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Abstract

In the present paper, we introduce Szdsz-Durrmeyer-Bézier operators M, .(f»z) , which generalize the
Szlsz-Durrmeyer operators. Here we obtain an estimate on the rate of convergence of M, .(f,z) for func-
tions of bounded variation. Our result extends and improves that of Sahai and Prasad™ and Gupta and
Pant™,
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1 Introduction

For a functions defined on the infinite interval [0,00), the Szdsz-Mirakyan operators
S.(n€ N) are defined by

< ]
S,.(f,l') = Z.pn.l(x)f(k/”)s where P,,.‘(x) = (711,‘)

=0 k1
The rate of convergence of these operators S, was discussed in [1].
Recently X. M. Zeng"” defined for each a>>1, a Bézier variant of Szdsz-Mirakyan op-

erators by

oo

S..(fr2) = D QAx)f(k/n), (1.1)

k=0
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where QX (z)=J*,(z) —J* 1, (z) and Ep_‘j(x) =J,,(z) is the sum of Szdsz basis func-

=k
tions.

Kasana et al. " and Mazhar and Totik™ independently introduced the Szdsz Durrmey-

er operators to approximate Lebesgue integrable functions on the interval [0,00), as

M.(f,z) = an.,,(x)J:p,_,(z)f(t)dt, z € [0,00). 1.2)

k=0

We now introduce the Bézier variant of these Szész-Durrmeyer operators, for a1,

we define the operators

M,.(f12) = n2Q0@ | poaf@)de. 1.3

k=0

Obviously, M, .(1,z)=1 and particularly when a=1, the operators (1. 3) reduce to the
usual Szész Durrmeyer operators defined by (1. 2) and are studied in [2],[3],[4],[5],
[6],[8] and [9] etc. For further properties of Q5 (z) and J, ,(x), we refer the readers to
[10].

In [10] Zeng studied the operators (1.1) and estimate the rate of convergence for
bounded variation function. In the present paper, we obtain the rate of convergence for the
generalized Szdsz-Durrmeyer-Bézier operators M, ,(f,z) on functions of bounded varia-

tion.
2 Auxiliary Results

In this section we give certain results, which are necessary to prove the main result.

It is well known that the basis function p, ,(x) corresponds with the Poisson distribu-

[3. Lemma 2.1]

tion in the probability theory. Gupta and Pant obtained the inequality;

2
Paa(x) QMJ'Z—H, forall =z« € (0,00) and %,n € N,
2 Vnx
Gupta et al. ™) derived the improved inequality
Pua(x) < 3 , for £ € (0,00).
2 vanx

In (10, Lemma 3] Zeng established a sharp estimate as follows:
1

v or nzl’

(12]

Poa(D) < for > % and all k,n € N.

Very recently Zeng and Zhao"'* improved these results and obtained the exact bound

as follows:
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Lemma 2. 1'%, Let j be a fized non negative integer and
_ G YD e

= i e .
Then for all k2 and x€ (0,00) there holds

H(j)

pua(x) SH(G)

1
Ve
Moreover, the coefficient H(j) and the asymptotic order n~**(for n—=o0) are the best possi-
ble.
Since rgl)ach(j) =H(0)=1/+2¢, Lemma 2.1 implies p,,(z)<<1/ v2enz, for each

integer £2>0. This results and application of the mean value theorem yields.
Lemma 2.2. For each integer k=20, there holds the inequality

a

i (1) S ap, ,(z) < N

Lemma 2.3. For each integer k>0, we have

- i
"J; P..k(t)dt = ZP..,'(I)~

FT)
The proof of this lemma is elementary.

Lemma 2. 4.  Let the m-th order central moment be defined by

Mo (G = 27,2) = Tn®) = 0 25,4 (D pa ()t — 22

k=0
Then we have
Tool@) =1, T, () = =,
nT, (@) = 2T, (z) + (m + DT, (z) + 2maT, ., (x), m=1.

From the above recurrence relation, we have

T () = %(x + % .

Moroever, for nz21/x, we have
M, (¢ — 2, 2) =T, @) <
Throughout the paper, let

K,.(z:) = n > Q0 (@)p,.0),

k=0

and
A (z,t) = J‘ K, . (z,u)du.
0

In particular



84 Analysis in Theory & Applications 19:1, 2003

A._‘(x,‘oo) = J.:K,,.(I’u)du =1,

Lemma 2.5. Letn=1/x, then
(i) For 0 y<<x, we have

7 4a - x
etz <

(i) For z<<z<{co, we have

J‘”K...(I y)dt < ;é_a_-__;:)_r

Proof. Using Lemmas 2. 2 and Lemma 2. 4, we have

[x. ,(.z:,t)dt<J "),K @l = ML (¢ — 2,2
< = ),M. (= 2),x) < ,Tf_%{'gg-

The proof of (ii) is similar.
3 Main Result

In this section we prove the following main theorem.
Theorem 3.1. Let f be a function of bounded variation on every finite subinterval of
[0,00). Satisfying the growth condition | f(¢) | <Ke’ ' on (0,00), for some constants K,

>0. Then for x€ (0,00), a1 and n}max{%,liﬁ} » we have

1 a
M) = {7/ ) + /e o) l< =S ) = fa )
+=E IZ“ZV:’:Z (g + 1L 2K (3.1)
kw] vnx

where
f@—fz—-), 0<t<z,
8:(t) =40, t =z,
f@—flz4), z<t< oo,
and Vi(g,) is the total variation of g.on [a,b].
Proof. Following [11], we obtain

1
Moufi0) = (pf e +) + ipfe o) |

< |Mu.-(gx9-r)| + %‘M._.(Sign(t —_ I) 91') f(x _) I. (3. 2)
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First, we estimate M, (sign(¢t—2x),z). There holds

M, (sign(t — x),z)= niQﬁfi(x)(rp,‘,,(t)dt - j:p,,_,,(t)dt)

k=0

= n33@@)| 2] puacoris = 2f g

= ZniQi‘_'i(z)rp.,.(t)dt -1

| 1)

Using Lemma 2. 3 and the methods as in [3], we have

M, (sign(t — z),z)= ziQ:‘:ux)( Db —1

k=0 j~=0
=2,0,,(x) > Q%) — 1
j=0 k= j

= 2> p. (T8 @ — 1.

j=0
Thus
M, (Sign(t — 2,0) + 5 = 28,02, () — 727 > Q%P @),
j=0 j=0

since EQ:’; (z) = 1. Using the mean value theorem, we obtain
=0

QeV(z) = JH — T (1) = (a + Dp, ()& (z),
where J; ;(2)<§; ;(x)<J;,+1(z). Hence

= 2> ., (0) (o, (x) — &,(0))

‘Mm(sign(t —1),z) + Z ; i ’
j=0

< Zan.j(x)(J:.j(x) - J:.j+1(x))

j=0

< 20D 4,2 (J0j(2) — J, 01 (D)) = 20 92 ().

j=0 j=0

Using Lemma 2. 1, we get

(3.3

lM...a(Sign(t —x),z) + a—1 \ - 2@

a+1 V2enz

In the second part of the proof we estimate M, ,(g.,z). We represent it by four integrals

M, (g.x)= fK,,,(x,t)g,(t)dt = (L + L + L + j’ )K”.,.(x,t)g,(t)dt

1 z 3 14

=E, +E,+ E, +E,, say, (3.4)
where I, =[0,z—z/ v n ), ,=[2—z/v7n » z+z/vn ) s Iy=[x+z/ V7 ,2z) and I,=

[2z,00). We first estimate E,, Writing y=x—z/+ n and using Stieltjes integration by
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parts, we have
E = f:g,(t)d,(k...(x,t)) = g.(MA, . (z,y) — J:A...(x,t)d,(g,(t)).
Since |g.(3)[<V3;(g.), it follows that
Bl S Vi(@0A,u(20) + [ e (= Vite).
By using Lemma 2. 5, we obtain

. dez ez’ 1, L.
IEII < V_o,+ (gz) n(.z: — y)z + n Io (1_ _ t)zdt( Vc (g;)).

Integrating by parts the last term, we have after simple computation

4a. x[V5(g,) J’ Vi(g.)
|E1| < n [ Iz + 2 o (x _t)s]-

Now replacing the variable y in the last integral by z—xz/+ n , we obtain

EN<ESwe,, . 3.5)

k]

We proceed with E,. For t€[z—z/vn sxz+xz/ v n ], we have
g8 = 1.(8) — g:(0) | SVI¥¥ 7 (g.)

and therefore

x+x/ Ln
|E,) SV (g /_d,(/l,,‘.(x,:)).

x—x/ I

(4
Since J' d, (A, ) (z,t)) < 1for (a,6)C[0,00), we conclude

|| S Vit i) < 23wty e (3.6)

Rl

Next, we estimate E;, by setting z=zx+z/+ n , we have

Ea= ﬁKw(x")gz(t)dt =— fg,(t)d‘(l — 4,..(z52))

== .21 = 4,.(2,20) + £ = Az + [ 1= K@),
Since [g.(t) | =|g.(t)—g.(z) |<Vi(g,) it follows, by Lemma 2.5,
1B <o) + G~ Wi + [ ¢ — Vi )
Again integrating by parts, we derive
4ax

2z
1B < EE{2e v o) + 2 Vicg G — o),

Thus arguing similarly as in the estimate of E,, we obtain

1Es| < %ZV:“’ T (g.). @G3.7)

b=l
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Finally, we estimate E,. By assumption, we have |g.(¢) |<<2Ke’'‘, for t=>z. Application

of Lemma 2. 2 yields

co

205008 | < 2Ka w3 ,4 @ pra

A= =0

|E4i =

Furthermore, for 1222x>>0, we have (¢—x)/x>1 and application of the Schwarz inequali-

ty yields
2Ka it Bt
|E‘ |< nn.lpn.k(x) P.,k(t)(t - I)e dt
z 2r
hind oo 1/2 hind oo 1/2
B3 0s @ paa ¢ = %) (13,0 [ pra @]
x k=q 2x k=0 2x

< %‘( M. ((t — 2, 2)H(M, (&, 2)) 2

For n=24>0, we have

haid k+1
Mu-l(ezp"’x) = g( n —n ZB) pn.‘(x) < (

Therefore by Lemma 2. 4, we obtain

g oo 28 25 < 2

4 v 2Ka
|E,| < —2==e~ (3.8)
Y Vaz
Collecting the estimates of (3.5) to (3. 8), we have
+ 12a - z+z/ TR 4 2 Ka 28-x
M, (g.,0) | STV T (g 220 (3.9
& = nz g & vnx

Finally, taking advantage of (3.2), the estimates (3. 3) and (3. 9) imply the required re-
sult (3.1). This completes the proof of the theorem.

Remark 2. We can estimate the rate of convergence for the operators M, . in terms of
Chanturiya’s modulus of variation as obtained by the authors [4] for modified Szész-Mi-
rakyan operators.
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