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Abstract

Let M be a compact minimal hypersurface of sphere S**'(1). Let M be H(r)-torus of sphere S™1(1).

Assume they have the same constant mean curvature H, the result in {1] is that if Spec®(M, g) =Spec®(M, g),

n—1

n-— L . == .
then for 3 < n < 6,12 < orn > 6,r% > — then M is isomeiric to M. We improved

the result and prove that: if Spec®(M,g) =Spec®(M,g), then M is isometric to M. Generally, if
Spec?(M, g) =Spec?(M,g), here p is fized and satisfies that n(n — 1) # 6p{n — p), then M is iso-

metric to M.
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Let (M,g) be a compact oriented n dimensional Riemann manifold, AP be the Laplace

operator acting on p-forms on M. Then we have its discrete spectrum, which is denoted it by

Spec?(M,g) = {0 < A} < A§ < -+ < 400}

One important problem on spectrum is the following: Let (M, g) and (M, g) be a compact

oriented n dimensional Riemann manifolds with Spec?(M,g) =Spec?(M,g), then is (M, g) iso-
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metric to (M, g)? This problem is proved to be wrong by J.Milnor in 1964. But when (M,G)
and (M, g) are some special Riemann manifolds, under certain conditions, we can prove that

(M, g) is isometric to (M, g).
A recent result in [1} is as follows:

Theorem A. Let M be an H(r)— torus and M be a compact hypersurface. Assume that

they have the same constant mean curvature H and

Spec’(M, g) = Spec®(M, g).

—~1 -1
Then under the following conditon: 3 < n < 6,72 < n orn > 6,7 > RT, then M is

isometric to M.

We improve the result and obtain the followign conclusions.

Theorem 1. Let M be an H(r)-torus and M be a compact hypersurface. Assume that
they have the same constant mean curvature H and

Spec? (M, g) = Spec? (M, g),

here p is fized and satisfies that n(n — 1) # 6p(n — p). Then M is isometric to M.

Theorem 2. Let M be an H(r)-torus and M be a compact hypersurface. Assume that they
have the same constant mean curvature H and Spec®(M, g) =Spec®(M, g). Then M is isometric
to M.

n
Lemma 18!, Let Ai(t =1,2,--- ,n) be real numbers such that Z Xi = 0. Then

i=1

addition to the order or the opposite orientation.

Lemma 2. Let \;(i =1,2,---,n) be real numbers such that

> xi=0, zn:)\%zA.
i=1

Then

Xn:/\4<n2—3n+3A2
~ T an-1)

and equality holds if and only if (n — 1) of the Als are equal.
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We have the Minakshisundaram formula:

QO n )
Ze'*ft ~ (4mt)% Zaft’, t— 0%,
i= =0

n
af = Vol(M),

p
al =/ c(n,p)r * 1,

M

a; = / (c1(n,p)p* + ca(n, p)|Ricl® + ca(n, p)|RI%) # 1,
M

where p, Ric, R are Scalar curvature, Ricci curvature tensor, and Riemann curvature tensor

respectively.

Later, we will denote c¢;(n,p) by ¢;,c(n,p) by ¢,

1 n n—2
c= = - ,
p p-1
1 n 1| n—-2 1| n—-4
€= o3 - = + 5 )
72 6 2
p p-1 p-2
1 n 1| n—2 n—-4
Cy = —% + ‘2‘ - 2 N
P p—1 p—2
1 n 1| n—2 0 n-—4
C3 = —— — +
180 12
P p—1 p—2
Proof of Theorem 1. For M, we choose a local adapted orthonormal frames {ej, ez, -+ ,en}
A1
such that the second fundamental form of M is at the point of p. By simple
An
calculating, we get
p=n{n-1)+nH?-3§, 1)

Ric =n(n— 1> +2(n - )n’H* - 2(n = 1)S+ Y X + Sn®H> = 2mHY M, (2

=1 i=1

|RIZ:2n(n_1)+252_22/\g+4n2H2—4S. 3)

i=1
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Weset g =S —nH? u;=H - \{(i=1,2,---,n), then we have
p=n(n-1)+¢, (4)

Ric2=n{n-1)2+Y L M+@rn-4HY "

i=1"" =1 z

(5)
+[(n®* —6n+6)H? - 2(n - 1)]p + (n — 1)>nH?*(H? + 2),

|R? = 2n(n— 1)+ 20>+ (4nH? — 12H? - 4)p+8H > X -2 M +2n(n—1)H*(H?+2). (6)

i=1 i=1
Similarly, we choose a local field of adapted orthonormal frames {&;,&;,---,€,} in M such
that {€,} and {&, - ,&,} are local field of orthonormal frames of S'(v/1 —r2) and S™!(r)
respectively. By choosing {€1,&,--- ,&,} propertly, we can assume that the matrix of the second

fundamental form of M is diag(—r/v1 —r2,¢~'v/1 = r2I,_1) at every point of M. We denote

the Riemann curvature tensor, the Ricci curvature tensor and scalar curvature of M by R, Ric, 5

respectively.

We set
$=5-nH =5-nH,

where 5 and H are the length of the second fundamental form and mean curvature respectively.

Since Spec®(M, g) =Spec®(M, g), we have
Vol(M) = Vol (), / p¥l= /_p* 1, 1)
M I3

/ (c1p® + c2|R|? + c3|Ric)?) x 1 = /___(clﬁ2 + 2| R)? + c3|Ric)?) * 1. (8)
M 1§

/M<p*1=/7¢*1. ®)

Using (4),(5),(6),(8) and (9), we easily get

Using (7) we get

/ [(c1 + 2¢3)? + (ca(2n ~ 4) + 8c3) HZU + (c2 — 203)Zu4] *1
i=1 i=1 " (10)
- /__[(c1 +2¢3)8” + (c2(2n — 4) + 8cg)H En? +(ca—2e5) Y @) ¢ 1
M i=1

i=1

If (c2(2n — 4) + 8¢3)H > 0,(e2 — 2¢3) > 0, using (9),(10), lemma 1 and lemma 2, we have

/ {(c1 + 2¢3) + 203)nn(—n3il:_) 3 %[02(271 —4) +8cg)f(n = 1) — nr?|(n — 2)}¢? x 1
< /‘M‘{(Cl + 2¢3) + (e2 QC3)T%-7}—:-)—3 + = ! [cz(2n 4) + 8cs)((n — 1) = nr?](n — 2)}3° * 1.

(11)



- 292 - Analysis in Theory and Applications 20:3, 2004

On the other hand, we have

/ {{e1 + 2¢3) + (e2 263)__(__3__”1'%§ + %[02(271 —4) +8c3)[(n — 1) — nr?)(n ~ 2)}p? * 1
o _
2 /-—{(Cl + 2¢3) + (e2 2C3) 3”:' 3 + l[cz(2n —4) +8¢s][(n ~ 1) = nr?)(n - 2)}3?% * 1.
1] ) 2
(12)
Using (11),(12), we get that if
n?-3n+3 1

¢1 + 2e3 + (c2 — 2c3) + §[c2(2n —4) +8c3)[(n — 1) — nr?)(n - 2) £0,

n(n—1)

wehave/ goz*l:/ B x 1 if
M M

e+ 2¢5 + (cg - 2c3)"1(“n‘°’—7”1*-;—3 Slea(2n ~ 4) + 8esll(n — 1) — nr?)(n — 2) =0,

we have

n-2
2n —4) + 8cg) H ———==—p=*1
/ (c2(2n — 4) + 8c3) DY i

/ [(c1 + 2¢3)® + (ca(2n — 4) + 863)HZU + (ez — 2¢3) Zu ]*1
1—1 i=1 (13)
/ [(e1 4 2¢3)P* + (c2(2n — 1) + 8c3 HZu {c2 ~ 2¢3) Zu

i=1
— 2 8 H
/ (cg( n ’I') + 63) \/__(p x1.
USing (9), we know

n -2 n—2
—_——p* ]l = c2(2n —4) + 8¢c3)H ————=-p % 1.
nrv1 —7"2('0 /M( 2( ) 2) 2nry/1 —7‘2('0

Note that all the inequalities hold, we get after remuneration if necessary

/ {c2(2n ~ 4) + 863)H
M

uy = (n-1) = Up = = Uy = — ! = -1
o an-D7 T T Gm I ® YT Ay
s0 we have
N o= H _ T R
1= -ul—-———m, Up = =Up = , .
If
(02(272. —-4)+ 8c3)H 20, (cz - 2¢3) < G,
or
(c2(2n —4) +8c3)H 20, (c2 —2¢3) >0,
or

(62 (2n - 4) + 863)H 20, (02 - 203) >0,
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the same as the above, we have the same result.
From [3] we know that M is isometric to M. This completes the proof of Theorem 1.

Proof of Theorem 2. If n = 1, we know Theorem 2 is correct from [1}; if n # 1.n(n-1) #0
satisfies the conditions of Theorem 1, so Theorem 2 is correct. This completes the proof of
Theorem 2.
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