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O. I n t r o d u c t i o n  

We denote by A t', 0 < p < ~ the Bergman space of  functions analytic in the 

unit disc U and satisfying 

l fu f lf(z)lPdxdy < ~ .  IIflIpP = 7r 

In this work, as in our earlier paper [4], we are concerned with the classification 

of  the zero sets of  functions in Ap for various p. It should be noted that in [6] 

Korenblum obtained a complete characterization of  the zeros for  the union of  all 

the Bergman spaces. His ideas were fundamental,  and many o f  them have been 

borrowed or adapted in the present work. 

In the last few years there has been a revival of  interest in the subject of  Bergman 

space zero sets centering around the remarkable discoveries of  Korenblum [7] and 

Hedenmalm [3]. (See also [2] for an important extension of  Hedenmalm's  work.) 

Most of  this paper is devoted to the derivation of  sufficient conditions for zero 

sets for individual A p spaces. In the first section we develop our basic methods 

and apply them to the special case of  " thin" zero sets, in which the calculations 

are somewhat simpler and the results somewhat sharper than in the general case. 

In section 2 we illustrate by examples the sharpness of  the results of  section 1. 

Section 3 is devoted to a generalization of  our results to arbitrary zero sets. In 

section 4 we apply our methods to "random zero sets" as treated in [ 1 ] and [8], and 

in section 5 we show how to "move"  zeros while preserving sufficient conditions, 

in the spirit o f  [7]. In the last section we give some necessary conditions which 

are stronger than those in [4] but which, unfortunately, still seem weaker than our 

sufficient conditions. 

1. T h i n  z e r o  s e t s  

A sequence {zk } of  not necessarily distinct points in U will be called thin if  there 

exists a positive integer M such that there are at most M points of  the {zk} in any 

dyadic rectangle 

R m'' = / z  E U :  1 - 2  -n < Izl < 1 - 2-"-1"  m 2 a  - < argz < m +  12rr" ~ 
- ' 2 "  - ~ J 
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The smallest such M will be called the density of the sequence {zk}. 

It follows from the work o f  Korenblum [6] that every thin sequence is a zero set 

for some Ap. Our concern here is to classify those thin sequences which belong to 

a given A p. Our sufficient conditions will be formulated in terms of  the following 

subregions of  the disc: 

For each 0, 0 < 0 < 2~r, and for each n E N, define 

(1.1) Go,n = {z E U :  [ a r g z -  0[ < nTr(1 - [z[)) cI {0}, 

where we choose the value of  arg z which is closest to 0. Thus Go,n is roughly a 

Stolz angle at e i~ Now for 0 < r < 1 define 

G , . , o , . = { z E U : z E G o , n  and Izl~r}. 

With respect to a given set {zk} define 

(1.2) 
1 

~(r,  0, n) = - • the number  of  elements o f  {zk} in the region Gr,o,n. 
n 

(1.3) T h e o r e m  Let {zk} be a thin sequence in U and n a natural number. Let 
~(r, O, n) be the associated counting function. Then {zk} is an A p zero set, with 
each zk repeated according to the multiplicity of  the zero there, if 

J0 ] log e P~(r'~ dO < c~. 

For the proof  we shall assume without loss of  generality that no zk = 0, and we 

shall construct explicitly a function in A p which vanishes on the given set. To that 

end we first associate to each zk the canonical factor 

]Zkl zk - z 
(1.4) Bk(z) -- 

zk 1 - 2 k z  

and a "covergence factor" 

(1.5) 
1 [2~ eiO + ) 

S~n~(z)=exp ~ Jo ei~ ' 

where d#k,n is a measure on the unit circle T which equals ~dO on the interval 

{egO: I/9 - argzkl _< min[nTr(1 - Izkl), 7r]} and zero elsewhere. To say that s~n)(z) is 

a convergence factor is to say that B~(z)S~ n) (z) ,~ 1. We quantify that statement in 

the following lemma, which is a simple adaptation o f  Lem m a  3, section 3.3 in [6]. 
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(1.6) L e m m a  There exists an absolute constant c such that if O ~ /3 E U, if 
f =/3/I/31, and ifB(z) and s(n)(z) are as in (1.4) and (1.5), with/3 in place ofzk, 
then for all z E U which satisfy 

(1.7) 1 -  1/3______.~[ < min ( 1  1 )  
1 - I z l  - ' ' 

we have 
{ 1 - 1/31 ~2 

[logB(z) + logS(n)(z)[ <_ cn \ ~ - - ~  ) . 

(Here logB(z) is defined for [z[ < [/7[ by continuation from the value log [/3[ at 

0.) 

P r o o f  Korenblum [6] obtained that if 

{ , S(z )=exp  log~-~ [ f _ z j  ' 

then whenever 1 - [/3[ < �88 - z[, and in particular if (1.7) holds, we have 

{ 1 -  1/31] 2 
I logZl(z)  + logS(z) l  4 c \ If - zl ) 

We observe that if 

V+zl 

then for 1 - 1/31 --- 1( 1 - Izl) 

( 1 -  I/3t'~ 2 
[logS(z) - logSl(z)[ <_ c \ i -~-~_ zl j . 

Thus we need only estimate [ logS(n)(z) - logS1 (z)l when (1.7) holds. However 

1 L ~ 2 [ e i ~  f + z ] d O ,  
logS ( n ) ( z ) - l o g S l ( z ) = ~  , [ ~ z  f - -  

where ai = arg/3 4- mr(1 - 1/31) (i = l ,  2).  Simplifying we have 

1 [,~2 2z(f - -  e tO) dO 
logS(n)(z) - logSl(z) = ~ n  J,~, (e i~ - z)(f - z)--" 
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It follows from (1.7) that on the interval of integration [e i~ - z I >_ c l ~  - z I for an 

absolute constant c > 0. Thus 

( 1 -  I/3[~ 2 
I loga(n)(z) - logal(z)l  < cn \ l -~_zl ,  I , 

which gives us the desired estimate. 

The following elementary lemma will also be used in the proof of the Theorem. 

(1.8) L e m m a  Let # be a Borel probability measure on the topological space 
X, and let f be a nonnegative #-measurable function on X, such that l o g f  is 
#-integrable. Let 

S = {g : X --+ R : g is integrable d# and f gd# = 0}. 

Then 
in( ffegd# = exp fx logfd#. 
g6~ Jx 

P r o o f  I f  g is in S, then Jensen's inequality gives that 

exp fx logfd#=exp fx(logf +g)d# <- fxfegd#. 

On the other hand, if we define 

g(x) = ~ logfd# - logf(x),  

then g E S and we have 

fxfegd# = fxexp { fx l~ d# = exp fxl~ �9 

After establishing these preliminaries, we turn to the proof of Theorem (1.3) 

for a fixed but arbitrary n. First we note that from Lemma (1.6) it follows that 

whenever ~ ( 1  - ]zkl) 2 < oo, which is certainly the case for any thin sequence {zk ), 

the product 
oo 

1-[ Bk(z)S~ ")(z) 
k ~ l  

converges to an analytic function on U which vanishes precisely on {zk}. The 
function we build will be of  the form 

2"h(O) (1.9) f(z) = 1-IBk(z)S~n)(z)exp f ~ +__zdO 
k = l  Z 2rr' 
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where h(O) is a real-valued integrable function satisfying f2~ h(O)dO = 0, so that 

the last term has value 1 at the origin, h(O) will be chosen later. 

We now turn to the estimation o f f ( z )  on the circle Izl = r < 1. We first show 

that with a = min (1/4, 1/n), there is a constant c independent of  r such that 

(1.10) IX nk(z)S~ n)(z) <- c whenever[z[ -- r. 
1-lzkl<a(1-r ) 

However  by Lemma (1.6), when Izl = r the above product is bounded by 

(1 2. 

exp ~ cn l-(i I 
1-1zkl<a(1 -r)  

Since n is a fixed integer, and since {zk} is a thin sequence, we need only bound 

2 

k 

where {ak} is a sequence consisting of  precisely one point in each dyadic subrect- 

angle of  the annulus B = {( : 1 - I(I <-- 2a(1 - Izl)}. Now let {Rk} denote these 

dyadic rectangles, and let A(Rt) denote their areas. Let wk denote the closest point 

to z in the projection of  Rk on T. Then there are absolute constants ci such that 

2 

fo 1 zffdA(~ ) < Cl y ~  1 z[iA(Rk) < c2 - 
Z - a ~ - z  ) - [ l a k l l  - l a~  Iw, - _ 

(where dA = Lebesgue area measure) 

fo 2" 1 dO 1 - I z [  
< 47ra(1 - Izl)c2 [e iO -- zl 2 27r = 47ral----Zq-~cz < c3. 

Thus we have obtained the desired bound. 

Next we note that if {zk} is thin of  density M, then there is an absolute constant 

c such that for all z E U 

(1.11) 17 
a(1-1zl)~l-lzkl<l-lzl 

Bu(z)S~n)(z) < e ca-lM, 

for  the measures #k defined in (1.5) belonging to these.S~ n) cannot have total density 

greater than ca- lM at any point of  T. 
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Thus it remains only to bound 

fO 2~ e iO + z dO 
(1.12) H Bk(z)Sk(z)exp h(O) eiO~z27 r. 

Izkl_<,=lzl 

Estimating each IBk(z)l by 1, we find that in absolute value this product is bounded 

by 

J0 [ ] exp P,(O) h(O)dO + Z d#k,n(O) , 
Izkl__r 

where Pz(O) is the Poisson kernel for the point z, namely 

1 e i~ + z 
Pz(O) = ~ Re eiO----Z~ z. 

However, our construction gives that for every (r, O) E U 

(1.13) Z d#k,n(O) = ~o(r,O,n)dO. 
Izkl<r 

Putting together all the pieces we have f o r f  as defined in (1.9) and for Iz[ = r 

fo'" If(z)l < cexp P~(O)[h(O) + ~o(r,O,n)]dO. 

If  0 < p < e~ we have 

f0'" If(z)l p <_ cexp Pz(O)[ph(O) + p~(r,O,n)]dO 

<_ c exp[ph(O) + p~(r,O,n)]ez(O)dO 
,to 

since for each fixed z, Pz(O)dO is a probability measure on [0, 2~r]. 

Now we write z = re i~, and integrate the above inequality to obtain 

/0' /0'" If(rei~)[ Pdc~ <_ c exp[ph(O) + p~(r,O,n)]dO. 

Thus 

[/0' ] - ePh(~ ep~(r '~  dO, 
7rJo 
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where we are still free to choose h as we wish, just so 

/0 
If  we now choose h(O) as in Lemma (1.8), we obtain that 

I[ f l lP<_cexp{l fo2~[logfo'eP~( '"~ 

Since the last integral was assumed finite, we conclude t h a t f  E A p, and thus {zx} 

is an A p zero set. 

2. Some examples  

In this section we illustrate the sharpness of  the conditions in section 1 by means 

of  some simple examples. First we note a necessary condition for thin zero sets, 

which is implicit in [1]. Namely, i f f  E At', if f (0 )  ~ 0, and if {zk} are the zeros of  

f repeated according to multiplicity, then exponentiation of  Jensen's formula gives 

that f o r 0 < r <  1 

I f(0)l  p 1--[ -< If(rei~176 
I:~l___r 

Thus 
r ( , )  = ~  

I--kl_ <, (1 - r) lip ' 

and since the {zk } are thin, they number no more than 0 ( ~ )  in the disc Izl _< ,', 

and therefore we can conclude that 

' ( ' / 
(2.1) 1--[ [-~k ] = ~ " 

I:d_<, (1 - r)l/P 

In light of this condition and our sufficient conditions from section 1, we shall 

examine the zero sets of  the functions 

f ( z ) = I I ( l + # z ~ k ) ;  / 3 > 2  integral, # > 1 ,  
k=l 

which were studied in [4]. Let {ze} denote the zero set o f f ,  which is clearly a thin 

set, and for each k > 1 define 

(2.2) a k = ( 1 )  �9 
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Thus 

SO 

However, 

1 

log(1 /ak)  
_/3 k/log # 

1 < c/3k 
/3J' <- 1 - a k -  for some c independent of k. 

1 # k > c (  1 ) log tz/log j3 
I I  = _ 

Izll<ak 

Thus by (2.1) {zk} can be an A p zero set only i f p  < log /3/ log #. Now if in fact 

p < log/3/ log # we can choose n so large that p(log # + 2In)  < (log/3) (1 - 1 In) .  

For that n we calculate the corresponding ~(r, 0, n) as in (1.2). Note that with ak 

as in (2.2), on the circle [z[ = ak, f has/3 k evenly spaced zeros. Thus for every 0 

the number of zeros satisfying 

[zel =ak;  ] a rgz~- -0 [<nzr (1 - -ak)  

is bounded by n/3k(1 - ak) + 2 <_ n/3 k log(1/ak) + 2 = n log/~ + 2. Since there are k 

such circles in the disc [z[ _< ak, we obtain that qo(ak, 0, n) _< k l o g #  + 2 k / n  for all 

0. By our choice of  n, 

0 1 
Thus 

(1 l_~k l l-1/n exp{p~(ak ,O ,n ) }  <_/3k(l-V,O <_ C 

by (2.2), and even though this inequality has been verified only for r -- ak it is 

easily seen that with a larger c we have generally 

exp{p~(r, 0, n)} _< c , 0 < r <  1, 0_<0<2zr .  

Therefore the sufficient condition of Theorem (1.3) is satisfied, and {z/} is an 

A t' zero set for all p < log/3/ log #. Of course this does not mean that the function 

f itself belongs to all of  these spaces. However, it is easily seen that the associated 

function, 
oo oo I -b Z ~ 1 + #z  ~k 

g ( z ) = H l + l  ~ - l l U l + •  ~' 
k=l ~Z k=l ,u 

which is essentially a Blaschke product, satisfies 

[g(z)[ _< c# k when [zl ~k 1 
# 

and therefore g E Ap for all p < log/3/ log #. 
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3. General  zero sets 

In this section we derive sufficient conditions for A p zero sets which are not 

necessarily thin. Our method is essentially as in section 1. However, when the 

set {zk} is not thin, the estimates (1.10) and (1.11) are no longer valid. Thus 

we cannot estimate the product I-I~~ Bk(z)S~")(z) on the circle of  the radius r 

by means of  those terms alone which correspond to zeros satisfying Izkl < r. 

However, there is a simple if not wholly satisfactory solution to that problem; 

namely that instead of  transferring a particular factor Bk(z)S~n)(z) from the main 

term (1.12) to the error term (1.10) immediately at Iz[ = Izkl one must do so when 

1 - lzl = p(zk) log l+* p(zk)(1 -- Izkl), where 

(3.1) p(zk) = the number of{zt} in the dyadic rectangle containing zk. 

The precise theorem is as follows. 

(3.2) T h e o r e m  Let {zt} be a sequence in U and let e > 0 and n E N be chosen. 

For each O, 0 < 0 < 27r, define 

(3.3) Go,, = {z E U :  ] a r g z -  01 < 7rn(1 - [z[)} u {0}, 

and for  0 < r < 1 define (with p(zk) as above) 

1- izk[  < m i n  (3.4) S r =  zk: 1 - - r  ( 1 , 1 , p - l ( z k ) l o g - l - ~ p ( z k ) )  } .  

Finally, for  every r and 0 define 

q~(r,O) 1 = -  x the number o f  elements o f  {zk} in Go,, N S~r, 
n 

where S~r is the complement of  Sr. 

Then {zk} is an A p zero set, 0 < p < oo, i f  

io ] log e p~(r'~ dO < oo. 

P r o o f  As in Theorem (1.3) we construct 

o o  27r 

f ( z )  = 1-I Bk(z)S~ ~) (z) exp fo 
k =  1 

e iO -}- z dO 
h( O) -~- -  z 2~r" 
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A perusal of  the proof  of  Theorem (1.3) will indicate that all of  the steps there can 

be repeated here except  for  one estimate,  namely  we must  show that the " remainder  

term" 

(3.5) r I  Bk(rei~ n) (rei~ 
zk ESr 

IS uniformly bounded for all re i~ E U. In view of  L e m m a  (1.6), it is sufficient to 

show that (, Y~ Z (Izl = r) 
zk~S, [ lz~l 

is uniformly bounded. However,  the above sum equals 

(3.6) 
(::zk) 

m = 0  zk~Sr Zk - -  Z 

2m_<p(zk) <2,,,4 I ] - ~  

We turn to the est imation of  the inner sum for a fixed m. Now if zk C Sr and if 

p ( z k )  >_ 2 m, then by (3.4) 

1 - Iz~l < c 2 - = m - l - ~ ( 1  - r) for an absolute constant c. 

It follows that if {ak} is a sequence consisting of  one point in each dyadic rectangle 

intersecting the annulus 

B = {~ E U :  1 - I~1 -< c 2 - m m - I - e (  1 - r)}. 

Then for Izl = r 

1 --  l a~  __ c , 2 m + l  

z, Sr k H _ z ]  
2"  <_p( zk ) <2 m+' 

As in the proof  of  Theorem (1.3), the last sum is bounded by 

l 
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It follows immediately that the sum (3.6) and therefore the product(3.5) is uniformly 

bounded, completing the proof of  the theorem. 

We now give a modified version of  Theorem (3.2) which will be useful in the 

next section. In order to formulate that theorem we introduce an additional bit of  

notation: for �89 < Izl < 1 and e > 0, let 

[ (l_--llzI)] l+e (3.7) he(z) = log 2 ; 

i.e. if 1 - 2 - "  < Izl < 1 - 2  -n - l ,  he(z) = n l+e, and for [z[ < 1, he(z) = 1. 

(3.8) T h e o r e m  Let  {zk} be a sequence  in U and  let e > 0 be chosen.  Define 

h(z)  = he(z) a n d p ( z k )  as above. For  0 < 0 < 21r define 

Go = {z e U :  l argz - OI < 7r(1 - Izl)h(z)} u {0}, 

and  f o r  0 < r < 1 let 

1 - - r  
(3.9) Sr = z k "  1 -Izkl - -  > m a x  (4,  h (zk ) ,h (zk )p(zk) log l+e  p ( zk ) )  } , 

and  let ~(r ,  O) = ~-~zkeCons~ h-1 (Zk ). Then  {zk} is an A p zero set  i f  

//[/01 ] log ep~(r'~ dO < c~. 

Proof  This time the appropriate function is 

f i  1.21 r ei O 
D ,_~S(h(z~))(z ) exp Jo h(O) ei 0 -t- z dO f ( z )  = ~  k - z 2---~" 

k=l 

As in the proof of  Theorems (1.3) and (3.2) the critical estimate is to show that 

there is an absolute constant c such that if  Iz[ = r, 0 < r < 1, then 

(3.10) 1-I 8k(z)S~h~zk~(z) <-- c. 
zk E Sr 

Since zk E Sr implies that 

1 - r  
1 -tz~---~ -> max(4, h(zk)),  
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we can use Lemma (1.6) to estimate the log of  the above product by 

( )2 ( )2 z 1 - I z ~ [  = c ~ h(zk) -z~ c ~ h(z~) 1 Izkl 
zkESr m - - Z  m = 0  zkEar Zk 

2.~<~9(zk) < 2 . , +  i ] - ~  - -  

Now if zk E Sr and p(zk) > 2 m, then 

1 - r  

1 - Izkl 
- -  >_ h(zk)p(zk)logl+~ p(zk) _> h(zk)2mm 1+~ 

Thus 

(1 - Izkl)h(zk) ~ 2-ram-l -e (1  - r) .  

It follows that if {ak} is a sequence consisting of  one point in each dyadic 

rectangle intersecting the annulus 

B = {{ E U :  (1 - I{I)h({) ~ 2- ram- l -e (1  - r)} -~ {z: br < Izl < 1}, 

then there is an absolute constant c, such that if Izl = r, 0 < r < 1, 

zl ESr Zl~kl -- Z ) 
2 m < p ( z D < 2 ~ , 4  I 

2 2 

<c2m+lZh(ak)  ( !~lakl- I 
~al--~k I ) k --Z 

As in the proof  of  Theorem (1.3), the last sum is bounded by 

- T - - T ~  d a ( , ) -  fb log'+~(1--~s)Sds 
~ l  - z 1 - r  2 

(1) 
~ c21---~--~(i -br)logl+e l'-~-'~r r �9 

In view of  the definition of  br the last expression is estimated by 

2 r a a  - I 
c 3 ~ 2 - r a m - l - e ( 1  - r) < c4m -1-~. 

It follows immediately that (3.10) is valid, completing the proof  of  the theorem. 
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(3.11) C o r o l l a r y  Theorem (3.8) remains true if  Sr as defined there is replaced 

by 

(3.12) S~.= {zk : I---I-rill > max (4, hZ(zk) ,h(zk)p(zk) log '+ 'p(zk) )} .  

P r o o f  This is trivial, since we have only made Sr smaller, thus making SI! larger, 

and increasing ~(r, 0) for every r and 0. So if the A p condition of  Theorem (3.8) 

holds for this enlarged qa, then it certainly holds for the smaller ~o described in the 

statement of the theorem. We mention the corollary only because it provides the 

appropriate framework for the result of the next section. 

4.  R a n d o m  z e r o  s e t s  

In the recent papers of  Leblanc [8] and Bomash [ 1 ] random A p zero sets were 

examined. In this section we extend their work. Our contribution is twofold: first, 

we verify for all A p Bomash's  sharp condition which he obtained only for p _< 2; 

second, we do so not by directly estimating canonical products as was done in [8] 

and [ 1 ] but rather by proving that under appropriate conditions on the moduli of 

zeros, the sufficient condition of  Corollary (3.1 1) holds for almost every choice of 

arguments, thus adding evidence to the sharpness of  the condition. 

Our concept of  random zero sets will be exactly as in [8] and [t]; i.e., after 

the moduli of the zeros have been specified, we shall consider their arguments as 

independent random variables, each one having a uniform distribution on [0, 27r). 

Specifically we have 

(4.1) T h e o r e m  Let {Ak} denote a sequence in (0, 1). Define 

~b(r) = Z 1 - A k  , 0 < r < l .  
A~ < r 

Suppose that f o r  some e > 0 and for  some p, 0 < p < o0, 

/o I ( 1 )  (4.2) e p~'(r) log z+2~ dr < ~ .  

Then for  almost all independent choices o f  {Ok} the set { ~ke i~ } is an AP zero 
set, satisfying the condition o f  Corollary (3.11). 

Note that for p _< 2, our result is slightly weaker than Theorem (2.11) in [ 1 ]. 

However, we have: 
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(4.3) C o r o l l a r y  In the context of the theorem, iffor some p, 0 < p < oo, 

- 1 

lim~-~0~og(])7 ~ < p - '  

then { Ake i~ } is almost surely an A p zero set. 

This is an extension of  Theorem 1 in [1]. It follows immediately from Theorem 

(4.1). 

P r o o f  o f  t he  t h e o r e m  For 0 < r < 1 and 0 < 0 < 2rr, let S' r and ~o(r, 0) be 

defined as indicated in Corollary (3.11 ). We shall prove that almost surely 

2~r I 
fo fo ep~(r'~ 

which certainly implies the sufficient condition of  Corollary (3.11). By Fubini's 

theorem it suffices to show that 

fo2'~ fo' E(eP~~176 < oo, 

where E(e p~(r,a)) is the expected or average value of  e p~o(r'0) over all possible 

choices of  the arguments {Ok}. Now 

OO 

~o(r, O) = Z ~ok(r, O), 
n=l 

where ~k(r, 0) is the contribution to ~o(r, 0) from the point Ake a~ . From the definition 

of  ~o in Theorem (3.8) and Corollary (3.11) we see that if (1 - Ak)h2(Ak) > 1 - r, 

then 
{ h- I ( )~k)  I 0 -- Okl < 7I"(1 - /~k)h(Ak) , 

~ok(r, 0) = 0 otherwise. 

Thus the expected value of  exp(p~0k(r, 0)) when 0k is chosen randomly is 

1 + (1 -Ak)h(Ak)(exp[ph-l(Ak)]- 1) 

=1  + (1 - + 0 

=1 +p(1  - A,) + O[p2(1 - A,)h - l  (A,)]. 

Moreover, the contributions of  all these A, are mutually independent, and indepen- 
dent of  the other A,, so using 1 + x  < e x we have 

(I-.~,)h2(,~k)> l--r 
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e x p [  Z P ( I - A k ) + c p 2 ( I - - A k ) h - I ( A k ) ]  " 
L(l-A~)hz(xk)>l-r 

However, it follows easily from (4.2) (see e.g. [I ], formula 2.30) that 

Z ( I -  Ak)h_l(Ak)_< c Z (  I At) log_t_ , 1 - -  . < ~ .  
k=l k=l 

So the above expectation is bounded by 

(4.4) cexp  Z p( l  - At). 
( I -A~ )h2 (,~k) > I -r  

The harder part of  the proof is to show that the expected contribution of  the 
remaining Ake iO~ is uniformly bounded. One difficulty is that when ( 1 - At.)h2(A~) < 

1 - r, the functions ~k(r, 0) are no longer independent; rather a specific ~oi.(r, 0) 
depends on the number of  Ase i~ in the dyadic rectangle containing Ake i~ . However, 
the contributions of  z~ in different dyadic annuli 

{ 1 2,1+1} B, = z : 1 - 2,-- 7 _< }z] < 1 - are independent. 

So let us consider a B,, in the range where ( 1 - Ak)h2(At.) _< 1 - r; i.e. 2-nn 2+2e < 

1 - r. By (3.12) a given dyadic rectangle in B,, N Go will contribute to ~o(r, 0) only if 
the number of  Ake iO' in the rectangle, say N, satisfies N log t +" N > ( 1 - r ) 2 " n - I - ,  _> 
n ~+~, since 2-nn 2+2E < 1 - r. In that case the rectangle will contribute at most 

Nn - I -r  to ~o(r, 0). Now let M,, denote the total number of  {Ak} in B,, and let No be 

the largest integer such that No log I+` No <_ n I+*. 
We note that from the assumption that 

fOI ePr log2+2e ( ~ _  r )  dr < oo, 

we must have 

O ( r ) = O  l o g ~  

which implies that Mn <_ cn2 ~ for some c > 1 independent of  n. Moreover, if r is 
large enough, forcing n to be large (since 2 -"n  2+2~ _< 1 - r) we have 

(4.5) n I+~ _> No > 2ceP+ln, 

where c is as in the upper bound on M..  
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Now we need to estimate the expected contribution to exp(p~(r, 0)) from B,, 

which we call E(r, O, n). Clearly this expectation grows with M,, and so to obtain 

an upper bound on E(r, O, n) we can assume that M~ = cn2 ~. Let us further assume 

that B,  A Go intersects s (~ n I+') dyadic rectangles RI . . .Rs .  Denote by xl . . .Xs 
random variables whose values equal the number of  Ake iek in the corresponding 

Rl -.-Rs. With P denoting probability, we have 

E(r,O,n) <_ Z P(xi =ai)~= I exp Z pa in - l -~  
O<ai ai>No 

~ai :Mn 

ko 
<- Z Z P(x,,  : ai,)k=k~ 1 e x p Z p a i ,  n - ' - "  

subsets ai k >No k= 1 

(x,, )',~ c (~, } E,,,, < M. 

However, we note that in the latter sum we have always 

ko 
P (xi, ko = ai,)k=l < 1-IP(xi ,  = ai,), 

k = l  

because we are dealing only with aik >_ No > cn = Mn2 -n, which is the average of 

the {xi}. Thus the events {xik = aik } are inversely corrolated. It follows that 

E(r,O,n) < ~-I 1 + Z P(xi = a i ) e x p ( p a i n - l - ~ ) .  
i= I al >-No 

Thus 

EI/S(r,O,n) <_ 1 + Z P(xl = a ) e x p ( p a n  - l -~)  
a>No 

= l +  y ~  ( / 1 4 , ) ( 1 )  N (1 1"~ M"-N 
U>_No -- 2"]  exp( pNn-l -~)"  

Since M, = cn2", the ratio of  successive terms in the last sum is 

- -  - I - e  

N + 1 2" 1 - e p" 

But N + 1 > No, and so by (4.5) this ratio is less than 1/2. Therefore we can bound 

the sum by twice its first term. A rough estimate of  that first term using (4.5) shows 

that it is bounded by 

(M,,)_..___ u~ _ (cn) N~ -N,- ' -~  (cn) N~ p . - - .N~176176  - - e , ' O  < c, 
No! \2 . ]  No! ( )No 

< c l e  p <_ C2 
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We conclude that 

E1/S(r,O,n) < 1 + c2 < exp c2 , 

and since s < cn 1+', we have 

(4.6) E(r,O,n) < exp c3n l+e . 

Now the quantities E(r, O, n) for various n represent the expected contribution to 

exp(p~(r0)) from the corresponding annuli B,  in the range where (1 - Izl)hZ(z) <_ 
i - r. Since these contributions are independent random variables, we can multiply 
the inequalities (4.6) for various n to obtain a uniform bound 

(4.7) E ~ p~k(r,O) < e x p ~ c 3 n  1+' < co. 
(1-Xk)h2(X~)<l-r n 

In fact, the above estimates were made only for "large" r so that (4.5) would hold. 
However, for "small" r one can trivially obtain an analogue of  (4.7), so this together 
with the bound (4.4) leads to the conclusion that 

E(e p~(r,O)) < ce e•(s) 

uniformly in U, where s satisfies (1 - s)hZ(s) = 1 - r. Now 

h(s) = max { 1, [log2 ( ~ _  s ) ]  TM } 

and so we can choose Cl such that 

h2(s) < c, log2+2~ ( 1 - ~ s )  , s > l /2 .  

If then t is defined by 

c , ( 1 -  t)1og2+2~ ( l ~ t )  = l - r = ( 1 - s ) h 2 ( s ) ,  

we must have t > s for all s > 1/2. Thus for r > 1/2, and for all 0, 

E(e p~p(r,e)) ~_~ ce p~(s) < ce r,~,(t). 
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By a change of  variable, 

dr= [c, log2+2~(1 l~t ) - -Cl(2  + 2e)logl+2E (1 l-~_t) ] dt, 

and we obtain that for all 0 

I l ~11 fa I (7-t) E(eP~(r'~ < c eP'k(t)dr ~ C 2 e pip(t) log 2+2~ dt 
/2 /2 

for some a, 1 < a < 1. By (4.2) the last integral is finite, and this completes the 

proof  of  the theorem. 

5. T r a n s f o r m a t i o n  o f  z e r o  sets  

In this section we present an alternative method o f  dealing with the problem of  

non-thin zero sets, apart from the method of  section 3. The idea is to move overly 

dense concentrations of  zeros to "thinner" areas. What is needed is a theorem, like 

those o f  Korenblum in [7], which will guarantee that, under appropriate conditions, 

if the transformed sequence is an A p zero set, then so is the original sequence. 

(5.1)  D e f i n i t i o n  Let {zk} be a sequence of  not necessarily distinct points in U, 

and m a natural number. An admissible transformation o f  degree m on these points 

is made by replacing them by a single point w0 ~ 0 such that 

(5.2) 1 - Iw01 : ~ 1 - Izkl and largzk - argw0[ < mlr(l - Iw0l) for all k. 

Two such transformations are called disjoint if the sets {zk} which they transform 

are disjoint. 

(5.3)  T h e o r e m  Let {zn} be a sequence in U, and let {w,} be a sequence 
obtained from {z,} by means of finitely or infinitely many disjoint admissible 
transformations of fixed degree m. Then if{w, } satisfies an A p condition of Theorem 
(1.3), (3.2), or (3.8)for some p, 0 < p < oo, it follows that {zn} is an A p zero set. 

P r o o f  We concentrate on the effects of  a single admissible transformation. 

Thus suppose that {zk} is a subsequence of  {zn} which is transferred to the point 

w0 as in (5.2). Now in all of  our theorems, infinite products are constructed in 

which the zero at w0 is included by a factor of  the form 

B ,o(z)S  l (z) 
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as in (1.4) and (1.5). The proofs are all built on the basic estimate from Lemma 

(1.6), with ~0 = wo/Iwol  

Bwo(~)S~Uo ) (z) <_ / 
[ 

( (~)2]. exp cN \lr ' 

s~ z) 

1-1,,,ol < m i n ( ~  �88 

otherwise. 

Thus, if we can replace Bwo(z)S(U,o)(Z) by a function which vanishes at {zk} and 
satisfies exactly the same estimates, and if we do likewise for all the {wn}, then 
any of  our theorems which apply to {wn} will automatically apply to {zn}. In fact 

we shall replace Bwo(z)S(w~ ) (z) by 

= s w o,,z, 

O f  course, the estimate IF(z)l _< S~,~l(z) holds everywhere, so it remains only to 

prove that 

( : = �9 
IF(z)l _< exp  ~ I~0 - zt / j '  

I 

where c will depend only on m. 

1 -1w0l  < m i n ( 1  1 )  
1 - I z l  - 

N o w  

{ 1 fo 2"~eio+z ) S(ffo) (z) = exp ~ d u (  O) ~ 

where d#(O) = AdO on the interval {e i~ = IO - argwol _< Nrr(1 - Iwo[)} and zero 

elsewhere. Since 1 - [wol = ~ 1 - Izkl, 

S(U) ~o (z) = 1 -Isk(~) ,  

where Sk (z) corresponds to the measure 

~ - I z k l  d#. 
auk - - I w o l  

We now turn to the estimation of  Sk(z)Bzk (z) for a given k. For simplicity let 

zk = t3; zd l z k l  = ~ and define 

S(z) = exp { ( 1 -  [ / 3 1 ) ~ _  Zz} �9 
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As in the p roof  of  L e m m a  (1.6) we have 

(5.4) logBz,(Z) + logS(z) < ( 1  -1/3['~ 2 _ 1(1 Izl)- �9 _ c k.-~-S-~, ] when 1 -1/31 < - 

We continue by est imating 

[ l o g S k ( z ) - l o g S ( z ) [  when 1 - ] w 0 [  < m i n ( 1  1 )  
1 -  Iz--------~ - N ' 4  ' 

However,  

a f ' ~ 2 (  e i ~  ( + ~ ) d 0 ,  l o g S k ( z ) - l o g S ( z )  = ~ , ~ e - ~ -  z - 

where 

al,2 = argwo +NTr(1 - [wol) and a -  a 1 -1/31 
N 1 - Iwo l  

Thus 
a f,~2 2z(~ - ei~ 

l o g S k I z l  - l o g S I z / =  ~ , / - ~ _  z ~ - 3 ~ - - z / '  

and so 

[ logSk(z) - log S(z)l 
COt[O~ 2 --  Oq [2 

min I e i ~  - zl l~ - zl" 
a1<0<c~2 

However,  since 1 - Iz[ > N(1 - Iw01), which is o f  the order of  magni tude  o f  

[ai - arg w0[, i = 1,2, and since (5.2) holds, we can deduce that 

min [e i~ - zll~ - zl ~ c[~0 - z] 2, for a constant  c 
a,<O<a2 

which depends only on m. Since we are working with a fixed m, we can conclude 
that 

[ logSk(z) - logS(z)l < c ~1~2 - a l  I 2 _ cN(1 - IMI)(1 - Iwol) 
I~0 - zl 2 I~o - z ?  

Combin ing  with (5.4) we obtain a similar est imate for I logBzk (z) + log Sk(z)l. 
Finally, we have that whenever  

<min( _ 
1 - 1 z l  - ' ' 



SOME CONDITIONS ON B E R G M A N  SPACE ZERO SETS 343 

then 
I I  B~,(z) s(N)(z) <_ exp~--'~ logB~, (z )+ logSk(z )  

k k 

exp x--, cN ( 1 / _ _ ,  -Izkl)(1 -Iw0l) < 
, I~0 - zl 2 

-_ exp [cN ( 1 - -  lw~ ) 2] 
Ir - zl J J ' 

which is exactly the estimate we needed to prove. 

6. N e c e s s a r y  c o n d i t i o n s  

In this section we wish to develop some strong necessary condit ions on A p zero 

sets. In fact, the main results are not new, as they appeared in the author ' s  doctoral 

thesis [5]. However,  they were never published in journal form. So we will bring 

them here, with outlines of  the proofs.  Then we shall add some  new conclusions 

f rom these results. 

First let f be analytic in the unit disc or in a sector thereof, and assume that 

f ( 0 )  ~ 0. I f  01 is such thatf(re i~ ) is defined and nonzero for, say, 0 _< r < r0 then 

for 0 _< r 1 < r0 we define g(rl, 01) = the net change in a r g ( f )  a long the ray 0 = 01, 

be tween r -- 0 and r = r l .  Thus 

fo"' O[argf(rei~ for~ {O[loglf(rei~ dr 
(6.1) g(rl, Ox ) = Or O0 o=o, -~" 

Finally, let 

(6.2) 1 fo rl g(r, Oi)dr (O<rl <ro). h(rl,01) = ~ r 

With this notation we present a generalized Jensen formula for a sector. 

(6.3)  L e m m a  L e t f  be analytic in the closed sector 01 < arg z < 02, Izl _< ri 

with 
02 -- Ol 

0 < 3 -  27r < 1. 

Assume that f (z) r 0 on the boundary rays of the sector and let {zk}l u, be the zeros 
o f f  in the interior, repeated according to their multiplicity. Define g and h as 
above. Then 

(6.4) lfo~ N rl = h(&,Ol) - h(rl,02) + ~ log If(rlei~ 3 l o g  I f (0) l  + ~ log 
k= l  l 
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The proof is a direct adaptation of the classical proof of Jensen's formula using 
the argument principle. 

In order to apply this lemma to A p functions we need estimates on the function 
h. The next two lemmas provide these estimates. 

(6.5) L e m m a  Let f E N, the Nevanlinna class; i.e., let f be analytic in thedisc 
with 

(6.5) 

2~ 

I[fllN = l i m  1 / r---*l ~ l~ ]f(rei~ < oo. 

o 

Suppose that f(O) ~ 0 and assume that there is some value 0 = Oo such that 
f ( re  i~176 ~ 0 (0 < r < 1 ) and a constant M with 

Ih(r, Oo)l < M  f o r O < r  < I (hasin[6.2]) .  

Then for  all 0 and r for  which h is defined 

h(r,O) < M + 211flIN + 2 log- I f (0 ) l -  

P r o o f  Let {zk} denote the zero set off ,  with repetition according to multiplicity. 
Now if for some 0, f ( re  i~ ~ 0 for 0 < r < r0, and if/3 = (0 - 00)/27r, then by 
Lemma (6.3), 

h(r, O) = h(r, 00) - /3  log I f(0)l - 

Thus 

r lf0o~ E log ~ + ~-#~ 
0<lzkl<r 

0<arg zk<00 

log [ f (rei~ 

r 1 f027r Ih(r,O)l < M + [ l o g [ f ( 0 ) l l +  ~ log]-~ + ~--~ Iloglf(rei~ 
Izkl<r 

But by the ordinary Jensen formula 

r m 

log Izkl 
Izkl<r 

lf02~ - -  - - log If(O)l + ~ log f(rei~ 

and so we obtain that 

Ih(r,O)l <_ M + 2 l o g - I f ( 0 ) l  + 211flIN. 
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(6.6) L e m m a  Let f E A p, 0 < p < ~ ,  and assume that f (z)  ~ O for Izl < 1/2. 
Then there exists a constant M depending only on f such that 

Ih(r, 0)l < M on all rays where f does not vanish. 

P r o o f  For 0 < 0 < 27r, let Do denote the disc Iz - �89 i~ < 1, and let f0 denote 

the restriction o f f  to Do. It is well known, and easily seen, that each f0 belongs to 
the Nevanlinna class for Do, and that 

(6.7) II fo]lN <- Mo, Mo independent of 0. 

In Do we define our two auxiliary functions, denoted by Go and Ho, and we identify 
points in Do by their polar coordinates in the full unit disc. Note that where defined 
Go(r, O) equals the net change in argf0 along the segment between lei~ (the origin 
in Do) and re iO. Thus 

Go(r, O) = g(r, O) - g( �89 

Similarly 

(6.8) Ho(r,O) = fr/z g(t,O)t ~-g(1/2'0)1/2 dt. 

Now by Lemma (6.5), if r > �89 

(6.9) tHo(r,O)l <_ sup [h(r,O)l + 21[fotlu + 21og -t [f(lei~ 
0<r<l /2  

Sincef  is nonvanishing for Izl ~ 1/2, it follows from the definition (6.2) that h(r, O) 
is uniformly bounded for all r < �89 and all 0, and clearly log- If(�89176 is uniformly 

bounded. Together with Lemma (6.5) and (6.7), this shows that there exists MI 

such that 

(6.10) [Ho(r,O)l<M1 f o r a l l r >  l / 2 a n d 0 ,  

where f  does not vanish on the ray argz = 0. 
Now we turn to a bound on h, using our bound on Ho. However, for r < �89 h is 

trivially bounded, and if r > 1/2 

h(r ,O)=h(1/2 ,0)+ f '  g(t-'tO).dt, 
/2 
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so we need only bound the last integral. However, 

f r  g(t,O)dt= f r  g ( t , O ) _ g ( 1 / 2 , 0 ) t _ l / 2 d O +  f r  g(1/2,0)dt. 
/2 t /2 t 1/2 t /2 t 

By (6.8) and (6.10) the first integral is uniformly bounded, and since g is continuous 
for Izl _< 1/2 the second integral is clearly bounded. Thus the proof of  the lemma 

is complete. 

(6.11)  T h e o r e m  Let f C A p 0 < p < ~ ,  and let f(O) r O. Then there exists a 
constant M depending only on f and p such that the following conditions hold: If  
{ Z k }  , 0 < [ZI[ ~_~ ]Z21 <~ " ' "  denote the zeros of f ,  counting multiplicity, in a sector 
{z :01 _<. argz < 02} with 0 < (02 - 01)/2rr =/3 < 1, thenforO < r < 1, 

(i) ~J-~lz~l<r l~ < M + ~ fo~ 2 log ]f(rei~ 

(ii) I-[iz, l<_rr/Izk[ < M { fo~ 2 
) f 4 / p  

f(re'~ < M { 1/(1 - r)~/P}. 

N MNO/p (iii) ForevetyN,  I-Ik=l l/(Izkl) -< 

(iv) If  the full zero set o f f  is thin, then the expressions r/Izk [ in (i) and (ii) can 
be replaced by 1/(Izkl). Moreover, with ~ as in Theorem (1.3) one has for each m, 

l fo~ l fo~ ~(r, O, m)dO <_ Cm + -~ log lf(rei~ 
i I 

, { '  } 
<_ c m + log ( 1 - r ) ~ / P  ' 

where cm and c~ depend only on f ,  p and m. 

P r o o f  I f f  has no zeros on the rays 0 = 01 and 0 = 02 for Izl <_ r, and no zeros 
in the disc Izl __ 1/2, (i) follows immediately from Lemmas (6.3) and (6.6). For 
genera l f  divide by a finite Blaschke product o f f ' s  zeros of  modulus r _< 1/2, and 
use a limit process to take care of  zeros on the bounding rays; namely approximate 

the given sector by sectors in w h i c h f  is nonzero on the bounding rays. To obtain 
(ii) from (i) simply write 

1 f0~ log ,f(rei~ = /3 fo ~ log dO p If(rei~ - Ol 
i I 

and exponentiate (i) using Jensen's inequality together with the fact that ( ~ )  ;~ 
is bounded as/3 ~ 0. To prove (iii) we note that (ii) actually implies a more general 
inequality; namely, for every N and every r, 

(6.12) 1-I ~ < M If(reiO)lp . 
k=l  
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In particular, if N = N(r) = the number of  {zk} in Izl < r, then (6.12) is (ii). 

However, for N > N(r) we have simply added to the left side of  (ii) factors less 

than 1, and for N < N(r) we have removed factors greater than 1. Thus we can 

relate to (6.12) as an inequality valid for a fixed N and variable r. It follows that 

] ( r ~PIr 
fo h k,[~k[,I rdr<_ MP/~[[f[[~. 

k=l 

By integration and simplification we obtain 

proving (iii). 

U 1 
IX ~ <-- Mllfllfl(gp/fl + 1)) ~/p < cN ~/p, 
k=l 

The first claim in (iv) follows from the fact that for thin zero sets we have only 

0 (T-~-r) zeros of  modulus less than r. To prove the second claim, in view of the 

first claim and the result of  (i), it is enough to show that the expression 

(6.13) • [~ l 21r Jo, - log 
Iz* l -<r 

0j _<arg zk_<02 

is uniformly bounded. However, by (1.13) we have 

(6.14) 2--~ 1 f0~ f0 ~ O, m)dO = dtzt,m(O), 
I I I z t i < _  r 

where the sum is over all zeros {ze} o f f  in the disc Izl ~ r. Now for those ze in the 

sector S = {z : Izl _ r; 01 _< arg z < 02} which are not too close to the bounding 
rays, i.e., those ze E S which satisfy 

largze -Oil >mTr(1 - I z d ) ,  i =  1,2, 

the full support of dlze,m is contained in [01,02], and so the contribution of the 
corresponding term to the integral on the right side of(6.14) is the full mass ofd#e,m, 
namely 1 - Izel. Regarding the remaining ze in S, their closeness to the boundary rays 

of S, together with the thinness of the full set {ze}, guarantees that there can be only 

boundedly many such ze in each dyadic annulus {z : 1 - 2-"  < Izl < 1 - 2 -" - ]} .  
Therefore, the sum ~ foe, ' d#e,m < ~ 1 - Izel over these ze is uniformly bounded. 
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Similarly, any contribution to the sum in (6.14) which comes from outside S can 

only come from those zt satisfying 

l a r g z e -  Oil < rmr(1 -Izel),  i =  1,2, 

and as above, their contribution is uniformly bounded. We conclude that 

lf0~ 2---~ ~(r,O,m)dO - ~ 1 -Izkl < M, 
t zkES 

and so the boundedness of  (6.13) follows immediately since for the full zero set 
{zk}, which is a thin set, we have 

1 
~-'~ I log ] - ~ -  (1 -Ize l )  I< o~. 

This completes the proof of (iv). 
We note that condition (iv) implies that in some sense qo(r, 0, m) is "close" to 

log If[ for everyf E A p whose zero set is thin. Thus one might reasonably conjecture 
that the sufficient condition of  Theorem (1.3) is also necessary. We have so far 
been unable to resolve that conjecture. 
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