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Abstract 

A new maximal function is introduced in the dual spaces o f  test function spaces on spaces 

o f  homogeneous type. Using this maximal function, we get new characterization o f  atomic H '  

spaces. 

1 Introduction 

The purpose of this paper is to give a new maximal function characterization for H t spaces 

defined on spaces of homogeneous type. With this aim, we first define a Hardy-type spaces ~tp 

in the dual space of the test function spaces . .~(f l ,7) .  Then we prove that every element in 

~ have a decomposition in series of p-atoms, conversely, each distribution on ...g(fl, 7) 

which can be denoted by a series of p-atoms with coefficients satisfy some conditions belongs to 

~p.  Finally, we show that the atom H v spaces, as defined in r13, can be identified wi th / : / t .  

The results in this paper are generalization of theory of Macia and Segovia c~ 

We begin by recalling spaces of homogeneous type. Let X be a set. A quasi-metric d on 

X is a function d(x ,y) :X•  .satisfying: 

(1. I. i) d(x,y)-----O if and only if x = y ,  

(1.1.  ii) d ( x , y ) ~ - d ( y , x )  for all x , y E X ,  

(1 .1 .  iii) There exists a constant A < o o  such that for all x , y  and z in X ,  

d ( x , y )  ~. A [ d ( x , z )  + d(z ,y ) ] .  (1 .2)  

Any quasi-metric defines a topology, for which the balls B ( x , r ) =  {yE X : d ( y , x ) < r }  form a 

base. However,  the balls themselves need not to be open when A >  1. 

* This work is supported by NSF. 
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Definition 1.3 ~I~ A space of homogeneous type ( X , d , / a )  is a set X together with a 

quasi-metric d and a nonnegstive measur/a on X such t h a t / a ( B ( x , r ) ) < o o  for all x E  X,  and 

all r > 0 ,  and there exists a constant A ' < o o  such that for all x E X  and all r > 0  

#(B(x ,2r)  ) ~ A' l~(B(x,r) ). (1 .4)  

In [3]  Macia and Segovia have shown that one can replace d by another quasi-metric p such 

that there exist c > 0  and some 6 , 0 < 0 < 1  satisfying 

p(x ,y)  -.~ in f ( / J (B) .B is a ball containing x and y} (1 .5)  

ip(x ,y)  - p(x ' ,  y) ! ~ C , ( x , x ' ) ' [p ( x , y )  

+ p(x' , y ) ] l - ~  for all x ,x '  and y E X. (1 .6 )  

In this paper we assume that p ( ( x / )  = 0  for all x E  X and , u (X )=  +o o .  For the case p ( X ) <  

oo, see the Remark (5 .11)  below. 

Now we introduce a class of test functions on X. 

Definition 1.7 Fix two exponents 0 < f l < 6 ,  see ['2], and ) '>0 .  A function ~b defined on 

X is said to be a test function of type (xo,d,[~,)') , xoEX and d > 0 ,  if ~b satisfies the following 

conditions: 
d 7 

(i) I~h(x)[~C 
(d+p(x ,xo)  )l+ ~ ; 

~ /+p (x ,xo )  (d+p(x ,xo) )  l§ 

for p ( x , y ) ~ l [ d + p ( x , z o ) ] .  

If ~b is a test function of type (xo,d,fl,) ') we write ~bE./ft'(xo,d,fl,~') and the norm of tb 

in ...s is defined by 

II ~ II ,,(~o.~.p.,) = inf(C:( i )  and (ii) hold/. 

For fixed x 0 E X ,  we denote ~ / ' ( f i , ) ' ) = - - ~ ( x 0 , 1  ,P , ) ' ) .  It is easy to check that . . ~ (~ , ) ' )  is a 

Banach space with respect to the norm in .~"(f l , ) ' ) .  The dual sapce ( ~ ' ( f l , ? ' ) ) '  consists of all 

linear function l from ..~r(fl ,) ')  to ~ with the property that there exists a finite constant C 

such that for all ~bE ~ " ( ~ , ~ ' ) ,  {l(~b)I~<C II ~b II ~,,p.r). We denote the natural pairing of ele- 

ments f E  ( ~ ' ( , 8 , y ) ) '  and ~ b E ~ ( f l , Y )  by (f,~b). It is also easy to see that ~ ( x , , d , f l , ) ' )  

=-.~"(fl,~') with equivalent norms for :rl E X and d>O.  Thus,  (f,~b) is well defined for all f 

E ( ~ r ( f l , ) , ) ) ,  and t bE~ ' (x ,d , f l , ) ' )  with x E X  and d~>0. 

For the convenience, sometime, we call a linear functional on ..-~'(fl,F) to be a distribu- 

tion. Given a function f ( x )  in Lq(X,dl  ~) , l~q~.~oo,  clearly, 

(f,~b) = I f(xl tb(x)dl~(x)  

defines a linear functional on ~ ( ( f i , ) ' ) ,  we shall say that f is a distribution induced by the 

function f (x). 

�9 /Ke0(x,d,/9,;r = { t b ~ ' ( x , d , f l , ) ' )  : ftb(z)dl~(Z) = Denote 0}. 

For f E  ( ~ ( f l , ) ' ) ) '  ,O ,<f l<8 , ) '>O,  we define the maximal function f "  (x)  of f as 
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f "  (x) =- sup{ [ (f,~b) I:for some d > O, ~b E ~ r ( x , d , , 8 , ) ' )  and 

For ( l + f l ) - ~ < p ' < o o ,  we define the maximal function spaces/:J'p as 

/-~, = { f E  jK~(f l , ) ' ) ) ' : f"  E L ' (X)} .  

If f E / ~ , ,  we define J] f II 'L = II f "  ]l p. 

II r II-~,,.,.a.,, ~< 1}. 

2 The completeness o f /~ ,  

Obviously, (~q'p, H " [[ ~,) is a quasi-metric space for ( l + f l ) - X < p < l ,  and metric 

space for l~<p<oo.  In the following, we will show that / -~  with the metric II " If n, is com- 

plete, so (/71 t, I] " II n,)  is a Banach space when l~<p<oo.  

Theorem 2. 1 (~E1'p, [[ ~ II R,) is complete, i.e. , for any Cauchy sequence {f.} /s/-~', 

there exists f in 1~ such thai 

(i) {f,} converges to f in (./R'(fl,~')) ' ,  

(if) JJ f . - f  I[ R -~0 when n-~oo. p 

In ordere to prove the Theorem (2. 1), we need the following Lemma. 

L e m m a 2 . 2  There exists do> O, M ~  l , such that for any tbE ~ (xo, l , fl, Y) , limb 

.~o.~.a.T~ 1, and any yo E B(xo,do), we have ~ E.~g(yo, 1 ,fl, Y). tl 

Proof Take do= (2C) -'~, where C and 0 are constants in (1.6) .  Let Jar { x E X :  

p(xo,x)<~l ,p(yo,x)<~l }. When x E  ~e' ,we have that 

lP(xo ,x) -- P(yo,z) l <~ C,(xo,yo)'[P(Xo ,x) W P(yo,x) ] 1-8 ~ 2 -8, 

SO, 

and 

When x ~ ~ ' ,  

SO, 

P(yo,x) ~ p(Xo,X) + 2-* 

1 1 
(1 + p(Zo,X)) ' ~ ' ~  ((1 -- 2 -0  + p(yo,x))  '+" 

1 1 
(1 -- 2- ' )  1+' (1 + P(Xo,X)) 1+'" 

1 ]1--$ 
Ip(xo,z)  - p ( y o , x ) [ 4  ~- [p(xo ,z )  + P(yo,x)  

1 3 1 [p(xo,x) + p(yo,x)-],-~p(yo,x) ~ ~ p ( x o , x ) ,  <<.y 

1 9 
(1 t p (xo ,x) )  l+' ~< (1 + p(yo,x))  l+y" 

1 
We take Ml=ma x{  (1_2_,)1+r ,9},  then for any yoEB(xo,do) and any ~bE-~(Xo,1 ,fl,~'), 

li ~b JI ~ , , . o . l . r , ~ l ,  we have 
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M| 
I r I ~< (1 + p(yo,x))  1+'' 

any z a n y  y i n  X,p(x ,y) '~ .~-A[l+p(yo,x)] .  If p ( x , y ) < ~ A [ l + p ( x o , x )  ], For then 

I~b(z) -- ~b (y ) I~  (1 p(z , y )  p 1 
+ p(xo,x) ) (1 + p(Xo,X)) l+" 

MZ§ ( p(x,  y) )p 1 
<~ t "i  + p ( y o , X )  (1 + p ( y 0 , x ) )  l+r" 

If p ( x , Y ) ~  21[ l  + p(xo,x) ], then p(xo ,x )~p(  yo,x) , and p( y o , x ) ~ A [ p (  yo, y) + 

1 1 1 1  +P(yo , z ) ] ~ A [ p ( y o , y )  + 13. Thus p ( y , x ) ] ~ A , ( y o  ,y) + - ~ 1  +p(yo , z ) ] ,  so 

I~b(z)--~b(y) 1 ~  ]~b(z) I + t~b(y) l 

1 1 
M l ( ( ]  + p(yo,x))l+7 + (1 + P(Yo,Y)) f~)  

<.~ 2AM~(M~ + (2A)l+~Ml)( p(x ,y )  )p 1 
1 + p(yo,X) (1 + p(yo,x))  l+r" 

Let M = 2 A M I  (Mr + (2A)l+rM~), then the result of Lemma is true. We complete the proof 

of Lemma (2 .2) .  

Now, we prove Theorem 2.1. For any ~bE..~r 1t ~b 11 .r and any x E  

B(xo,do), by Lemma ( 2 . 2 ) ,  

t<f. - f . ,~b) I < ~ M l ( f .  - f . . , ~ )  I <~M(f ,  - f . ) ' ( x ) .  

Then 

11L - Jr- Jt ,_e,p.,~,, = sup l ( f ,  - f . ,~b)[  ~< M ( f .  - f . ) "  ( z ) ,  

for xEB(xo,do) .  Taking the p-power and integrating on B(xo,do), we obtain 
1 

l 

<~ M,u(B(xo,do) )-~ I[ f ,  -- f .  I1 n,. 

This shows that {f,.} is a Cauchy sequence in (~-~'(fl,?')) ' ,  therefore, there exists f E  

( . .~ ' ( f l ,7)) '  such that f is the limit of the sequence {f.}.~_j. This proves (i). The proof of 

(ii) is the same as in [4]  and omited here. We complete the proof of Theorem 2.2. 

3 Calderon-Zygmund type lemma 

Lemma 3. 1 (covering lemma c']) Let 0 be an open set o f  finite measure strictly conlained 

in X and d ( x ) = m f { p ( x ,  y ) : y ~  (2). Given C ~ I  , let r ( x ) =  (2AC)- ld(x) .  Then there ex- 

its a natural number M,  which depends on C, and a sequence {x.} such that, denoting r(x . )  

by r., we have 
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(3.2. i) the balls B(x , ,  (4A)-tr , )  are pairwise disjoint, 

(3.2. ii) U . B ( x . , r . ) = D ,  

(3.2. iii) for every n, B(x . ,Cr , )  CJ], 

(3.2. iv) for every n, x E  B(x . ,Cr . )  implies that Cr .~d(x )~3AZCr . ,  

(3.2. v) for every n, there exists y , ~ O  such that p (x , , y . )<3ACr . ,  

(3.2. vi) for every n, the number of  balls B(x~,Cr~) whose intersections with B(x , ,Cr . )  

are non-empty is at most M. 

Lemma 3.3 (partition of the unity) Let 0 be an open set o f  finite measure strictly con- 

tained m X. Consider the sequence {x.} and {r.} given by Lemmo 3. 1 for C=SA. Then, there 

exists a sequence {~(x) } of  non-negative functions satisfying 

(3.4. i) supp q~CB(x. ,2r . ) ,  

4. ii) q~(x)~  1 ,  for x E B ( x . , r , ) ,  (3. 

(3.4. iii) there exists C such that for every n, ~E. / f ( (x , , r , ,~ ,7")  and It ~ II ~Cr . ,  

(3.4. iv) ~-].q~.(x) =Xn(x). 

Proof Let ~/(s) he an infinitely differentiable function on [0,oo) such that 0 ~ / ( s ) ~ l ,  

r/(s) =- 1 if 0~--~s~l and ~(s)=O for s~2 .  For every n, we define 

r  = q(p (x , x . ) ) .  

These functions ~b. are non-negative, with supp ~b.CB(x,, 2r,) and by (3.2. [i) and (3.2. vi), 

satisfy 

1 ~ Z~b, (x)  ~ M,  for every x E O. 

It is easy to prove that ~b�9 E ~ t ' (x , ,  r . ,  fl, ~') and I] Sb. II~c,.,:.p.7) ~Cr,  where C is independent of 

n .  

We define ~ ( x )  by ~ ( x ) = 0  if x ~ n  and ~o.(x) = r if xEO.  Then 

{~(x)  } satisfies Lemma 3. 3. 

Lemma 3. 5 Let {~(x)  } be the partition o f  unity in Lemma 3.3 associated to same open 

set O, then for every n, the linear mapping 

is continuous from ~:'((~,~') to ~ 'o ( fl , ~ ) . 

Proof Considering that .~,'(fl,7') =~" (x ,d~  with the equivalent norms for all xE  

X and d ~ 0 ,  we can easily prove the Lemma for .~(x . , r . , /~ ,Y) .  The details are omited. 

Lemma 3. 6 E'~ Let 0 < ~ ,  1 <q (1 + fl) and M a po~ive integer. There exists a constant 

Cp,~,u such that given any sequence o f  points {x.} and any ~equence o f  positive number {r.}, sat- 

isfymg the condition that no point in X belongs to more than M balls B ( x . , r . ) ,  then 

S[ . ~  ( r. t " ' "  r. + O(x.,z) J d~,(z) ~ C~.,,,,t,(U.B(x.,r.) ). 
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Lemma 3. 7(Calderon-Zygmund type Lemma) Suppose that f E / : ] , ,  (1 + f l ) - ~ < p <  

oo. Let t>O and 13={xE X : f "  ( x ) > t } .  This set is open set and/~(/'J)<cx~. Let {~,(x)} be 

the partition o f  the unity bt [.emma 3.3 associated to 0 and let { S. } be the linear transformations 

defined in Lemma 3.5. I f we define the distribution b. by 

<b.,r = ( f , S , ( r  for r ~ ,,,r (3.8) 

then 

and 

b; (x) ~ Ct( r. }'+P r . +  p(x . , x )  Xr .,a, > (x) + C f ' ( x ) Z B c  ,..`., ) (x) (3.9) 

f b" (x ) 'dp(x )  ~ Cfs~, ,,a, >f" (x)'dl~(X). (3.10) 
�9 i 

Moreover, the series ~ b. co~2verges b, (~( ( f l ,  ~') )' to a distribution b satisfying 

)" b" (x) <~ Ct r, �9 r, + p(x , ,x )  + cf" (X)Za(X), (3. 11) 

I 
The distribution g = - f - b  satisfies 

r. + p(x . , x )  + Cf~  ( x ) ~ ( x ) .  (3.13) 

Proof  First, we prove ca. 9). Let x ~ B ( x . , 4 A r . ) .  We shall show that there exists a 

constant C independent of n such that for any OE~,~'(x,d,fl ,?') ,  II~L,,,,,p,,~<l, we have 

S . ( ~ ) E , ~ ' (  y . ,r . , f l , ) ' )  and 

IIs.(r r. )'+P, (3.14) 
. r .  + p ( x . , x )  

where y, is the point in J'/given by (3.2. v). 

From supp S,(~b)CB(x, ,2r . ) ,  we can assume z E B ( x , , 2 r . ) .  Then it follows that 

. 1 < ~ A [ d + p ( x . , x ) ] ,  have p(z ,x.) < . . r . ~  ~ p ( z . , x  ) we 

IS,(r  I<~ ~ , (z) I r  - ~(z . )  I 

<~ d + p(x . , x )  (d + p (x . , x ) )  l+' + C (d~+ p (x . , x ) )  l§ 

q <~c 
p ( z . , x )  ~+p" 

For z , z ' E  X , p ( z , z ' ) ~ A ~ r . + p ( y . , z ) ] .  Without loss of generality, we assume that 

B(x. ,2r , ) .  

I S . ( r  S . ( r  I ~< ~, .(za)It(z)  - r  [ 
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= I + l l .  

Notice that r . + p ( x , , x ) ~ r . q - A [ p ( x , , z ) + p ( x , z ) ] ~ C p ( x , z ) ,  we have 

( p ( z , z ' )  ) '  d' p(z,z/) ~ 
I ~ d + p(x ,z )  (d + p(x , z ) )  l+r ~ C (r. + p(x . , x ) )  a+p" 

p(z ,z' ) ~ - A  ~r. + p(x~ ,z) ], If then 

I I ~  Cr. r. + p(x. ,z)  (r. + p(x . ,z)  ) ~§ (r~ + O(x.,x) ) I+p 

<~ C P(z'z')P 
- - - i + # "  (r. + p(x . ,x)  ) 

I[ O ( z , z ' ) > 2 ~ [ r . + p ( x . , z ) ] )  r" then 
2 2A ' 

l I ~ C r .  (r. + p(x . , z ) )  t§ + (r. + p(x . , z ' ) )  l§ (r. + p(x . , x ) )  l+p 

<~ C P(z'z')P 
(r. + p(x . ,x )  ) ~+r 

For every n, by (3 .2 .  v),  y. EB(x . ,1SA~r . ) ,  then p ( y . , z ) ~ A F p ( x . , y . ) + p ( x . , z ) ] ~  

17A3r.. We have 

r. q- -P-(x.,x) (r. + p(y. ,z)  ) l+r' 

and when p ( z , z ' ) ~ [ r . + p ( y . , z ) ] ,  

IS.(O) (z) - S.(~)  (z ')  [ 

)-( )' r. p(z ,z ' )  r. < ~  
r. + p(x . ,x)  r. + p(y. ,z)  (r. + p(y . ,z) )  1+'" 

This proves (3 .14) .  By ( 3 . 8 ) ,  we get that 

b; (x) <~ C f"  (y.) r. + p(x . ,x )  ~ Ct(r,/r. + p(x.,x))l+n. 

Let x E  B(x. ,4Ar,)  and ~#E r ]l~bll,~,.~,p.r~<l. Assume that d>~r., by the same 

way as above, we can prove that S , ( r  and IIS.(#)II~,.,.#,,~<~C. We as- 

sume that d<r . ,  then 

S , ( r  (z) = ~ . (z)#(z)  - ~ (z ) [ I~ . (y )d l~ (y ) ] - a fC~(y )g , (y )d# (y )  = h~ (z) - hz(z). 

Using the same way above we can prove that h~ ~ r  d ,  fl, Y), h~ ~ ~ ( x ,  r . ,  fl, Y) and 

IIh~ [I.,~,.~.t.r~<C, Ilh, II.,~<..,.~.~)<~C, where C is independent of n and #. Then we have 

I<b.,r ~< l<f,S.(r ~< ] ( f ,h,) [  + !(f,h,>l ~ C f  ~ (x). 
We complete the proof of (3 .9) .  

Taking the p-th power of (3. 9) and integrating on X,  by Lemma 3.6,  we get 
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(I+B)p 

Ib: c,,f ( r. ) 
JB'(, .o4, ) i r .  -}- p ( x . , x )  I 

+ Cfs(..,~,. )f" (x) 'dl l (x)  

~.~ CtPf~(B(x,, 4Ar.) ) -t- cF f"  (x)*dtt(z). 
d B(x .4Arj) 

Taking into account that B(x . ,4Ar . )Cl~,  we get 

B(x .IAr ) 

This proves (3.10). 

Next, let us study the convergence ol the series of ~.b.. From Lemma (3. I ) ,  (3. 10) and 

the fact that f "  (x) is in L'(X,dl~) ,  we get that the partial sum of ~'b. is a Cauchy sequence, 

by Theorem (2. 1), hSb. converges in ( . /s  to a distribution b. Estimates (3.11) and 

(3. 12) for b" (x) are obtained by adding up the estimates (3 .9 ) ,  (3. 10) and Lemma 3.6. 

It remains to prove the inequality (3.13). Assume that :rE.Q, then there exists k such 

that x E  B(x~,r ,) .  By (3. 2. vi) we know that the set J of all integers n such that B ( z . ,  

4At.) 17 B (x,, 2At, ) ~= ~ has at most M elements. Moreover, by (3. 2. iv), for every n E J , r .  

satisfies (3AZ)-~r,~r.~3AZr~. Let r and II~ll.,.c..,,p.,>~<l. If d<~r,, then 

(g,~b)= <f,th) -- Z<b. , tb> 
ii 

= <f,~b)-- Z < / , S . ( r  Z<b.,~b> 
. E J  ~ d  

= 

where 

3 = ( I -  ~qg,)~, 
~EJ 

~,(z) = q~.(z)[Ito.(y)dp(y)]-'I~b(y)~(y)dll(y),  [or n E J. 

Notice that ~ ( z ) = 0  for z 6 B ( x , , 2 A r D ,  it is easy to prove that ~E.~ ' (y , ,d , f l ,? ' )  and ~(~ 

.~ ' (y , , r , ,  p, r) for n E .I, II[ll ~,,,,.,.B.,<~C, ll~,ll~r .,.p.,,~<C, where C is independent of n,k 

and ~b. When n(~J, we have x ~ B ( x . , 4 A r . ) ,  using the proof of (3 .9) ,  we have 

r. + p(x . , x )  " 

So 

I<g ,~>l~  I<f ,~) l  + ]~lr  ~--]t<b.,~>l 
~EJ aEJ  

I+B 

. E ~  . _ _ x . , x _  

l + J  

r. + p (x . , z )  
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If d>r, ,  then 

l<g,~>l -- I<f,~>l + ~-]l<b.,r + Z l<b.,~>l, 
~EJ ~(id 

It is easy to prove that the ~ft'(y~,d,fl,7) and []lbj[ a(yr~.rT~C0 we obtain, 

I<f , r  [ ~  Cf" (y,) <C,  ~ Ct( r. )'+' 
r. + p(x.,x) ' 

and 

E t<b.,~b)[ <.~ C E b :  (y,) 
aEJ xEJ 

1+$ 

r. + p(x.,y,) 

I+B 

r. + p(x. ,x) 

On the other hand 
l+P  

.~j r. + p(x.,x) 

Therefore we have shown that if x E D ,  then (3. 13) holds. 

If" x ~ .Q, then 

I(g,~)l~< }<f,r + I<b,r 
1+~ 

f"  (x) + b" (x) ~ f" (x) + Ct~ .  r. 
r, + 

This completes the proof of Lemma 3.7. 

Lemma 3. 15 Let ~(s) be an infinitely differentiable function defined on [-0,oo) such 

that 0 ~ r / ( s ) ~ l , r / ( s ) =  1 for 0 ~ s ~ l  and T/(s) = 0  for s>~2. For t>O, x , y E X ,  we deJ'me 

S,(x,y)  = [IV(p(x,z)/t)dlJ(Z)J-z~(p(x,y)/t). 

Then we have 

(i) supp S , (x , y )C  { (x ,y)  :p(x ,y)~2t} ,  
t r 

(ii) O~S,(x, y ) ~ C  ( t+p(x ,y)  )l+ ,, 

( ) i ' t' (iii) [S , (x ,y ) -S , (x '  , y ) !+ [S,(y,x)-S,(y,x')I<~.C t+p(x ,y)]  ( t+p(x ,y) )  ~+'' 

for all x ,x '  and yE X,p(x ,x '  )~2~[ t+p(x , y ) ] ,  

(iv, fS,( ,y)da(y) = 1, fS,(x,y)da( ) <. C. 
Lemma 3. 16 Let {S,(x, y) },>o be the family of  functiom as/n Lemma 3.15. Then for 

any O < f f < f l ,  and for r 

r = jS,(z,y)C,(y)d~,(y) 

converges to r in ~ft'(ff ,~) as t goes to zero. 
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Corollary 3. 17 Let k(z) belong to the closure o f  ~r in L t ( X ) ,  l~<p<oo .  Then, 

i f  

h,(z) = IS , ( z , y ) k ( y )dp (y ) ,  

where {S,(z, y) },>o as t'n Lemma 3.15,  we have 

l i m l l k , -  kll, = 0 ,  
t ~ O  

moreover, [k(z)I<~Ck" (z) for almost every where on zE X. 

The proofs of Lemma 3. 15, Lemma 3.16 and Corollary 3. 17 are simple computations 

and omited here. 

4 Some properties of H, 

In the following, we assume that for all r / > 0 , ~ ( X )  is dense in L*(X) ,  so C~o(X) is 

dense in LP(X) for l~<p<oo .  Furthermore for all 0 < f l < 6 , ) ' > 0 ,  --g(fl ,) ' )  is dense in 

LP(X),  l<~p<oo, see ['2-]. 

Theorem 4.1 For any f ( z )  in L t ( X ) ,  l < p < o o ,  the dstribution f induced by f ( z )  in 

~p and there exists a constant C independent o f  f (z) such that 

Ilfll~, ~< Cllfllr 

Proof For xE X,~E-CC(z,d,fl,r), ]l~ll,,~x.~.p.,,~<l, we have 

I ( f , ~ ) l  = Iff(z)~b(z)dp(z)[ 

f (d + d' i f ( z )  { p(x,z))~+;,dp(z) ~ C M ( f ) ( x ) ,  

where M is the Hardy-Littlewood maximal function. So f "  ( x ) ~ C M ( f ) ( x ) ,  and [If 

~Cl lM( f ) i l e~cUf l l , ,  for l < p < o o .  

Theorem 4. 2 I f  a distribution f E I-~ for l < p<oo,  then there exists a function jr(z) 

such that [ j r ( z ) t ~ C f  ~ (z) and 

(f,th) = fjr(z)~h(z)dp(z) 

for  every # E  ~'g(B,) ' ) .  

Proof For r  let {~(z)}  be a partition of the unity for X such that supp ~ ( z ) ( Z  

B(z'~,E) and for any give n zE X , ~ ( z ) ~ 0  holds for no more than N values of h. If 

{S,(z,y) },>o is the family of functions in Lemma 3.15,  then when t is small enough, for the 

~4g(fl ~ , 7 ) , ~ > f l ,  we have 

~b,(z) = ,(z,y)~b(y)dp(y) : zj , (z ,y)  y )dp (y ) ,  (4 .3)  

where the limit is taken in ~,g(ff  ,7). 
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For zEX,  let O < t < ( 2 A )  -~  , w e  have 

I r  ~,,r l 
k 

2 f  ' (1 + e' 
<~ C S,(z,y)g(y) [[r  p(xo,z,j)),+~,+r 

~< C[[r + p(xo,z))14g+" <~ C[[~[[~'/(1 + p(xo,z)) ~+r. (4.4) 

The last inequality comes from the fact that l'kp(xo,z)<~l+AEp(xo,z'~)-bp(z'~,z)]<~l+ 

AEp(Zo ,z~) +Ct]<~C[1 + ;(Zo, zl) 3. 

For z , z 'EX,  and p(z,z')<~2~[l+p(xo,Z)'], we have 
m 

IO,(z)- ~(z,) S,(z,y)~(y)dlu(y) - ~,(z') 
k 

"4- E~b(zD fS,(z ' ,y)~(y)dp(y) [ 
t 

~ f ls,(.,y) - s , ( ~ ' , y )  l lC,( y )  - r Id (y )d /~(y )  <~ 

rt p(z,z') v 1 
~< C-:llr tp(1 + p(Xo,Z))" 0 + p ( z o , z ) )  '+" (4 .5 )  

So (4.4) and (4. 5) imply (4.3). 

Now, by Lemma 3.16, given A>0, for ~bE./~(fl' ,~'), 

I ( f , r  < l<f,r + a (4.6) 

holds for t small enough. On the other hand, by (4.3),  we have 

t~(z~)[ �9 [(f  , IS,( ' ,y)~(y)dp(y))[  + ,1 (4.7) I<f.r I Z < 

small enough. We can assume that E<t. Let A~(z) = IS,(z,y)~(y)dtt(y).  It is easy to 
I 

for 

show that there exists a constant C such that (Cf~(y)d.( y) )-'A;(. 
I 

) E ~(x , t , f l , Y )  for all 

xE B(z'~,r Therefore, we get for every zE B(z'~,e), 

l < f ,A',) i < C f" (z> fq~( y)dfz(y) < CIf  " ( y)~(y)dl~( y). 

Going back to (4.7) ,  we get 

1 <f,~b,) t ~ C E Ir f "  (z)~(=)d/~(z) + ~. 

On the other hand, since ~E ~"(fl '  ,~'), for every zEB(z'~,{), 

( * )* 
I~(zl)  - O(z) l ~< 11011 ] + a~Z,Zo) (t  + p (~ ,x~  ~+*" 

SO, 

I~(z:)l ~< l~(z)l-4-II~ll~/(1 + p(Z,Xo)) ]+~+', 
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for every zEB(z~,e) .  Thus 

d.<=> 
+ (71i~lld f"  (z)~(z)  (1 + ?(z ,z0))  '+' + ,l 

C f f  " <z)lib(z)Idlxfz) + CllibildSf" (z)/(1 + ?(z,.r.o) ) '+ 'd~(z) + X. ~< 

Since r is small, we obtain 

C f f "  (z)l ib(z)Id/~(z) + L (4 .8)  I ( f , i b , )  I ~< 

From (4.6)  and ( 4 . 8 ) ,  and taking into account that ,1 is any positive number, we get 

I (f,~b) I ~< C f f "  (z) l ib(z)Id/x(z) ,  (4. 9) 

for any ibE ~ ( f f  ,7) , f E  ~ t , / 7 , ( f l ' ,  l < p < o o .  Because . .~(fl '  ,7) is dense in L r (X) , ~  + 

1 = 1, so the distribution f can be extended into a continuous linear functional on L t, (X) .  
P 

Thus there exists a unique function ~(z)  in L t ( X ) ,  such that for any g(z )  in L ~ ( X ) ,  ( f , g )  

= ~'f(z)g<z)d/L<z). Specially, for ibE ~(n,r), we have (f,ib) = JZ(z)s~<z)d/a(z). By 

I 

Corollary 3.17,  we have IT(z) I ~ C j  r" ( z ) = C f "  ( z ) ,  this ends the proof of Theorem (4 .2) .  

From Theorem 4.1 and Theorem 4.2 ,  we get that/~'t  can be identified with L p for 1 < p  

<oo .  By the Lemma 3.7 and Theorem 4.2 ,  we can prove the following results as in ['4]. 

Theorem 4. 10 For 1 ~ q <  o~ and (1 + fl)-  ~ < p ~  1, we have that L q M Ht  is dense in 

~ .  

Lemma 4. 11 l f  f ( z ) E L q ( X ) N ~ , ( l + [ 3 ) - ~ < p ~ l , l ~ q < ~ ,  then with the same 

notations used in Lemma 3.7, we have 

(4. l l . i )  i f  m , = [  [9.(z)dt~(z)]-ilf(y)9.(y)dp(y),then Im.I Ct, 

(4.11.  iV) i f  b , ( z ) =  I f ( z )  - - m . 3 g ( z ) ,  then the distribution induced by b.(z)  coincided 

with b. , 

(4.11. Vii) the series ~. b.(z) converges for every zE  X aml in L t (X  ) , i f  2E.b.(z)=b(z) , 

then the distribution induced by b(z ) coincided with b, 

(4.11. iv) let g (z )  = f ( z )  --b(z)  ,then 

g (z )  = f ( z )~a , ( z )  + ~-]m.~,(z) ,  

Ig(z) l ~<Ct, 
moreover, the distribution induces by g(z )  coincided ,xAth g. 

5 Atomic decomposition of Hp and atomic H P space for ( l + ~ ) - ' < p - ~ < l  

Definition 5.1 Let O,(f l<O and ( l + f l ) " < p ~ l .  We say that a function a(z)  is a p- 
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atom, if there exists a ball B such that 

(i) supp a(z )CB,  
I 

(ii) [[al[~p(B) -~ , 

(iii) f a ( z ) d ~ ( z )  = O. 

Lemma 5. 2 Let h (z)  E L f ( X ) ,  1 ~ q ~ co, with support in B = B (Xo, �9 

f h(z)dl~(z) = O . Then h E i21~ for ( l + f l ) - ~ < p ~ ] ,  and 

1 1 

IlhllR, ~< Ct,(B)~-;llhll,, 

where C does not depend on h(z). 

Proof Assume that r Let xE B(xo,2Ar),  then 

d r 

I fh(z)~b(z)dl~(Z) ] < f [h(z) [ (d + p(x ,z)  ) '+'dp(z) < CM(h) (x ) ,  

SO 

and 

h" (x) ~ CM(h)(x) .  

Now considering the case x~B(xo  ,2Ar),  then p(x,xo)>~2Ar, for any zE B(xo,r) ,  we have 

p(Z,Xo) ~ r ~  ~A [ d + p(Xo ,x ) ], and 

l (h,~b)[~ f lh (z )  llCJ(z) -- r 

�9 P d'  r 

IIhlI,~(B)~ p(x,x0),§ 

(in which 1 +  1 = 1). So, 
r q 

1 

h" (x)  ~ Ilhll0~(B)g 

Thus, we have 

r p 

p(X,Xo) ~+r 

IIh ' [[n,'~ C f,,,o.za, M(h) (x ) 'd~(x )  + f,,,o.,A, (l'h'l,'(B)~ p(x ,~o)l+,) 'd ' (x)  

<~ C~(B)a- t ,  tlhll~. 

This ends the proof of Lemma 5.2. 

By Lemma 5.2,  we obtain 

Lemma 5.3 Let a(z) be a p-atom, and ( l + f l ) - a < p ~ l ,  then the distribution a on 

(fl,7) induced by a(z) belongs to I-~ and 

fa" (z)~dl~(z) <~ < co, C 

where C is independent o f  the p-atom. 
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Theorem 5 .4  Let ( 1 - f - f l ) - l < p ~ l .  For any sequence {a,(z) } o f  p-atoms and a sequence 

{ ;~ } o f  numbers satisfying E ,  I ;q I~< oo , then there exists f E ffl , such that f = E )~a, and 

Sf" (z)tdlt(z) ~ C ~  '~,". 

Proof For any large positive integers n and m with n<m,  by Lemma 5.3 we get 

f ( ~ , a . )  " ( z ) 'd , ( z )  <~ C ~ I~[ ' .  
Iwm * i ~ i  

Then, by Theorem 2 .1 ,  there exists f E  ( ~ ( f l , 7 ) ) '  such that f = E ,~a~and  f "  ( z ) ~ < Z ;  

I,~ la ~ (z). This implies that Theorem 5.4 is true. 

In the following, we shall prove that if f E / - ~ t  then f can be expanded into a series of 

multiples of p-atoms. In order to do this, we need the following Lemma. 

Lemma S. $ Let h(z) in L2(X) ,  lh(z)I~<1. Assume that for some ( l + / / ) - t < q < l , h  

E I-~,. Then for every p with q < p ~ l  , there exist a sequence of  p-atoms {aj(z)},  and a nu- 

merical sequence { ~k } such that h = E &a,, and 

(~-] la, l ' )}  ~< Cllhi[~,. 

Theorem 5.6 For 0 < f l < # ,  (1"4-fl)-i <p~< 1. I f  f E ~1~, then there exist a sequence of  

p-atoms {a,} and a numerical sequence {2,} such that f =  E ~ , ,  and there exist two constants 

C' and C" independent o f  f such that 

C'llfl[ G ~< (~-] I&!')-~ <~C"llftlo. 
J 

Theorem $. 7 For O<fl<O,7>O, ( l+ / / ) -~<p<~. l , . .~ '0 ( / / ,7 )  is dense in Hr. 

The proofs of Lemma 5 .5 ,  Theorem 5.6 and Theorem 5. 7 are similar to the proofs in 

[-4], we omit the details. 

In the following, we recall the basic theory of atomic H t spaces defined in [1] .  Let 0 < / /  

< o o ,  lip(//) denote the set of all functions r  defined on X such that there exists a constant 

C satisfying 

I r  -- ~b(y) I ~< Cp(x,y)  p, 

for every x and y in X. The least constant C for which this condition holds is denoted by 

I[~bllkpcp~. It is easy to prove that lip(fl) with this norm I[" [la~r is a Banach space. When ,8=0,  

lip(0) is defined as the Banach space of all function ~b in BMO such that for every ball B and r 

> 0  there exsts a bounded continuous function ~ satisfying 

S I f (z )  - ~(z)Id,u(z) < E, 

endowed with the norm il" tlB,~o. 

Let a(z)  be a p-atom and r  l i p ( I - I ) .  Then ( a , r  Sa(z)~(z)d/.l(z)defineda 

linear functional on lip ( 1  _ 1 ),  and 
P 
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I <a,~> I ~ c1[~11~,%_,,. (s. 8) 

where C is independent of #(z)  and a(z) .  Moreover, for every sequence of p-atoms {a,(z) } 

and every numerical sequence {&}, we have 

I ~-]~,<a,.,~> I ~< c~-], I~ 1 I1r 

This shows that 

(f , ,~) = E,l,(~%,,~) (5.9) 

is a bounded linear functional on lip( 1 - 1 ) .  The norm of f as an element of the dual space of 

1) bounded by C(E,J  

We define H p as the linear space of all bounded linear fnctionals f on lip( 1 - 1 )  which 

can be represented as (5 .9)  where {a~} is a sequence of p-atoms and {,k} is a numerical se- 

E quence such that -~ I ~, [' ~ oo. For f E  H ' ,  we define 
1 

[IfllH, = i n f ( ~ ]  I,ki '}~, 
i 

where the infimum is taken over all possible representation of f of the form (5.9) .  Using the 

methed in [43, we can prove 

Theorem 5.10 Let O~fl~O and (1 + f l ) - l ~ p ~ l .  For every f in H t, we denote by "f 

the restriction o f  f to ~ ' ( f l , ) ' ) .  Then ~-~ ( f )  ----~ defines an injective linear transformation 

from H '  onto ~p. Moreover, there exist two positive numbers CI and Cz such that 

C,]lfl],,, ~ [[)'l[/t, ~ C, IifJl., 

holds for every f in H ~. 

Remark 5. 11 The theory above is studied for spaces of homogeneous type X with infi- 

nite measure. In fact, .we can prove that the all results in this paper is true for the ease that 

y ( X ) < ~ .  We omit the details. 

Remark 5.12 From the Theorem 5.10, we can see that for fixed p , ( l + O ) - ~ < p ~ l ,  

~ t  do not depend on the choice of fl and 7 which define the basic test function space 

~ ' ( f l , Y ) ,  as long as fl and Y satisfy 0 < / ~ < 0 , 7 > 0  and ( l+ /3 ) -X<p .  

Remark 5.13 From the Theorem 5.10, the space/-~, can be identified with the atomic 

H p space, so the theory above essentially give a maximal function characterization of atomic H '  

on spaces of homogeneous type. 

Remark 5.14 For the ease X = R ' ,  Hardy space H ~ have definition for all 0 ~ p ~ l .  In 

order to study the similiar characterization of H * for R", we need some new test function 

spaces. We will discuss these details elsewhere. 
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