
WUJNS
Wuhan University Journal of Natural Sciences

Vo1.11 No.3 2006 585-590

Article ID:1007-1202(2006)03-0585 06

The Configuration Strategies on Caching
for Web Servers

[] GUO Chengcheng, ZHANG Li,
YAN Puliu
School of Electronic Information, Wuhan University,

Wuhan 430072, Hubei, China

Abstract : The Web cluster has been a popular solution of
network server system because of its scalability and cost effec-
tive ness. The cache configured in servers can result in in-

creasing significantly performance. In this paper, we discuss
the suitable configuration strategies for caching dynamic con
tent by our experimental results. Considering the system itself
can provide support for caching static Web page, such as
computer memory cache and d i sk ' s own cache, we adopt a
special pattern that only caches dynamic Web page in some
experiments to enlarge cache space. The paper is introduced
three different replacement algorithms in our cache proxy
module to test the practical effects of caching dynamic pages
under different conditions. The paper is chiefly analyzed the
influences of generated time and accessed frequency on caching
dynamic Web pages. The paper is also provided the detailed
experiment results and main conclusions in the paper.

Key words= web servers; dynamic content caching; config
uration management; replacement algorithm

CLC number: TP 393

Received date: 2005 09 06
Foundation item= Supported by the National Natural ,Science Foun-
dation of China (90204008)
Biography: (;U() Chengcheng (1961), male, Professor, research
direction: computer network and network communication. E-mail:
netccg@ whu. edu. cn

0 Introduction

T he Web cluster has been a popular solution of network

server system because of the scalability and of the cost

effectiveness. By using the mechanism of the content-based

request distribution, the cache configured in servers can result

in increasing performance dramatically. This scheduling policy

can improve the hit rates in the back-end' s main memory

caches by distributing requests based on cache affinity I11'<

Therefore, caching is an effective way to achieve scalability

and flexibility by enabling the use of a partitioned server data-

base and specialized server nodes. Because of the dynamic con-

tent objects are used increasingly, it is becoming more impor-

tant to set up and manage a dynamic page caching for Web

server. Currently, most of researches for dynamic content are

focused on how to implement the cache proxy and how to

guarantee the cache consistency I:~ 5J.

Unlike traditional caching in memory, Web caches are re-
quired to manage objects of variable size and frequency E< ,and

the characterizations of Web access patterns are found to be
Zip~distribution in popularity Fr~ In order to get optimal

effect, the cache replacement algorithms have to take many
factors into account, e. g. , cost, size, frequency ts:t. greedy

dual-size (GDS) algorithm I ~j considers the properties of both
variability in Web objects size and retrieval cost (miss penal-

ty). Mix policy L~<I takes into account the network latency, the

size of the documents, their access frequencies and the time e-

lapsed since the last reference to documents in the cache, low-

est relative value (LRV) algorithm E''2 uses the cost, size, and

the last access time of an object to calculate a utility value.

The calculation is based on extensive empirical analysis.

585

greedy dual-size with frequency (GDSF) algorithm E127

simply incorporates access count into GDS. Popularity-
aware greedy dual-size (GDSP) algorithm E1:33 takes in

consideration the knowledge of the skewed popularity
profile of Web objects. Least normalized cost replacement
for the Web with updates (LNC-R-W3-U) algorithm E142
incorporates the cost of cache consistency maintaining and
replacement mechanism, it aims at minimizing response
time.

In this paper, we introduce our caching management
policies on dynamic pages for Web servers. There are
three different replacement algorithms in our caching
proxy system that is a module for Apache Web server.
We compare these algorithms by practical testing, and
conclude the configuration strategies based on our experi-
ment results.

1 Design of Replacement Policy

There is obvious difference on the generated time
among dynamic Web pages, but there is almost no differ-
ence in the delay of transferring one page from Web serv-

er to cache proxy because the sizes of all the dynamic pa-
ges are approximate. Therefore, the primary penalty of
retrieval a dynamic page is its generated time in back-end
server. So, we designed a generated-time based replace-
ment policy (GTime) for Web page caching, the Web pa-
ges which consume more system resource will be saved to
reduce system response time. Its profit function P(p,i)
should be calculated as=

P(p,i) - G(p)
S(p)

where, p is a Web page and i is
the generated time of p, S(p) is

-- - - �9 F(p,i) (1)

a time section, G(p) is
the size of p, F(p, i) is

the access frequency of p during ith time section.
As the exiting of 'peak' phenomenon in which the

access frequency is very high, it needs to divide the whole
process into several time sections and the access frequency
of each Web page is respectively computed for each time
section. It is more reasonable to remove Web pages with
the 'fall sharply' trend in access frequency.

However, it is not enough to evaluate a Web page's
future popularity only in terms of the access frequency in
current time section. Therefore, we designed popularity-
aware generated time based replacement policy (GTP).
By predicting the access frequency and ignoring the
page's size, the GTP algorithm is more adaptive for dy-

586

namic page caching. Its profit function should be calcu-
lated as:

P(p,i + 1) = O(p) �9 F(p,i + 1) (2)

where, P(p, i+1) is the access frequency prediction of
Web page p in the next (i+1) time section.

To calculate F(p, i+1) , We use the Adaptive Sin-
gle Exponential Smoothing algorithm E~2 in which the pa-
rameter of tracking signal is an key for this predicting
process. Once the tracking signal is larger than a thresh-
old, it means that the change of access frequency has
burst during the current time section and there is larger
warp value between prediction and practice. Therefore,
this method is suitable to predict the dramatically
changed 'peak' curve on line.

Let F~(i) be the actual access frequency of page p in
the ith time section, F(i) is its predicted value, and the
initial value of F(i) equal to 0. The steps to compute the
predicted H i + l) of Web page p as follows:

@ To calculate the predicted error, E(i)=ft. e(i)+
(1-fi') �9 E(i-1) , where e(i)=F'(i)-F(i), fl=0. 1;

@ To calculate the absolute value of predicted er-

ror, M(i)=fl. le(i)]+(1-fl) �9 M (i - 1) ;

E(i) ob @ To calculate the tracking signal T (i) = ~) ,

viously] T(i)]~1;
@ To calculate the smoothing parameter, a (i) =

IT(i)];
@ To predict the access frequency.
F(i+ 1) = a(i) �9 F'(i) + (1 - a (i)) �9 F(i) (3)

In the above procedure, if the difference between F(i)
and F'(i) is increased, a(i) will relatively become larger.
Sequentially, it will make F(i+ 1) change more quickly.
()nce H i + l) has adapted to this change, a(i) will be-
come smaller to counteract those random changes.

2 Experiment Environment

The front-end dispatcher of Web servers is a com-
puter with P-III800Mb/sHz CPU, 256 MB memory and

40 GB hard disk. It runs the content-based request distri-
bution program on Linux OS, whose maximum distribu-
ting rate can be over 2 000 TCP connections per second.

The cluster back-end servers are 2 computers with
P-IV1.7Gb/sHz CPU, 512 MB memory, and 40 GB IDE
hard disk. The servers run Apache loaded DCMC mod-
ule E~. This module builds a cache space in memory to
cache the requested Web pages, and provides access

proxy service. We do not take the cooperation among

several DCMCs into account. Thus the simplicity and fa-

cility of DCMC can be guaranteed.

The clients are 4 computers with P-IV2.4Gb/sHz

CPU, 256 MB memory and 80 GBIDE hard disk. They

run WebBench5.0 testing program on the client.

The network device is a switch of Cisco2924 (100

Mb/s). The dispatcher, servers and clients are all con-

nected through the same switch.
In such a configuration, it can be guaranteed that no

device among the network and dispatcher and clients

would be the bottleneck of cluster system during the tes-

ting process, thus we can obtain the real effect of cache

system in servers.

By the simulation program, we produce the static

Web pages with 3 types of size: 5, 50 and 500 kB, which

conform the Parato distribution, and we produce the dy-

namic Web pages with 3 types of generated time: 0.05,

0.5, 5 s, which conform the negative exponential distri-

bution.

Total 200 Web pages are used in our experiments.

The ratio between static Web pages and dynamic Web

pages are assigned in terms of the experiment demand.

The requests of clients are generated randomly. All these

Web pages are evenly distributed on 2 servers according

to their workload.

3 Experiment

For our experiments, the number of clients increases

gradually from 1 to 40 procedures, each procedure sets

up 10 threads. The testing process lasts for about 30

rain, and we take 5 min as a time section to calculate the

access frequency. The value is the average value of three
samplings.
3.1 Experiment 1

Experiment 1 tests the cluster performance under

conditions that two different scenes: all Web pages are
cached and no any Web pages are cached. The testing re-

sults are shown as Fig. 1.
As shown in Fig. 1, even if all static Web pages are

cached, it gets almost the same performance as that with-

out caching. The reason is that the file management sys-

tem in the kernel of OS can provide effectively the cac-

hing to the static Web pages. Therefore, it is reasonable

to presume a worse performance if only caching part of

the static Web pages by DCMC, which is a program in

60

50
.o

4o
c-
o
ca

30
O

-~ 2o
Z

10

o o No any cached
=' ~ All cached

o 3'2 4'0
Number of client's procedures

Fig. 1 Comparison of non-caching and all-caching

application layer.

3.2 Experiment 2
Experiment 2 tests the performance of Web servers

on caching both static and dynamic Web pages. We also

compare the results of 3 replacement policies, GI)SF,

GTime and GTP. Among the requests, 700/oo are for

static Web pages and 30% for dynamic ones in this ex-

periment.
Figures 2 and 3 show the results of 3 replacement

algorithms under conditions that cache size respectively is

300/oo or 60o/00 of the total size of all pages.

Figure 2 shows that, when requests are primarily

for static Web pages, GDSF and GTime get better effect

than GTP. The reason may be that GTP does not con-

sider the size of cached Web pages, and the size of Web

pages is important to keep the hit ratio for the static Web

pages. Figure 3 shows that the influence of Web page's

size becomes smaller with the increase of cache space,

and the difference are not obvious. Another noticeable

phenomenon is that, as Fig. 3 shows, although the cache

space doubles, the effects of caching improves lesser.
This reason is that, when the requests are mainly for
static Web pages, the extra cache for static Web pages is
not as efficient as system's own cache. The result of ex-

periment 1 also shows this point.

3.3 Experiment 3
Experiment 3 tests the performance of Web servers

on only caching dynamic Web pages. We also compare

the results of 3 replacement algorithms, GDSF, GTime

and GTP.

The process of the experiment is similar to experi-

ment 2. Figure 4 shows the effect of the 3 algorithms

when cache size is 30% of total dynamic pages' size,

which is about 9 %0 of all Web pages. Figure 5 shows the

587

o

8
B

Z

I0:

8

6

4

2

0 i i i i i

8 16 24 32 40
Number of client's procedures

Fig. 2 Effects of caching when cache

size is 30 % of total pages size

I0

8
o +~

+,.+, 6

,-, 4

E

Z 2

//i~ I " A- GTime

I e-, ~ GTP

i r i i i

8 16 24 32 40
Number of client's procedures

Fig. 3 Effects of caching when cache
size is 60 % of total pages size

10

8
5

== 6
8
~, 4

E
Z 2

/ ~ ~" _" c;rime

Ln mOlp

8 16 24 32 40
Number of client's procedures

Fig. 4 Effects of caching when cache size is 30%0

of total dynamic pages size

effect when cache size is 50~ of total dynamic pages'
size, which is about 15~ of all Web pages.

Figure 4 and Figure 5 show that, when DCMC
module only caches dynamic Web pages, both GTP and
Gtime are better than GDSF. It means that the generated
time of dynamic page is the most important for the re-
placement algorithm. However, GTP is just a little bet-

ter than GTime and in Fig. 4 it is more obvious. Figure 6
shows the statistics of the hit rate (H) in Fig. 4' s experi-
ment. Because the requests are mainly for static pages
and DCMC is configured not to cache static pages, the hit
rate is a little low. Figure 6 shows that GTP's hit rate is
two times higher than the other 2 algorithms. But be-
cause the proportion of dynamic pages in requests is
small, the performance improvement in Fig. 4 is not so
great.

4
"~ I , , GTime

nGTP
Z 2

I i i i i

0 8 16 24 32 40
Number of client's procedures

Fig. 5 Effects of caching when cache size is

50% of total dynamic pages size

4

3 it I

0
GDSF GTime GTP

Fig. 6 Hit rate of caching in figure 4's experiment

By comparing Fig. 4 with 2, as well as Fig. 5 with
3, they get almost the same effect, while only caching
dynamic pages uses much less memory resources than
caching both static and dynamic Web pages. When the
cache space is the same, therefore, the Web servers may
get better system performance if it only caches dynamic
Web pages, that is, it will get faster average response

time.

3.4 Experiment 4
Experiment 4 tests the performance of Web servers

with multi-copy of Web pages. For the experiment, we

also use the generated 200 documents, in which the pro-
portion of static pages is 70 0/oo. The cache size of DCMC
is configured respectively as 30~ of the total pages' size

and as 30% of all dynamic pages' size. Unlike former

588

experiments, the 200 documents are placed in each server
to form the complete replication of each page. Because
the number of pages doubles in a single server, the cache
size relatively reduces half of former. The dispatcher of
the Web servers distributes the requests, in round Robin
manner.

Figure 7 and Figure 8 show respectively the effect
when both static and dynamic pages are cached together
and dynamic pages are cached only.

10

8 12
O

. ~ ,

= 6
�9
c a

~) 4

E
Z 2

, ~ - h GTimc
_n pGTP

v i i i i i

8 16 24 32 40
Number of client's procedures

Fig. 7 Static and dynamic pages are cached

together when cache size is 30%0 of total pages

Z

8
~, 4 i

/p I Sl _~ GTime
2 g [1"1 r ' l (,TP

i i i 1 i

8 16 24 32 40
Nwnber of client's procedures

Fig. 8 Only dynamic pages are cached when

cache size is 30 % of total dynamic pages

By comparing Fig. 7 with 2, as well as Fig. 8 with
4, the complete replication of each page does not always
get better effect (even get lower effect) than that without
copy. This is because, although the replication on multi-
ple servers can enhance the parallel process ability, the

cache size in single server is reduced correspondingly, and

the delay of route dealing in dispatcher is increased.
These prevent the improvement of the whole system's

responding performance.

3.5 Experiment 5
Experiment 5 tests the performance of Web servers

when all the dynamic pages are cached in DCMC. The
distribution of Web pages, experiment steps and condi-
tions are the same as Experiment 2. The cache size of
each server is configured equal to the size of all the dy
namic Web pages on it. We test the system's responding
performance when the requested ratio of static pages and
dynamic pages are 7 : 3, 5 " 5, 3 : 7 respectively. Figure
9 shows the testing results.

250

200 t -

o

= 150
�9
c a

's
100

E
Z 50

w

w

Fig. 9

0 ~0 7 : 3
�9 -~ 5:5

m 3 : 7

m,
v 1 [, v

c o - - ' ' - - ~

16 24 3'2 4})
Number of client's procedures

Effects when caching all dynamic Web pages

Under condition that the ratio is 7 : 3, comparing
the curve in Fig. 9 with figure 5's effect, although cache
size only doubles, it leads the number of connections per
second to increases about 8 times higher. As shown in
Fig. 9, with the proportion of dynamic Web pages in re-
quests increasing, the I)CMC can produce super-linear in-
crease on response capability. This means that the per-
formance of Web servers can be improved dramatically by
caching all the dynamic Web pages in back-end servers.

4 Conclusion

By the practical applications and the experiments
above, our conclusions are as follows:

@ The configuration of cache in cluster's back-end
nodes is the first important thing we should consider. Be-
cause operating system in server can provide cache for
static Web pages, just adding cache for dynamic Web pa-
ges in server is enough.

@ Caching dynamic Web pages as many as possible,

and caching all the dynamic Web pages can lead to the

best result. As the price of memory is lower and lower,
it 's feasible to cache all dynamic Web pages in those Web
sites mainly providing service on static Web pages.

@ Different cache replacement policies can gain dif-

ferent effect on performance of a cluster's, the generated

589

cost of a Web page is the most important points to build a
high speed cache for Web servers, which includes many
dynamic content objects. When the cache size is small, it
is also a better choice to predict the access frequency of a
Web page.

@ Replication distribution and cache space configu-
ration should be considered together. Improving the abili-
ty on parallel process should not be at the cost of lower
cache hit rate. It is worth of only replicating suitably
these Web pages whom are accessed too continually.

References

[1] Hunt G, Nahum E, Tracey J. Enabling Content Based Load
Distribution for Scalable Services [R/OI.] / / Technical Re

port, IBM T J, Watson Research Center [2002 03-11]. ht

tp : / / zeuxv, research, ibm. corn~people~ n/nahum/ publica-

tions/ ibffrtr97 cluster, pdJ.

[2] Pal V S, Aron M, Banga G, et al. Locality-Aware Request
Distribution in Cluster-Based Network Servers [C/OI.] / /

Proceedings of the ACM Eight International Conferem'es on
Architectural Support f~)r Programming Languages and

Operating System [2002 03-20]. http://citeseer, ist. psu.

edu/article/ pai981ocalityaware, html.

[32 Garg P K, Eshghi K, Gschwind T, et al. Enabling Network
Caching of Dynamic Web Objects [C] / / Proceedings o f lhe

12th International Conference on Computer Perf))rmance

Evaluation, Modelling Techniques and Tools. Berlin:
Springer Heidelberg, 2002:329-338.

[4] Amiri K, Park S, Tewari R, et al. DBProxy:A Dynamic Data

Cache for Web Applications [C~// Proceedings of the 19 a' In

ternational Conference on Data Engineering (ICDE03). Ban-

galore: IEEE Computer Society, 2003 : 821-83.
[51 Challenger J R, Dantzig P, Iyengar A, et al. Efficiently Ser

ving Dynamic Data at highly Accessed Web Site [J]. IEEE/

ACM Transactions on Networking, 2004,12 : 233-246.
[6] Arlitt M F, Williamson C. Internet Web Server: Workload

Characterization and Implication [J]. IEEE/ACM Transac-

tions on Networking, 1997,5..631-644.
[7] Barford P, Bestavros A, Bradley A, et al. Changes in Web

Client Access Patterns: Characteristics and Caching Implica-
tions [J]. WWWJournal, 1999,1:3-16.

[8] I.in Yangwang, Zhang Dajiang, Qian Hualin. A Novel Re
placement Algorithm for Web Caching [J]. Journal o f Soft

ware, 2001,11:1710-1715 (Ch).
[9] Cao P, Irani S. Cost-Aware WWW Proxy Caching Algorithm

[C/OL] / / Proceedings o f USENIX Symposium on Inter-

net Technology and System [2003-07-08]. htt p: / / citeseer.

ist. psu. edu/ cao9 7 greed ydualsize, html.

[10] Niclausse N, liu Z, Nain P. A New Efficient Caching Policy
for the World Wide Web [C/OI .] / / Proceeding of the

Workshop on Internet Server Perf?)rmance (WISP ' 98)
[2003 07-08]. http..//zeunx*sop, inria, fr/mistral/ person

nel/ Nicolas. Niclausse/articles/wisp98/.

[11] Rizzo L, Vicisano I.. Repalcement Policies for a Proxy Cache
[J]. IEEE/ACM Transactions on Networking, 1999, 2:

158 170.
[12] Martin A, I.udmila C, John D, et al. Evaluting Content

Management Techniques for Web Proxy Caches [C / O L] / /
Proceedings of the 2nd Workshop on Internet Server Per-

formance (WISP99) [2004 01-22]. http://citeseer, ist.

psu. edu/ arlitt99evaluating, html.

[13] Jin Shudong, Bestavros A. Popularity-Aware Greedy Dual-
Size Web Proxy Caching Algorithms [C] / / Proceedings o f

the 20th International Conference on Distributed Computing

Systems. New York: IEEE Press, 2000:254 261.
[14] Shim J, Scheuermann P, Vingralek R. Proxy Cache Algo

rithms: Design, Implementation and Performance [J]. IEEE

Transactions on Knowledge and Data Engineering, 1999,4:
549-562.

[15] Wang Yongling. Calculation of Prediction [M]. Beijing: Sci-
ence Press, 1986 (Ch).

[16] Liu Dan, Guo Chengcheng, Zhang li. Design and Implemen-
tation of a Dynamic Content Cache Module for Web Server
[J]. Wuhan University Journal o f Natural Sciences, 2004,
9(5) .. 828-834.

[]

590

