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Abstract 

We extend the concept of frame multiresolution analysis to a locally compact abelian group and use 

it to define certain weighted Banach spaces and the spaces of their antifunctionals. We define analysis 

and synthesis operators on these spaces and establish the continuity of their composition. Also, we prove 

a general result to characterize infinite trees in the above Banach spaces of antifunctionals. This paper 

paves the way for the study of corresponding problems associated with some other types of Banach spaces 

on locally compact abelian groups including modulation spaces. 
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1 In t roduc t ion  

The concept of multiresolution analysis was originally introduced by Mallat [Mal 89] in 

1989.This technique has provided a new tool for the study of many problems in the space vari- 

ables associated with frequency changes. Such problems usually take the form of the approxima- 

tion of general functions by the sequences of simple functions generated by the multiresolution 

analysis. Mallat (loc.cit.) and Meyer [Mey 92] have studied in detail various applications of 

multiresolutions analysis in Euclidcan spaces. 
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In a recent paper Galindo and Sanz [GS 01] have generalized the idea of multiresolution 

analysis to a fairly general locally compact abelian group. They have demonstrate that the 

spaces of integrable functions LP(~),  1 <_ p <_ ce, and the space of complex Radon measures 

M(~) can be constructed in terms of multiregolution analysis using the concept of 'infinite trees. 

Benedetto and Li [BL 98], o'n the ~ther hand, have developed the theory of frame multires- 

olution mmlysis ( F  M R A), on the real line, which provides a new mathematical tool for the 

study of signal analysis. 

In the present paper our aim is to extend the concept of FMRA on a locally compact abelian 

group G with a special structure and use it for the study of infinite trees in certain Banach spaces. 

In section 2 we present the notations and basic definition for use in the sequel. In section 3 we 

define weighted Lebesgue space on G with moderate weight functions and point out some of their 

basic properties. 

In section 4, motivated by the work of Benedetto and Li [BL 98], we develop the notation 

of frame multiresolution analysis (FMKA) on a locally compact abelian group having a special 

structure and in the next section we use it to define a coefficient mapping on the lines of Galindo 

and Valladolid [GV 01,p .863]. Also, we define Banach Spaces 7/~(G), 1 <__ p _< oo, where w 

being a moderate function on G, so that the continuous embedding property hold 

H~(G)~+L2(G)~-+~(G), 

hold true, where 7~(G)  is the space of continuous conjugate linear functionals (anti-functionals) 

on the space 7~(G).  

Theorem 5.1 provides a result about the continuity of an operator on the space 7~Pw(G), 

while Theorem 6.1 deals with the continuity of its adjoint operator. Section 6 is devoted to the 

study of the continuity property of the composite operator of sections 5 ajad 6. Ifi secti6n 8, we 

prove a theorem to characterize on infinite tree in the space 7-/~(G), 1 _< p <_ c~ while in section 

9 imposing additional convergence conditions on the coefficients we obtain the corresponding 

results for the space 7~(G).Our result in fact, are more general than the corresponding results 

of Galindoand Valladodlid [ GV 01].This paper paves the way for the study of corresponding 

problems associated with some other types of Banach spaces on locally compact abelian groups. 

2 Notat ions  and Basic Concepts  

Let G be a locally compact abelian group composed of a sequence (G,)nez of subgroups 

satisfying the following conditions: 

(i) G ,  is open and compact for all n 6 Z, 

(ii) Gn C Gn+l, 

(iii) U.ezGn = G, 
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(iv) N G n  = {0}, 

where Z is tile set of all integers. 

As pointed out by the Galindo and Valladolid [GV 01, p.860], the condition (iv) can be 

replaced by the equivalent property: 

(iv') (G,~)nez is a base of neighbourhoods at 0. 

By virtue of the condition (i) each quotient group G,,+t/Gn is finite, which implies that 

G/Gn is countable for all n C Z. Let (Gn,j)jes be the cosets of Gn, J being an index set. 

3 W e i g h t e d  L e b e s g u e  Space  on  G 

A function u : G --+ R+ is called a submultiplicative weight function on G provided the 

following conditions hold : 

(i) u(0)  = 1. 

(ii) u(x + y) <_ u(x) u(y), for all x, y C G, where R+ is the set of all positive numbers . 

A locally integrable function w : G ~ R+ is known as a moderate weight provided there 

exists a submultipliacative weight function u on G such that  

w(x+y)<_u(x)w(y) for all x, y e G .  

Without  loss of generality, we may assume that w is symmetric and continuous. 

We denote by L~(G),  1 _< p < ~ ,  the Banach space of all measurable functions f with 

respect to the norm 

II f llp:.=ll f ] LP ]I = (f ] f(x) [r~ wP(x)dz,,)I/p < cx>. (4.1) 
J( 

oo In case p = ~ ,  we define the Banach space L w (G) as the space of all measurable functions 

f such that 

[ I f  []~,w = ess sup{I :(x) [w(x) : x C G} < c~. (4.2) 

It can be easily seen that LPw(G), 1 < p < ~ ,  is a reflexive Banach space and L1u,(G) is a 

Banach algebra under convolution, usually known as Beurling a lgebra .  Also, it is well known 

that L~(G) is a convolution module over L~(G). Also, since w is moderate, L~,(G) is translation 

invariant. 

We denote by l~(J) the sequence space associated with LP~(J), J being an index set. 

4 F r a m e  M u l t i r e s o l u t i o n  Ana lys i s  o f  L2(G) 

Following Galindo and Valladolid [ GV 01, p.861], we say that a complex- valued function 
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f an G is G~-periodic provided 

f ( x + y ) = f ( x )  for all x E G a n d y E G n .  

Let Pn be the set of all Gn-peri~ functions. Then, on account of the above definitions, 

it is clear that a function f in Pn is constant on the cosets Gnj, j E J, and we may express f in 

the form 

f = Eajx~. ,~ '  
jEJ 

where XG., j is the characteristic function of G,~,j and J is an index set. 

We write P = l.JnP.. It can be easily seen that the space PNLP(G) is dense in LV(G), 1 < 
p < o0 ( cf [GV 01] p.S62). 

We assume that Vn is the linear subspace of ~n-periodic in L 2 (G), i.e., 

Vn = P. n L2(G). 

On this lines of Benedetto and Li [BL 98, p.398], we say that a family (Vn)ncZ is a frame 

multiresolution analysis (FMRA) of L2(G) provided the following conditions hold : 

(i) Vn is a closed linear subspace of L2(G) such that N Vn = {0}. and UnVn is dense in 
nEZ 

L2(G). 

(ii) r E Vn ~ Tjr E V~,Vj E J being the translation operator. 

(iii) The collection (rj r is a frame for V,,. 

By virtue of the above construction, it is clear that the collection of translates (rj Cn)jeg, 
where 

1 
Cn m(Gn) XG., (4.1) 

is a frame for the space Vn. 

5 Cont inu i ty  of  Coefficient Opera to r s  On Banach  Spaces 

On the lines of Galindo and Valladolid [GV 01, p.863], we write 

a j (g , r  = (g, ri r  , Vg E L2(G), 

where Cn E Vn, V n E Z. 

We now define a space 7-/Vw(G ) by 

nS(G) = {g: g c L2(G) and ][ aj(g, Cn)[l~(J)[[< oc} (5.1) 
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and endow it with the norm 

II g 1 7/~(G) II = sup(m(an))  1/p II a3(g, r  l~(J) tl, Vj E J. (5.2) 
n E Z 

We denote by 7~Pw(G) the space of all continuous conjugate linear functionals on "H~(G). On 

account of these definitions, it is obvious that the continuous embeddings 

7i~,(a) "-+ L'2(G) ~ "fl~(a) 

hold true and the innerproduct L "2 (G) • L 2 (G) extends to the sesquilinear form 7-/~(G) x 7 ~  (G). 

The norm on the space ~ ( G )  takes the form 

11 f l ~ , ( G )  It = sup(m(Gn)) 1/p II a j ' ( f , r  i lql w(J) II, (5.3) / 

1 1 
w h e r e V j E J , - + - = l .  

P q 
We denote by Z:(X, Y) the space of all bounded linear operators T : X ~ Y between two 

Banach spaces X and Y with the operator norm [11 T lilt �9 In case X = Y, we denote by Z:(X) 

the space of all bounded linear operators form X onto itself. 

Our first result is the following: 

T h e o r e m  5.1. If  f E ~P(G) ,  g E 7t{(G) and 

Tg = Tg,,I : f -~ ( a j ( f , g ) ) j E 3  

is a linear operator associated with g ,  then 

T a e s 

with 

III T~ IIl~(~:,.t~:,)~ Cj II-y(g- 0 . )  I ZU~(J) II, w ~ Z, 

Cj being a positive constant not necessarily the same at each occurrence. 

Proof. From the definitions of 7-/P(G) and TiP(G), we see that 

I T g f l  = l a j ( f , g )  l 

= I(f ,  Tjg) l 

< CJ IIg t ~  II 

_< Ca II a~(g,r 

which completes the proof. 

(5.4) 
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6 Continuity of Synthesis Operators 

In this section we study the continuity property of synthesis operators T~ associated with 

Tg as discussed in w 4. 

Precisely, we prove the following: 

T h e o r e m  6.1. If the linear operator T~ is defined by 

T~ --T~,j: ((~j(f,g))jeJ --} Z c~j(f,g)7-j h, (6.1) 
jEJ 

then, for all h E 7"lPw(G), we have 

T~ E s 

with 

III T;  lilr(l~(j),n~)_< Cj [I h ] 7/~(G)]l .  

and the series on the right- hand side of (6.1) is absolutely convergent in the norm topology of 

Pmof. On account of the relation (5.2), we see that 

~ a j ( f , g )  < Cj I] g lT/Pw(G) ][, 
jEJ 

This ensures that the series Z at (f' g)rjh is absolutely convergent in the norm topology 
jEJ 

of 

Hence we have 

1 I 

-< sup{Z(f, rjg)) [I vjh I n~  II 
jEJ 

< c j  II hln (a)II 

T; E s 

with 

Thus the theorem holds true. 

7 Con t inu i ty  of  the  C o m p o s i t i o n  O p e r a t o r  

In this section our aim is to study the continuity property of the composition operator 

Sh,g =- Sh.g,j : f --} Z aj(f,g)rjh. (7.1) 
jEJ 
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We prove the following: 

T h e o r e m  7.1. If g, h E 74P~(G), then Sh,g e s with 

Ill Sh.g IHC(/~e,r Cj  I] g I 7/~, IIII h lT'tfo II 

and the series in (7.1) is unconditionally convergent in the norm topology of l~/w(J ). 

Pro@ Since 7 ~ ( G )  C_ 7~ (G)  isometrically, we have 

I Sh,gfl = I ~ ( f , g ) T j h l  
jEJ  

= I E ( f ,  rjg)r~hl 
j e J  

= < s u p { ~ ( f ,  rjg)} II r~hl Tip ]l 
t e d  

< Cj I[ f l T ~  IIII ~'jg 1 7 ~  IIII r jh  I 7/~ II 

_< c j  II f lT{~ II g l~t~ IIII h l 7"/P II 

with 

III sh,~ IIIc(~,)~ c j  II g I 7-t~ 1111 h l T ~  II 
and the series on the right - hand side of (6.1) is unconditionally convergent in lq/w(J). 

8 In f in i t e  Trees  in 7~P(G) 

On the lines of Following Galindo and Valladolid [ GV 01,p.864], we say that  a family 

(c~j (f, C . ) ) jeJ  of complex numbers forms an infinite tree provided it satisfies the cascade condi- 

tions 
m(ar) 

~k(f, r = m(Cs) ~ ~(/,r (8.1) 
j:G,.jcG,,~, 

for a l l r > _ s a n d f E ~ P , l _ < p < _ o c .  

Motivated by the work of Galindo and Valladolid (loc.cit), we prove the following theorem 

to characterize an infinite tree in the space 7{Pw (G), which includes the corresponding results of 

Galindo and Valladolid [ GV 01 ,Th 3.4] as a particular case for w = 1(. Precisely, we prove the 

�9 

T h e o r e m  8.1. If f E 7{P(G),I < p < oc, then the family (aj(f,  Cn))jeJ is an infinite 

tree in the space ~l~ (G). and 

II f l ~ ( G )  II = sup(m(Gn)) l/q II aj( f ,r  i t[/.,(J) tl (8.2) 
n 6 2  

Conversely, if {aj(n)} is an infinite tree such that 

sup(m(Gn)) 1/~ I1 ~]j(n) [ lq/~,(.1) I1< ~ (8.3) 
nEZ 
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then there exists a unique f e 7:l~(G) such that 

aj(n) =< f, TjCn >.  (8.4) 

Proof. For r > s, we have the equation 

XGj,k -" Z 
jEG,.,j 

C Gs,kXG.,j. 

Now, using the relation (4.1), we have 

m(Gs)r = 
jEG,..,CG~,k 

m(e~) ~ (f,~.r 
i .e.,(f,  TkCs) = m(Gs) j:G.,jCG,,k 

rn(er) ~ aj if,  Cr) 
i.e.,ak(f,r - m(Gs) j:e,.~ca,,k 

=~ the collection {(~j (f, Cn)}jeJ satisfies the cascade condition (8.1). 

: ,  {a j ( f ,  Cn)}jeJ frames on an infinite tree in the space 7~(G) .  

On the lines of Galindo and Valladolid (loc. cit.), next we suppose that  

sn(f) = ~ j ( f , r  
jEJ 

= ~ < f ,  r jr  > xa. ,~ 
je.l 

=* S . f  = f , r  

Since {r is an approximate identity in 

~P(G)  too. In order to verify our assertion, 

identity in Lql/w(G) . 

(8.5) 

Lq(G), we claim that  it is an approximate identity in 

it is enough to show that  {r is an approximate 

We suppose that  Cc(G) denotes the space of continuous functions on G with compact 

support. Since w is moderate, it is locally bounded.  This ensures that w -1 also moderate and 

locally bounded (cf.CH.90,pp.26-27). 

We now observe that  Cc(G) is dense LqVw(G ). In fact, it is well known that  Cc(G) is dense 

in Lq(G). Hence for any given e > 0 there exists a function fc 6 Cc(G) such that  

II fc - fw -1 IIq< 

putting fc = gcW, we see that  

II go - f I]q,~-~ < 

=~ Cc(a) is dense in Lquw(G ). 



S.S.Panday : ~rame Multiresolution Analysis and Infinite Tcees �9 239. 

At first we prove that 

k ,  Cn ~ k in Lq/w(G) for all k E C~(G). 

We have 

( k ,  r  - k(z)  

II g * r  - g IIq,~/~ 

f 
= / : ( k ( x -  y) - k(x))r 

( /  w-q(x) dz I / ( k ( x  - y ) -  k(x))r ]q)l/q <_ 
JG JG 

by Minkowsky's inequality. 

Since k is uniformly continuous on supp k + supp Cn and w-q locally integrable, the right 

hand side can be made arbitrary small. 

Now , let f E Lq/w(G). Then there exists fc E Cc(G) such that 

II f - L" IIo,w -t < E. 

Thus we have 

II f * ~,, - f Ilq,u,-~ ~- I[ ( f  - fc)  * r Itq,w-i + I I fc  * r - A Ilq,~-,  + 11 A - f Ilq,~-, 

<_ (11 ~,, IIq +1) II f - fc IIq,w-, + II A * r - f= IIq,~-, 

since II ~b,~ IIq is bounded, the right- hand side can be made arbitrarily small by fr and 4)n 

conveniently. 

Hence, by virtue of the definition of 7~ (G) ,  {r is an approximate identity in it. There- 

fore,using (8.5), we obtain 

II s~f 17~(G)II 

=r lim II s,,f- II~(G)It 

otl  f I ~ . ( G )  

which proves (8.2). 

5 II f l~Pw(G) �9 

= 0 

= sup II S , f  17Sly(G) II 
nEZ 

= s u p ( m ( G n ) )  a/q II ~ j ( f , r  11, 
nEZ 

Conversely, we Suppose that {aj(n)}jeg is an infinite tree such that the condition (8.3) 

holds true. 

Now on the lines of Galindo and Valladolid [GV 01,p.865], we define a sequence of functions 

{fn}nez such that 

: .  = ~ ~(n)xc~ j (8.6). 
i 
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Thus, on account of the hypothesis (8.3), the Sequence { fn} ,ez  is bounded in Lqx/w(G). 
Hence, by Alaoglu theorem, there exists a subsequence {fn,. }mez, which converges weakly to a 

function f (say) in L~/w(G ). Thus we see that 

ak(f,~bn) = (/,7"ken) 

= lim (fn,,, rkr 
ITI--4 (~(~ 

m(G..) 

j : G .  m , j c G .  j. 

= ak(n) 

which proves the validity of (8.4). 

Finally, let g be another function in 7t~(G) such that 

~,(n) = (g, rjr 

= ~ a j ( f - g , r  = 0 fo ra l in , j  

~11 C f -  g) 172~(G) II = o 

=~ f is unique. 

9 Infinite Trees in 7tlw(G) 

Galindo and Valladolid [ GV 01,p.866], by means of a n example, have demonstrated that 

the there Theorems 3.4, which holds for the space LP(G), 1 < p < oo, does not hold for p = 1. 

However, imposing an additional convergence condition on the sequence {aj(f ,  Cn)}jes, they 

have proved the corresponding result for the space L l (G). Proceeding on the lines of Galindo 

and Valladolid (loc .cit), we have the following. 

Theorem 9.1. I] f G 7~(G),  then the set {aj(f ,  Cn)}j~J forms an infinite tree such 
that the following two properties hold true.: 

II It'lL(G)I1= supra(an)II ~,(f ,r  l l~/w(S) II 
n E Z  

(9.1) 

and Ve > 0 there exists N E Z 

m(O,.)~_. ~_, I a.~(.f, r - ak ( I ,  r  I< ~, 
k j:G.dCG.j, 

(9.2) 

for all r > s >_ N. 

Conversely, if {as(n)} /s an infinite tree such that 

sup m(G,) II aj(n) l 11/~1 I1< oo (9.3) 
n E g  
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and Ve > O there exists N E Z such that 

(9.4) 
k j:G~.jCG~,k 

for all r > s >_ N, then 3 a unique f �9 ~ ( G ) .  such that 

ay(n) = c~j(f, r (9.5) 

Pro@ Since the condition (9.4) implies tttat the sequence {f,~},~e: defined by (8.6) is a 

Cauchy sequence in L~/~,(G), the proof is now analogous to that of theorem 8.1. 

10 R e m a r k s  

Tile corresponding results for the conjugate spaces of 7~P,(G), 1 < p <_ oc, can be easily 

verified. 
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