{i \in J} |\langle b_x, \psi \rangle|
$$

$$
\leq C f^* (y_*) + \sum_{i \in J} C t \Big(\frac{r_*}{r_* + \rho(x_*, x)} \Big)^{1+\beta}
$$

$$
\leq C t \sum_{i} \Big(\frac{r_*}{r_* + \rho(x_*, x)} \Big)^{1+\beta}
$$

If *d>r,,* then

$$
|\langle g,\psi\rangle|=|\langle f,\psi\rangle|+\sum_{n\in J}|\langle b_n,\psi\rangle|+\sum_{n\in J}|\langle b_n,\psi\rangle|.
$$

It is easy to prove that $\psi \in \mathcal{M}(y_k, d, \beta, \gamma)$ and $\|\psi\|_{\mathcal{M}(y_k, d, \beta, \gamma)} \leq C$, we obtain,

$$
|\langle f,\psi\rangle| \leq C f^*(y_i) \leq Ct \leq Ct \left(\frac{r_i}{r_n+\rho(x_n,x)}\right)^{1+\beta},
$$

and

$$
\sum_{n\in J} |\langle b_n, \phi \rangle| \leqslant C \sum_{n\in J} b_n^* (y_i)
$$

$$
\leqslant C t \sum_{n\in J} \left(\frac{r_n}{r_n + \rho(x_n, y_n)} \right)^{1+\beta}
$$

$$
\leqslant C t \sum_{n\in J} \left(\frac{r_n}{r_n + \rho(x_n, x)} \right)^{1+\beta}.
$$

On the other hand

$$
\sum_{n\in J} |\langle b_n, \psi \rangle| \leqslant \sum_{n\in J} b_n^{\star}(x) \leqslant \sum_{n\in J} C t \left(\frac{r_n}{r_n + \rho(x_n, x)} \right)^{1+\beta}.
$$

Therefore we have shown that if $x \in \Omega$, then (3.13) holds.

If $x \notin \Omega$, then

$$
|\langle g, \psi \rangle| \leq | \langle f, \psi \rangle | + | \langle b, \psi \rangle |
$$

$$
\leq f^*(x) + b^*(x) \leq f^*(x) + Ct \sum_{n} \left(\frac{r_n}{r_n + \rho(x_n, x)} \right)^{1+\beta}
$$

This completes the proof of Lemma 3.7.

Lemma 3. 15 Let $\eta(s)$ be an infinitely differentiable function defined on $[0,\infty)$ *such* that $0 \le \eta(s) \le 1$, $\eta(s) = 1$ for $0 \le s \le 1$ and $\eta(s) = 0$ for $s \ge 2$. For $t > 0$, $x, y \in X$, we define

$$
S_t(x,y) = \left[\int \eta(\rho(x,z)/t) d\mu(z)\right]^{-1} \eta(\rho(x,y)/t).
$$

Then we have

(i) supp
$$
S_t(x, y) \subset \{(x, y), \rho(x, y) \le 2t\},
$$

\n(ii) $0 \le S_t(x, y) \le C \frac{t^{\gamma}}{(t + \rho(x, y))^{1+\gamma}}$,
\n(iii) $|S_t(x, y) - S_t(x^{\prime}, y)| + |S_t(y, x) - S_t(y, x^{\prime})| \le C \left(\frac{\rho(x, x^{\prime})}{t + \rho(x, y)}\right)^{\beta} \frac{t^{\gamma}}{(t + \rho(x, y))^{1+\gamma}}$,
\nfor all x, x^{\prime} and $y \in X, \rho(x, x^{\prime}) \le \frac{1}{2A}[t + \rho(x, y)],$

(iv) $\int S_i(x,y)d\mu(y) = 1, \quad \int S_i(x,y)d\mu(x) \leq C.$

Lemma 3. 16 Let $\{S_i(x, y)\}_{i>0}$ be the family of functions as in Lemma 3.15. Then for any $0 < \beta < \beta$, and for $\psi \in \mathcal{M}(\beta, \gamma)$,

$$
\psi_t(z) = \int S_t(z,y)\psi(y)d\mu(y)
$$

converges to $\psi(z)$ *in* $\mathcal{M}(\beta', \gamma)$ *as t goes to zero.*

Corollary 3.17 *Let* $k(z)$ belong to the closure of $\mathcal{M}(\beta, \gamma)$ in $L^p(X), 1 \leq p \leq \infty$. Then, *if*

$$
k_i(x) = \int S_i(x,y)k(y)d\mu(y),
$$

where $\{S_i(z, y)\}_{i>0}$ as in Lemma 3.15, we have

$$
\lim_{t\to 0}||k_t-k||_{p}=0,
$$

moreover, $|k(z)| \leq Ck^{\bullet}(z)$ for almost every where on $z \in X$.

The proofs of Lemma 3. 15, Lemma 3.16 and Corollary 3. 17 are simple computations and omited here.

4 Some properties of \widetilde{H} ,

In the following, we assume that for all $\eta > 0$, $C_0^*(X)$ is dense in $L^1(X)$, so $C_0^*(X)$ is dense in $L^p(X)$ for $1 \leq p < \infty$. Furthermore for all $0 < \beta < \theta, \gamma > 0$, $\mathcal{M}(\beta, \gamma)$ is dense in $L^p(X)$, $1 \leqslant p < \infty$, see [2].

Theorem 4.1 For any $f(z)$ in $L^p(X)$, $1 \leq p \leq \infty$, the dstribution f induced by $f(z)$ in \widetilde{H}_p and there exists a constant C independent of $f(z)$ such that

$$
||f||_{\rho_{\rho}} \leq C||f||_{\rho}.
$$

Proof For $x \in X, \psi \in \mathcal{M}(x,d,\beta,Y)$, $||\psi||_{\mathcal{A}(x,d,\beta,Y)} \leq 1$, we have

$$
|\langle f, \psi \rangle| = |\int f(z)\psi(z)d\mu(z)|
$$

$$
\leq \int |f(z)| \frac{d^{\gamma}}{(d+\rho(x,z))^{1+\gamma}}d\mu(z) \leq CM(f)(x).
$$

where M is the Hardy-Littlewood maximal function. So $f^*(x) \leq C M(f)(x)$, and $|| f||$ \parallel R

 $\leq C \|M(f)\|_{p} \leq C \|f\|_{p}$, for $1 < p < \infty$.

Theorem 4. 2 *If a distribution* $f \in \tilde{H}$, for $1 \leq p \leq \infty$, then there exists a function $\tilde{f}(z)$ *such that* $|f(z)| \leqslant C f^{*}(z)$ and

$$
\langle f,\psi\rangle=\int\!\!\!\!\!\int(z)\psi(z)d\mu(z)
$$

for every $\psi \in \mathcal{M}(\beta, \gamma)$.

Proof For $\epsilon > 0$, let $\{q_1^{\epsilon}(z)\}$ be a partition of the unity for X such that supp $q_1^{\epsilon}(z) \subset$ $B(z_*,\epsilon)$ and for any give $n \geq \in X, \mathfrak{G}(z) \neq 0$ holds for no more than N values of k. If $\langle S, (z,y) \rangle_{\infty}$ is the family of functions in Lemma 3.15, then when t is small enough, for $\psi \in$ $\mathcal{M}(\beta', \gamma), \beta' > \beta$, we have

$$
\psi_t(z) = \int S_t(z,y)\psi(y)d\mu(y) = \lim_{\epsilon \to 0} \sum \psi(z_t^{\epsilon}) \int S_t(z,y)\phi_y^{\epsilon}(y)d\mu(y), \qquad (4.3)
$$

where the limit is taken in $\mathcal{M}(\beta', \gamma)$.

For $z \in X$, let $0 \lt \epsilon \lt (2A)^{-1}$, we have

$$
|\psi_{\iota}(z) - \sum_{k} \psi(z_{\iota}^{\prime}) \Big| S_{\iota}(z, y) \phi(y) d\mu(y) |
$$

\n
$$
\leq \sum \int S_{\iota}(z, y) \phi(y) |\psi(y) - \psi(z_{\iota}^{\prime})| d\mu(y)
$$

\n
$$
\leq C \sum \int S_{\iota}(z, y) \phi(y) ||\psi|| \frac{\epsilon^{\rho}}{(1 + \rho(x_0, z_{\iota}^{\prime}))^{1 + \rho + \gamma}} d\mu(y)
$$

\n
$$
\leq C ||\psi|| \epsilon^{\rho} / (1 + \rho(x_0, z))^{1 + \rho + \gamma} \leq C ||\psi|| \epsilon^{\rho} / (1 + \rho(x_0, z))^{1 + \gamma}.
$$
 (4.4)

The last inequality comes from the fact that $1+\rho(x_0,z)\leq 1+A[\rho(x_0,z'_*)+\rho(z'_*,z)]\leq 1+$ $A[\rho(x_0, z'_k) + Ct] \leq C[1 + \rho(x_0, z'_k)].$

For
$$
z, z' \in X
$$
, and $\rho(z, z') \leq \frac{1}{2A} [1 + \rho(x_0, z)]$, we have
\n
$$
|\psi_r(z) - \sum_i \psi(z'_i) \int S_r(z, y) \phi(y) d\mu(y) - \psi_r(z')
$$
\n
$$
+ \sum_i \psi(z'_i) \int S_r(z', y) \phi(y) d\mu(y) |
$$
\n
$$
\leq \sum_i \int |S_r(z, y) - S_r(z', y)| |\psi(y) - \psi(z'_i)| \phi(y) d\mu(y)
$$
\n
$$
\leq C ||\psi|| \frac{\epsilon^{\ell} \rho(z, z')^{\ell}}{\epsilon^{\ell} (1 + \rho(x_0, z))^{\ell}} \frac{1}{(1 + \rho(x_0, z))^{1+\ell}}.
$$
\n(4.5)

So (4.4) and (4. 5) imply (4.3).

Now, by Lemma 3. 16, given
$$
\lambda > 0
$$
, for $\psi \in \mathcal{M}(\beta', \gamma)$,
 $|\langle f, \psi \rangle| < |\langle f, \psi, \rangle| + \lambda$ (4. 6)

holds for t small enough. On the other hand, by (4.3) , we have

$$
|\langle f,\psi_i\rangle| < \sum |\psi(z_i^t)| \cdot |\langle f,\int S_i(\cdot,y)\phi(y)d\mu(y)\rangle| + \lambda
$$
 (4.7)

for ϵ small enough. We can assume that $\epsilon < t$. Let $A_{\bullet}^{\epsilon}(z) = \left[S_{\epsilon}(z,y) \notin(y) d \mu(y) \right]$. It is easy to show that there exists a constant C such that $(C[\bm{q}(\sqrt{y})d\mu(\sqrt{y}))^{-1}A_{\bm{k}}^{\bm{s}}(\bm{\cdot})\in\mathscr{M}(x,\bm{t},\bm{\beta},\bm{Y})$ for all $x \in B(z_*, \varepsilon)$. Therefore, we get for every $z \in B(z_*, \varepsilon)$,

l < f,A',) i < C f" (z> fq~(y)dfz(y) < CIf " (y)~(y)dl~(y).

Going back to (4.7), we get

$$
|\langle f,\psi_t\rangle|\leqslant C\sum|\psi(z_t^{\mathfrak{t}})|\int f^{\mathfrak{t}}(z)q(z)d\mu(z)+\lambda
$$

On the other hand, since $\psi \in \mathcal{M}(\beta', \gamma)$, for every $z \in B(z^*_*, \varepsilon)$,

$$
|\psi(z_1^*) - \psi(z)| \leq \|\psi\| \left(\frac{\varepsilon}{1 + \rho(z, x_0)}\right)^p \frac{1}{\left(1 + \rho(z, x_0)\right)^{1 + \gamma}}.
$$

SO,

$$
|\psi(z^{\mathfrak{c}}_k)| \leqslant |\psi(z)| + ||\psi||\varepsilon^{\beta}/(1 + \rho(z,x_0))^{1+\beta+\gamma},
$$

for every $z \in B(z^*_k, \varepsilon)$. Thus

$$
|\langle f, \psi_t \rangle| \leq C \sum_{\mathbf{i}} \int f^*(z) |\psi(z)| \mathbf{g}(z) d\mu(z) + C \|\psi\| \epsilon^{\beta} \sum_{\mathbf{i}} \int f^*(z) \mathbf{g}(z) \frac{d\mu(z)}{(1 + \rho(z, x_0))^{1+\gamma}} + \lambda \leq C \int f^*(z) |\psi(z)| d\mu(z) + C \|\psi\| \epsilon^{\beta} \int f^*(z) / (1 + \rho(z, x_0))^{1+\gamma} d\mu(z) + \lambda.
$$

Since ϵ is small, we obtain

$$
|\langle f,\psi_t\rangle| \leqslant C \int f^*(z) \, |\psi(z)| \, d\mu(z) + \lambda. \tag{4.8}
$$

From (4.6) and (4.8), and taking into account that λ is any positive number, we get

$$
|\langle f,\psi\rangle|\leqslant C\Big|f^{\star}(z)|\psi(z)|d\mu(z),\qquad(4.9)
$$

for any $\psi \in \mathcal{M}(\beta', \gamma)$, $f \in \tilde{H}_{\rho}$, $\beta < \beta', 1 < \rho < \infty$. Because $\mathcal{M}(\beta', \gamma)$ is dense in $L^{p'}(X)$, $\frac{1}{\gamma'}$ + $\frac{1}{\tau} = 1$, so the distribution f can be extended into a continuous linear functional on $L^{r}(X)$. P Thus there exists a unique function $f(z)$ in $L^p(X)$, such that for any $g(z)$ in $L^{p'}(X)$, $\langle f,g \rangle$ $=\int \tilde{f}(z)g(z)d\mu(z)$. Specially, for $\psi \in \mathcal{M}(\beta, \gamma)$, we have $\langle f, \psi \rangle = \int \tilde{f}(z)\psi(z)d\mu(z)$. By Corollary 3.17, we have $|f(z)| \leq C\overline{f}^*(z) = C f^*(z)$, this ends the proof of Theorem (4.2).

From Theorem 4. 1 and Theorem 4. 2, we get that \tilde{H}_r can be identified with L^r for $1 \leq p$ $<\infty$. By the Lemma 3.7 and Theorem 4.2, we can prove the following results as in [4].

Theorem 4. 10 For $1 \leq q < \infty$ and $(1+\beta)^{-1} < p \leq 1$, we have that $L^q \cap \widetilde{H}_q$ is dense in \widetilde{H}_{\bullet} .

Lemma 4. 11 *lf* $f(z) \in L^q(X) \cap \widetilde{H}_r$, $(1+\beta)^{-1} < p \leq 1$, $1 \leq q < \infty$, then with the same *notations used in Lemma 3.7, we have*

$$
(4. 11. i) if mn=\Big[\int \varphi_n(z)d\mu(z)\Big]^{-1}\Big[f(y)\varphi_n(y)d\mu(y), then |mn|\leqslant Ct,
$$

(4.11. ii) *if* $b_n(z) = [f(z) - m_n] \mathfrak{a}_n(z)$, then the distribution induced by $b_n(z)$ coincided *with b. ,*

(4.11. iii) the series $\Sigma_n b_n(z)$ converges for every $z \in X$ and in $L^q(X)$, if $\Sigma_n b_n(z) = b(z)$, *then the distribution induced by b(z) coincided with b,*

(4.11. iv) *let* $g(z) = f(z) - b(z)$, *then*

$$
g(z) = f(z)\chi_{\mathfrak{g}}(z) + \sum m_{\mathfrak{s}} \varphi_{\mathfrak{s}}(z),
$$

$$
|g(z)| \leqslant Ct,
$$

moreover, the distribution induces by $g(z)$ *coincided with g.*

5 Atomic decomposition of \widetilde{H} , and atomic H' space for $(1+\beta)^{-1} < p \leq 1$

Definition 5.1 Let $0<\beta<\theta$ and $(1+\beta)^{-1}<\beta\leq 1$. We say that a function $a(z)$ is a p -

atom, if there exists a ball B such that

(i) supp $a(z) \subset B$, (ii) $\|a\|_{\infty} \le \mu(B)^{-\frac{1}{p}}$, (iii) $\int a(z)d\mu(z) = 0.$

Lemma 5. 2 Let $h(z) \in L^q(X)$, $1 \leqslant q \leqslant \infty$, with support in $B = B(x_0, r)$ and $\int h(z)d\mu(z) = 0$. Then $h \in \tilde{H}$, for $(1+\beta)^{-1} \leq p \leq 1$, and

$$
\|h\|_{B_{\rho}} \leqslant C\mu(B)^{\frac{1}{p}-\frac{1}{q}}\|h\|_{q},
$$

where C does not depend on h(z).

Proof Assume that
$$
\psi \in \mathcal{M}(x,d,\beta,Y)
$$
, $\|\psi\|_{\mathcal{A}(x,d,\beta,Y)} \leq 1$. Let $x \in B(x_0, 2Ar)$, then

$$
|\int h(z)\psi(z)d\mu(z)| \leq \int |h(z)| \frac{d^r}{(d+\rho(x,z))^{1+\gamma}}d\mu(z) \leq CM(h)(x),
$$

SO

$$
h^{\bullet}(x)\leqslant CM(h)(x).
$$

Now considering the case $x \notin B(x_0, 2Ar)$, then $\rho(x, x_0) \ge 2Ar$, for any $z \in B(x_0,r)$, we have

$$
\rho(z, x_0) \leq r \leq \frac{1}{2A} \left[d + \rho(x_0, x) \right], \text{ and}
$$
\n
$$
|\langle h, \psi \rangle| \leq \int |h(z)| |\psi(z) - \psi(x_0)| d\mu(z)
$$
\n
$$
\leq \|h\|_{q} \left(\int_{B} \left(\frac{r^{\beta}}{(d + \rho(x, x_0))^{\beta}} \frac{d^{r}}{(d + \rho(x, x_0))^{1+\gamma}} \right)^{q} d\mu(z) \right)^{\frac{1}{q}}
$$
\n
$$
\leq \|h\|_{q} \mu(B)^{\frac{1}{q}} \frac{r^{\beta}}{\rho(x, x_0)^{1+\beta}}.
$$

(in which $\frac{1}{q'} + \frac{1}{q} = 1$). So,

$$
h^*(x) \leqslant \|h\|_{q}\mu(B)^{\frac{1}{q'}}\frac{r^{\beta}}{\rho(x,x_0)^{1+\beta}}.
$$

Thus, we have

$$
\begin{aligned} \|h\|_{B_p}^p &\le C \int_{B(x_0, 2Ar)} M(h)(x)^p d\mu(x) + \int_{B(x_0, 2Ar)} (\|h\|_{q} \mu(B)^{\frac{1}{q}} \frac{r^{\beta}}{\rho(x, x_0)^{1+\beta}})^p d\mu(x) \\ &\le C\mu(B)^{1-\frac{p}{q}} \|h\|_{q}^p. \end{aligned}
$$

This ends the proof of Lemma 5.2.

By Lemma 5.2, we obtain

Lemma 5.3 Let $a(z)$ be a p-atom, and $(1+\beta)^{-1} < p \leq 1$, then the distribution a on \mathcal{M} (β , γ) induced by a(z) belongs to \tilde{H}_* and

$$
\int a^*(z)^{\mu} d\mu(z) \leqslant C < \infty,
$$

where C is independent of the p-atom.

Theorem 5.4 Let $(1+\beta)^{-1} \leq p \leq 1$. For any sequence $\{a,(z)\}\$ of p-atoms and a sequence $\{ \lambda_i \}$ of numbers satisfying $\sum_i |\lambda_i|' < \infty$, then there exists $f \in \tilde{H}$, such that $f = \sum_i \lambda_i a_i$ and

$$
\int f^*(z)^r d\mu(z) \leqslant C \sum_i |\lambda_i|^r.
$$

Proof For any large positive integers n and m with $n \le m$, by Lemma 5.3 we get

$$
\int (\sum_{i=x}^m \lambda_i a_i)^{\bullet}(z)^{\prime} d\mu(z) \leqslant C \sum_{i=x}^m |\lambda_i|^{\prime}.
$$

Then, by Theorem 2.1, there exists $f \in (M(\beta, \gamma))'$ such that $f = \sum_i \lambda_i a_i$ and $f^*(z) \leqslant \sum_i \lambda_i a_i$ $|\lambda|a^*(z)$. This implies that Theorem 5.4 is true.

In the following, we shall prove that if $f \in \tilde{H}_{\rho}$ then f can be expanded into a series of multiples of p-atoms. In order to do this, we need the following Lemma.

Lemma 5.5 Let $h(z)$ in $L^2(X)$, $|h(z)| \leq 1$. Assume that for some $(1+\beta)^{-1} \leq q \leq 1$, h $\mathcal{F}_1 \in \widetilde{H}_q$. Then for every p with $q \leq p \leq 1$, there exist a sequence of p-atoms $\{a_k(z)\}\$, and a nu*merical sequence* $\{\lambda_k\}$ *such that* $h = \sum_{k} \lambda_k a_k$, and

$$
(\sum |\lambda_k|^{\,p})^{\frac{1}{p}} \leqslant C \|h\|_{B_{p}}.
$$

Theorem 5.6 For $0 \leq \beta \leq \theta$, $(1+\beta)^{-1} \leq \beta \leq 1$. If $f \in \tilde{H}_*$, then there exist a sequence of p-atoms $\{a_n\}$ and a numerical sequence $\{\lambda_n\}$ such that $f = \sum_i \lambda_i a_n$, and there exist two constants *C' and C" independent of f such that*

$$
C' \Vert f \Vert_{B_p} \leqslant \left(\sum_{k} |\lambda_k|^p \right)^{\frac{1}{p}} \leqslant C'' \Vert f \Vert_{B_p}.
$$

Theorem 5.7 For $0 < \beta < \theta, \gamma > 0$, $(1+\beta)^{-1} < \beta \leq 1, \mathcal{M}_0(\beta, \gamma)$ is dense in \widetilde{H}_\bullet .

The proofs of Lemma 5.5, Theorem 5.6 and Theorem 5. 7 are similar to the proofs in $[4]$, we omit the details.

In the following, we recall the basic theory of atomic H' spaces defined in [1]. Let $0<\beta$ $<\infty$, lip(β) denote the set of all functions $\psi(z)$ defined on X such that there exists a constant C satisfying

$$
|\psi(x)-\psi(y)|\leqslant C\rho(x,y)^{\beta},
$$

for every x and y in X. The least constant C for which this condition holds is denoted by $\|\psi\|_{\text{Lip}(\beta)}$. It is easy to prove that lip(β) with this norm $\|\cdot\|_{\text{Lip}(\beta)}$ is a Banach space. When $\beta=0$, lip(0) is defined as the Banach space of all function ψ in BMO such that for every ball B and ε >0 there exsts a bounded continuous function φ satisfying

$$
\int_{B} |\psi(z) - \varphi(z)| d\mu(z) < \varepsilon,
$$

endowed with the norm $\|\cdot\|_{\text{BMO}}$.

Let $a(z)$ be a p-atom and $\psi(z)$ in $\text{lip}(\frac{1}{p}-1)$. Then $\langle a,\psi\rangle = \int a(z)\psi(z)d\mu(z)$ defined a linear functional on $lip(-1)$, and P

$$
|\langle a,\psi\rangle| \leqslant C \|\psi\|_{\text{lip}(\frac{1}{\lambda}-1)}.\tag{5.8}
$$

where C is independent of $\psi(z)$ and $a(z)$. Moreover, for every sequence of p-atoms $\{a_i(z)\}$ and every numerical sequence $\{\lambda_i\}$, we have

$$
|\sum_i \lambda \langle a_i, \phi \rangle| \leqslant C \sum_i |\lambda_i| \|\phi\|_{\text{lip}(\frac{1}{p}-1)}.
$$

This shows that

$$
\langle f, \psi \rangle = \sum \lambda \langle a, \psi \rangle \tag{5.9}
$$

is a bounded linear functional on lip($\frac{1}{b} - 1$). The norm of f as an element of the dual space of lip($\frac{1}{\phi}$ -1) is bounded by $C(\sum_i |\lambda_i|^2)^{\frac{1}{p}}$.

We define H^p as the linear space of all bounded linear fnctionals f on lip($\frac{1}{p} - 1$) which can be represented as (5.9) where $\{a_i\}$ is a sequence of p-atoms and $\{\lambda\}$ is a numerical sequence such that $\sum_{i} |\lambda_i|^r < \infty$. For $f \in H^s$, we define

$$
||f||_{H'} = \inf \{ \sum_i |\lambda_i|^s \}^{\frac{1}{s}},
$$

where the infimum is taken over all possible representation of f of the form (5.9). Using the methed in $[4]$, we can prove

Theorem 5.10 *Let* $0 < \beta < \theta$ and $(1 + \beta)^{-1} < \beta \leq 1$. For every f in H^t, we denote by \tilde{f} *the restriction of f to* $\mathcal{M}(\beta, \gamma)$ *. Then* $\mathcal{F}(f) = \overline{f}$ defines an injective linear transformation *from H^t* onto \tilde{H}_p . Moreover, there exist two positive numbers C_1 and C_2 such that

$$
C_1||f||_{H'} \leq ||f||_{R_2} \leq C_2||f||_{H'}
$$

holds for every f in H'.

Remark 5. 11 The theory above is studied for spaces of homogeneous type X with infinite measure. In fact,.we can prove that the all results in this paper is true for the ease that $\mu(X)$ \lt ∞ . We omit the details.

Remark 5.12 From the Theorem 5.10, we can see that for fixed $p(1+\theta)^{-1} \leq p \leq 1$, H_t do not depend on the choice of β and γ which define the basic test function space $\mathcal{M}(\beta, Y)$, as long as β and γ satisfy $0 < \beta < \beta$, $\gamma > 0$ and $(1+\beta)^{-1} < \rho$.

Remark 5.13 From the Theorem 5.10, the space \hat{H}_e can be identified with the atomic H^s space, so the theory above essentially give a maximal function characterization of atomic H^s on spaces of homogeneous type.

Remark 5.14 For the case $X = R^*$, Hardy space H^* have definition for all $0 \leq p \leq 1$. In order to study the similiar characterization of H^* for R^* , we need some new test function spaces. We will discuss these details elsewhere.

Acknowlegment The author thanks Professor D. G. Deng for a lot of suggestions and guidance.

References

- [1] Coifman. R. R. and Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83(1977), 569-645.
- [2] Han, Y.S. and Sawyer, E.T., Littlewood-Paley theory on spaces of homogeneous type and classical function spaces, Mem. Amer. Math. Soc. $110(1994)$, $1-136$.
- [3] Macias, R.A. and Segovia, C., Lipschitz function on spaces of homogeneous type, Adv. Math. 33(1979). 257-270.
- [4] Macias, R.A. and Segovia, C. , A decomposition into atoms of distribution on spaces of homogeneous type, Adv. Math.. 33(1979), 271-309.

Department of Mathematics Zhongshan University Guangzhou, 510275 P. R. China.