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Abstract

In this paper, the authors study the boundedness of the operator [puq,b], the commutator generated
by a function b € Lipg(R")(0 < 8 < 1) and the Marcinkiewicz integrals pa, on the classical Hardy spaces

and the Herz-type Hardy spaces in the case Q € Lip (S""')(0 < a < 1).
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1 Introduction

Suppose that S"~! denotes the unit sphere of R"(n > 2) with Lebesgue measure do =
do(z"). Let © be homogeneous of degree zero on R™ satisfying € L'(S™"!) and

/ Qz')do(z') = 0,
sn—1

where ' = z/|z| for any = # 0. The higher-dimentional Marcinkiewicz integral uq is defined by

o 1/2
wa$)@) = ([ 1Fdn@rs)

where

Fau(f)(z) = /| U =9) ¢y,

e—yl<e [€ = y* !
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The operator pug was first defined by Steinl!l. Meanwhile, Stein proved the following result.

Theorem A. If Q is continuous and satisfies a Lip,(S*')(0 < a < 1) condition on
S"~1 then
lla(H)@lp < cllfllp, 1<p <2

whenp=1,
AMpa(f) > AH <dlflh, VA>0.

In [2], Benedek, Calderén and Panzone proved that if @ € C'(S™™!), then uq is bounded on
LP(R™) for 1 < p < oo. Ding, Fan and Pan [3] proved the weighted L?(R™) boundedness with A,
weights for a class of rough Marcinkiewicz integrals. Recently, Ding, Fan and Pan [4] improved
the results mentioned above and showed that if & € H!(S™"!), the Hardy space on the unit
sphere(see[5]), then pgq is still a bounded operator on L?(R") for 1 < p < . In [6], Chen, Xu
and Ying proved the same result as [4] a using different method.

On the other hand, in 1990, Torchinsky and Wa.ngm considered the boundedness for the
commutator of ug. Let b € BMO(R"), then the commutator [puq,b] is defined by

o© 1/2
(.10 = ([ 1FeetN@F)

where

Fase @ = [ b))l )

' le—yi<t |2 —yl*1

In [7], Torchinsky and Wang proved that if Q is continuous and satisfies a Lip, (S™!) condition
for 0 < a < 1, then the commutator [ugq,b] is bounded on LP(w) for 1 < p < o0, w € A,, the
Muckenhoupt weight class. Recently, in [8], the authors improved the above result and proved
the weighted L? (1 < p < oo0) boundedness of the commutator {uo,b]. In [9], Wang considered
the commutator generated by a Lipg(R™) (0 < 8 < 1) function and ugq, and proved the following
theorem.

Theorem B. Suppose 1 <p<00,0<f<1,1/g=1/p~B/n. Ifb€ Lipg(R™), then

[{{ra, 0)(H)llg < cllbllLip, If1]p-
Here, for 8 > 0, the Lipschitz space Lipg(R") is the space of functions f satisfying

fllup, = sup LEZSWI

< .
z,yER™ . zF#y |:l? - y}ﬁ

Obviously, Lipg(R™) contains only constant if # > 1 and [pugq,b] = 0 in this case, so we will only
concentrate our discussion to the cases 0 < § <1 in what follows.

The organization of the paper is as follows. In Section 2, we will study the boundedness
of the operator [pq,b] formed by the Marcinkiewicz integral po and a Lipg(R™) function b on
Hardy spaces. In Section 3, we consider the boundedness of the commutator [uq, &) on Herz-type
Hardy spaces,
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2. Boundedness on Hardy Spaces

In order to study the boundedness of [uq,b] on Hardy spaces, let us first introduce the
atomic decomposition characteritions of Hardy spaces.

Definition 2.1. For 0 < p <1, a function a on R"™ is called a (p,2) atom if it satisfies
1) supp a C B(xg,r) = {x € R" : |z = 2] < r} for some xo € R" and some r > 0:

2) ”aHZ < 1B(Ig,r)ll/2—l/p’,

3) / a(z)dz = 0.
The following lemma can be found in [10, Chapter 3] or [11, Chapter 2 ].
Lemma 2.1. Let 0 < p < 1. A distribution f on R™ is in HP(R") if and only if f can be

written as
[o0]
f= 32 Ao

j=—00

o0
in distributional sense, where each a; is a (p,2) atom and Z |A;1P < c0. Moreover,

j=—o0

I f 1l ~inf{C Y IAIP)P)

Jj=-oc
with the infimum taken over all decompositions of f as above.
Our result concerning the boundedness on Hardy space for uq , can be stated as follows.
Theorem 2.1. Suppose that Q! € Lip,(S™')(0 < a < 1),b € Lipg(R*)( 0 < 5 < a/2). If
45 <p<landl/g=1/p- f/n, then [pq,b] maps HP(R™) continuously into LY(R").

Proof By Lemma 2.1, we only need to prove that for any (p,2) atom a, ||[ 1, bla|l, < C
with the constant C independent of a. Suppose that supp a C B = B(zo,r). Write

mmwMusq

fr—zo|<2r

HmﬁMmHﬁ”+M‘ [ na,blale)|7dz) /7 = I + I

lz—zo|>27
Choose 1 < p; < min(2,n/8) and q; satisfying 1/q; = 1/p1—8/n. By the (L', L) boundedness
of [uq, b], the size condition of a and Holder's inequality, we get

I < Cl[[ g, blalley 975 < Clallp, /47490 < Cllaf|pr0 /7711 < C.

For I, since |z — zg| > 2r, we have

lz—zo|+2r I — 1/2
ol < ([T 2 - el )

z-yl<t |2 =

(L 269 ) - beis L)

-1
z—x|+2r z—y|<t lil) - yln
= Jl + J2.
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Observe that from |z — zo| > 2r and y € B = B(xo,r), it follows that |z —y| ~ |t — o
|z — zo] + 2r. By the Minkowski inequality and Lip,(S™~!) C L>®(S™~?!), we obtain

lz—zo|+2r 4, 1/2 'a(y)l
no<ef ( /' 5) b - )iy

z-y| 3 yn-T
, aly)l [y
< Ol o — ylf ! q
< Clbllun, [ o= ot 20 Mg,
a(y)l Jy|*/?

< Cliblli o —zolf 1 d
> | “LIPﬁ ‘/Rnl ol |z — zo|"1 lz_xolg/g )
= Clillug, =~ 202 [ el *dy
< C”b”Llpﬁlfv—xolﬂ n- 1/2 1/24n(1-1/p}
< CHb”L,paIx_x(]'—n (- l/p)|:l'—1: I;j 1/2 1/2-8
< CljbllLip, Iz = zo| P tI/P),

~

(1)
(2)

3)

In the third inequality from the bottom above we used Holder’s inequality and the size condition

of a.

Notice that from t > |z — zo| + 2r and y € B, it follows t > |z — zo] + |y — zo| > |z - |,
and by the vanishing condition of a, we obtain

J2

IA

IA

IA

IA IA

IN N

® Q 2d_t-] 1/2
[~/|z—z0|+2,- l ,/];n |:L' - y|ﬂ 1 [ b(y)]a(y)dyl P
Q(:L' - y) o) dt 1/2
J, W[b(z) -4l y' (.9
‘_/ |z — |n 1 [b T) — b(y)]a(y)dy’l—_l_-i-_%
Qz
Cllb(z —b(zo]/ yln 1_|1. zl" 1]( yllm |+27‘
+Cl n— 1 bly) - b(Io)]a(y)dyl____._l__
[:L' l |z ~ zo| + 2r
“ — zol8
bl (1=l | =R -Z‘L'ln'“m v [y, L

a(y)| |y—xol"|a l
ClIbliLip, | |z — zol? lv= lo( —————=dy /
o, (12 = a0l [ =2ellell, o [ o= 2ol B,

C“b“LipB('z - l‘olﬁ'" apatn(l-1/p) 4 R pBtnli- l/P)

Cllbluip, |z ~ zo| 017,

So when |z — xq| > 2r, we have

Therefore,

(10, b)a(z)] < CllbliLip, |z — zo| ~*rf+7(1=1/P),

I < C||bl|Lip,rP*m0-1/7)( / |z — zo|™dz)'/? < C||bl|Lip,-

lz—zg|>2r
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Combining the estimates for I; and I, then leads to the desired result.

It is well-known that the dual space of H!(R") is BMO(R"). From this and Theorem 2.1,
by a dual argument, we easily deduce the following conclusion.

Corollary 2.1. Suppose that @ € Lip,(S"™')(0 < a < 1),b € Lipg(R")( 0 < 8 < a).
Then [uq,b] maps L™/B(R™) continuously into BMO(R™).

In general, the (H?, LY) boundedness of | uq,b] fails when p = TZ_—E To be precise, we

have the following characterization theorem.

Theorem 2.2. Suppose that Q € Lip,(S"~!)(0 < a < 1),b € Lipg(R™*)( 0 < 8 < a/2).
Then the following two statements are equivalent:

(i) [pa,b] maps H*("3)(R™) continuously into L' (R");
(i) =0 or / b(y)a(y)dy = 0 holds for any (n/(n + B3),2) atom a.
RVI

Proof. By Lemma 2.1, [puq,b] is bounded from H™("+8)(R") to L'(R") if and only if
ll{pa,b](a)lli < C holds for any (n/(n + B),2) atom a with C independent of a. We only need
to consider the behavior of [puq,b] on (n/(n + f),2) atom.

Let a be such an atom with the support B = B(zy,r). For u € B, let

(5 (:L') = X2B(x)[l‘97b]a(z)w
3 |z—zol-+2r Uz - y) b b d 2@ 1/2
w@ =xanr@{ [ 1 Ebe - bkl )

z—y|<t I‘T - yln—l

and

~ B 1/2
w@=xam@{ [~ [ e sl

T—zo|+27 z—-y|<t ‘il: - yln—l
Then
(ka,bla(z) = vi(z) + va(2) + va(z).

By a method similar to the estimate for I; in proof of Theorem 2.1, we can prove |{v1 |y < C.
To estimate vy, we note that |z — zo| > 2r and y € B = B(zo,r) implies |z — y| ~ |z — x| ~
|z — x| + 2r. For ve, by a method similar to the estimate for J; in Theorem 2.1, we get
Uz -y)
[ el - blatudy

le—zo|+2r 2dt 1/2
X@2B c(m)(/ *)
@5 0 e—yl<t [T = t3

< Cllblluip, x(2B)- (T)|2 = R A A

Here we have used € Lip,(S"~') C L*(S""')(0 < a <1). So we have

lloally < C||b||L-,pBr1/2—5/ 1z — 2o~V /2dg
(2B)°
o0
< Cllllum, 8 [ P21
2r
<

CllbllLip, -
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Thus we see that ||[ pa,b](a)|li < C is equivalent to ||vs]|; < C.

Note that t > |z — zo| + 2r and y € B implies that ¢ > |z — z¢| + |y — zo| > |z — y|. Thus
we get

. _ | 1/2
() = X(23)=(z){ /| I Nz —9) 1) by dyl"’dt}

z—x9|+2r " IZ - ylﬂ !
Qz — y) I(/oo dt>l/2
= clZ T a1 b b a d s
X(2B) ( ) B I:l: yln_ll (y)] (y) Y 2 —zo|+2r 13
- 1
> Cx@s) e m-Tlo(z) = b W o or
2 Cxame(@)] [ o thlble) - oot —
_ Uz -y) 1
= C X(2B)¢ (z)[b(z) b(IO)]v/l; |$ _ yln—l a(y)dy|x - :1;0| + 2r
Qz~y) Qz — u) 1
X(2B)c($) /;[lz _ yln_l |.’E _ uln—l][b( -'170 ]a dy' — xol +2r
Uz —u) / 1
X(2B)* (z) |$ _ u|n—l B b(y)a(y)dy |:z: ~zo| + 2r
= Clui(e) - ua(2) - us(z)| 2 Clua(z) - ua(z) — us(2)).
Write K (z) = Q(z)/|z|"!. By the vanishing condition of a, we have
@ < CliblLiny XzB)e(@)le - ol
1
< /E K@ -y) - Kz = aollo)ldyp— e
1
< Bl|L, . — . |B-n-l-aja-8 __ -
< CllbllLipy x(28)< (T)|z = o] " Te—zol+or
< Clblluin, X(25)¢ (2)l = zol*~"=2r2 =5,

Therefore, |lu1]|1 < C. Using Q € Lipa(S"‘l)(O < a < 1), we also get

1
. < C b b dydg ——M8
oGl < ¢ f [ Ul - deolaldvie e
gc//'yulb—bxaddz
oy Ja e y|"+°‘| (y) — b(xo)lla(y)|dy
< Clllluip,™ /( |2l = b,
2 c

The estimates above shows that the estimate ||v3||; < C is equivalent to the estimate |juz(.,u)||; <

C. Set
L(b.a) = /B b(y)a(y)dy

. We see that
|0z - u)] 1
C > Jlus(,u)lh > |L(ba
> us(-, u)lh > |L(b,a)| sr<le—ul<Nr |7 — 9" [z — zo| + 2r
> CiIL(b,a)l BE= 4,

3r<lz u|<Nr 'z_yln

= ClIL(b,a)I "/ z)|do(z)dp = Cilog(N/3)L(b, a)|l|Q|L1(s7-1),
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where N > 3 can be any large positive integer. Letting N — oo, we obtain
[L(b, a)|||2| L1 (sn-1) = 0.

Thus, @ =0 or L(b,a) =0, thatis , Q=0or b{y)aly)dy = 0.
R"

Hence, it follows from the above that (i) is equivelant to (ii}. This finishes the proof.

Though (H™/{"+8)| L') boundedness fails except for the trivial cases, we can prove an esti-
mate of weak type.

Theorem 2.3. Suppose that Q € Lip,(S™*!)(0 < a < 1),b € Lipg(R"),0 < 8 < a/2,
then [uq,b] maps H*("+P)(R™) into weak L'(R™), that is, [pq,b] satisfies

[{z € R : |[na, £ (2)] > A} < CATHIfllgmsinsn,

where C is independent of f.

x .
Proof. By Lemma 2.1, we write f = Z Aja; with each a; an (n/(n + B),2) atom and

j==o0

o0
Z |A;]™+8) < co. Suppose that supp a; C B; = B(z;,r;). Write

j=—o0

[1a,b}f(2)] < Clua( D X00) = bz))as)@)| +C D Aslixzs,llbz) = biz;)liuale;) (@)

j=—00 j=—oo
> l:l?-—:l:j|+2j+l Q(:L‘-— ) th
o & masmr-sen( [ et
j;ool il1X@2B,)<ilb(z) = b(z;) ; | R _(a;) )
3 > Qz - ) 2dt
+C 2 11b(z) - bl xc (/ / ; )
j;ml i) =belixesne\ J ) T @)W ]

= J1(z) + Jo(x) + J3(z) + Jy(z).

A trivial computation shows that

lIx28;1b(z) — b(z;)lpala;) (@)l = /R" x28; |b(z) - b(z;)||nala;)(z)|de

< |lbllin, / e - 5P luale) (@)|ds
le—x,|<2i+1
< CllbllLin, 27 lsaas)lhs(  da)?
be—g;]<29+}
< Cllblln, 2718, 752 = ¢,

where in the last inequality, we use the (L2, L?) boundedness of pq and the size condition of a;.
By a method similar to the estimate for J; in the proof of Theorem 2.1 and the estimate for u,
in the proof of Theorem 2.2, we get

lz—z;|+27+? _ 1/2
e tbta) = tas [ ek ew aly)

z—y|<t IZE -y

<C.
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By a method similar to the estimate for J; in the proof of Theorem 2.1, we have

oo Qz-y) 2dt>
b(z c —— y)d
I %)= J)IX(ZB ) (/a:—z,-l-%ﬂ"" I/I;:~y|5t l.’B - |n 1( |

Thus, we obtain

1

He € R™: |Jia)| > M4l < CAH Y A, i=2,3,4

j=-o0
Noting that
116 = bz;)aslh < C /B la(y)ldy < C,

by the weak (L', L}) boundedness of ugq, we obtain

{z € R™ : [ ()] > M4} S CATY D Nl = b(z))aglly < CA' Y Ayl

j=—o0 j=-—00

Therefore,

e B blf(@) > A € O3 e € B [h(a)] > M)

j=1

oo
CATt Y Il

<
j=—o0
o0
< CA Y Z |Aj |/ (n 4By (ntB)/m
j=—o00

where in the last inequality, we have used the fact that n/(n + §) < 1, and the constant C is
independent of f. Taking the infimum over all the decompositions of f as in Lemma 2.1, we
obtain the desired estimate. This finishes the proof.

3 Boundedness on Herz-type Hardy Spaces

In this section, we consider the boundedness of [ uq,b] on Herz-type Hardy Spaces. Let us
now begin with some notations.

Definition 3.1. Let By = {z € R* : |z]| < 2¥}, B} = By/Bk-) and xx = xg, for k € Z.
Let a € R and 0 < p,q < .

(i) The homogeneous Herz space is defined by

P(R™) = {f : f € L{,(R")/{0} and |flljcs» < 0},

where
o0

1fllgar = (3 207/ fxul) P

k=—o00
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with usual modifications made when p = oc.

(ii) The inhomogeneous Herz space is defined by

KgP(R™) = {f : f € L, .(R") and ||flixs» < oo},

loc

where

flicgr = O 2 xallp + 11 fas, I15)' /7

k=1
with usual modifications made when p = 0.

Definition 3.2. Leta € Rand 0 < p,q¢ < o©.
(i) The homogeneous Herz-type Hardy space HK *P(R") is defined by

HK(?'D(Rﬂ) ={f:f¢€ S’(R") :G(f) € }"{;",P(Rn)}

and
W lirics» = IG )l

(ii) The inhomogeneous Herz-type Hardy space H K>*P(R") is defined by
HK?P(R") = {f: f € S(R"):G(f) € K;P(R")}
and

“f”HK,‘;'P = ”G(f)“K:P

Here, S'(R") is the space of the tempered distributions on R™ and G(f) is the grand maximal
function of f; see [10,p.90] for the definition of G(f).

Obviously, HKg"’(]R") = HK}?(R") = H?(R"). Thus, the Herz-type Hardy spaces is an
extension of the classical Hardy spaces. In addition, Herz-type Hardy spaces link closely with
Herz spaces. If 1 < ¢ < 00, it can be proved that HK;"”(R") = kg'P(R") and HKP(R") =
K$P(R™) when —n/g < a <n(l - 1/g), but HKF?(R*) C K2'P(R") when a > n(1 — 1/q); see
[12], [13].

The Herz-type Hardy spaées have central atomic decomposition characterizations stated as
follows.

Definition 3.3. Let a € R” and 1 < ¢ < oo. A function a on R™ is called a central(a, q)
atom if a satisfies

1) supp a C B(0,r) for some r > 0;
2) llallg < 1B, )7/

3) /“ a(z)dx = 0.

Lemma 3,131, Let 0 < p < o0,1< g < o0 and a > n(l—1/qg). A distribution f on R"
o0

belongs to HK®*(R") if and only if it can be written as f = Aja; in distributional sense,
q i4)

j=-x



- 224 - Analysis in Theory and Applications - 20:3, 2004

o0
where each a; is a central (a,q) atom on B; and Z |Aj|P < co0. Moreover,

j==—o00

I fllggas ~inf{( Y IX[P)M/7}

j==-00
with the infimum taken over all decompositions of f as above.

In what follows, we only give the results for homogeneous Herz-type Hardy spaces. It should
be pointed out that the results for inhomogeneous spaces is similar. And we omit it.

Theorem 3.1. Suppose that Q € Lip,(S"7*)(0 < v < 1),b € Lipz(R"),0 < B < v/2. If
0<p<ool<q,q<o0,l/ga=1/q1—8/nandn(l —1/q) <a <n(l-1/q)+ 3, then
[uq,b) maps HK ~P(R") continuously into K >P(R™).

oo
Proof. By Lemma 3.1, we write f = Z Arak, where each a; is a central (a,q) atom
k=-00

[o <]
supported on Bj and Z |Ak|P < 0o0. Then we have

k=—00
o0 et ’
||[I‘Q,b]f”;'(;,-v < Z glap ( Z | A&lll[ 2, 0] () -Xl”qz)
I=—00 k=l—-1
00 -2 ?
+ Z 2!0;:( Z |,\k“|[yn,b](ak)‘Xl”qz)
=~00 k=—o00
= 11 + I2-

By the (L9, L92) boundedness of [ ugq,b], it is easy to verify that

00 oo P
L < ClblE,, D 2’”( > I/\k”'ak”th)

l=-00 k=l-1
00 0o P
< C”b”{npﬁ Z (Z |,\k|2(l—-k)a> )
I=—0 \k=l{-1
When0<p<1,
o] k+1 [e)
L<ClblE,, 3 PelP Y 2R <ol S Il
k=~00 l=—00 k=—o00

If p > 1, by Hélder’s inequality, we get

R e 00 77
I, < C||b||,':ipg E (Z ',\k|p2(l—k)ap/2) ( Z o(l-k)ap /2)
k

I=—00 \k=i-1 =l-1

A

(e <]

CllbliEp, D 1Al

k=—o00

IA
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Let us now estimate I,. Note that

|zl 425+
Lpablar)(@)] < [/

(o9}
Il
lal+2+2

= Jy + Ja.

2 1/2
dt]
3

2 1/2
d}
t3

When z € E; and |z — y| < t with ¢ < |z] + 2F+1, it follows from I > k + 2 that |z — y| ~ |z] ~
|z| + 2%*1. Then by the Minkowski inequality,

/, W—,n)llb - b(y)lax(y) dy

z-yl<t 1T =

/l ﬂ%[b(z) — b(y)]ax(y) dy

r—y|<t |z -

=142 41\ % Jb(z) — b '
nscel([T% loz) - bl @)l
R" |z -yl t |z - y|»
|z1®lar(y)] [yl'/2
< Cliihs, [ Y
S Cllblluip, 2|72 0 e)

By a method similar to the estimate for J; in the proof of Theorem 2.1, we also get
J2 < C”b“LipB|$i—n2k(6+"(l_l/<h)—a)_
This gives

Il 0, blarxille, < CllbllLip, 27'2207 RN 12179078 .= C|bl|ip, 27! W (1, K)-

Thus,
0 -2 4
B
I=—00 \k=—-0
When p <1,
00 1-2 o0
L<ClblE,, S Y IMPWELR? <CllblE,, > I
I=—o00 k=—00 k=—00
If p> 1, then
o l i
L < Cliblit, D (Z mv’WtkP“) ( > Wlk"”>
I=—00 \k=-00 k=—-00
< Cllblii,, D el
k=—00

The estimates for I; and I; lead to

00 1/p
I p0. 51 llis,r < CllbllLip, ( ) lw)

k=—oc
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and the desired estimate follows from taking infimum over all decompositions of f.
This kind of boundedness fails when a = n(1 - 1/q,) + 8.

Theorem 3.2. Suppose that Q € Lip,(S"') (0 < a < 1),b € Lipg(R"),0 < 8 < a/2. Let
0<p<o0,1<q1,q2 <00,1/g2 =1/q1—F/n. Then the following two statements are equivalent:

(i) [pn,b) maps HKF Y/ 9YE2(Rey continuously into Kpl ~'/ 9 5P (Rn),
(ii) 2 = 0 or for any central (n(1 — 1/q1) + 8,q1) atom a, there is / b(y)a(y)dy = 0.
Rn

Proof. Suppose that a is a central (n(1 —1/¢1) + 8,¢1) atom. Without loss of generality,
we may assume that a is supported on some By. For u € By, let vy, v;,v3,u;,u2 and us be the
same as in the proof of Theorem 2.2, but with the ball B, instead of B. It follows from the
(L9, L) boundedness of { zq,b] and the size condition of a that

1
k+1 /e

"vl “k:a(l-llﬂ)ﬁ-ﬁ-r < Z 2j(n(]—l/ql)+B)p”Xj([”ﬂv b]a)“gg

j=-00

k+1 e
< Z 21("(1—1/01)4'3)?”(1“3 <C.
< . pS

j=—00

For v, by Theorem 2.2, we see that
v2] < Clbl|Lip, X(2B)< ()| — zo|P~"~1/22K(1/2=8),
If |z| > 25*!, then

1/p
= . p/a
“v2"kn(1—l/n)+6.p < C”b“Lip,{ Z 2‘7("(1_1/'")+B)p2k(1/2“3)l’(/ le(B_"_l/2)q"'dz) }
992 .

]=k+2 EJ

j=k+2

' 1/p
o0
< C”b”LipB{ Z 2(_k—j)(ﬁ—1/2)p} =C||b||LipB,

From Theorem 2.2, it follows that
1] < C|lbl|Lip, 2|~ 24 =A)
if |z| > 2¥+1. Thus,

1
® p/ez /P
furll gna-rsanness < ClidlILip, 2 2'7("(1'1/"‘)+B)”2k(°‘_3)”(/ |:c|m_""°‘)"’dz)
@2 EJ

j=k+2

j=k+2

1/p
[o o]
< C”b”Lipﬁ{ Z 2“"”‘"“‘””} = C||bl}Lip,-
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Concerning the term us(z,u), we have

“u2”k:2(1—1/q1)+5.p < C“b“LipB (8)
0 o @ 1P/ 1p
Z 9i(n(1-1/q1)+B)pokBp _ly_—ul__la( )|d dz
j=k+2 E; \J, |z —y|**e VI
o 1/p
< Cllbliuin, | Y 2%°97) = Clibllwip, -
j=k+2

If (i) holds, we get ||vs|| znc1-1/90)+s.» < C. So (i) holds.
92

If (i) holds, since “a”Hk;‘,“""“*‘"” < 1, we have ”[/I-Q,b]al|k:2(l—-l/q|)+8.p < C. This implies
lusll gni-1/7a1148.» < €. Combining the above estimates, we get
92

IIUS('» u)”k;‘;"“/‘ll)-’-ﬁ-}’ S C.

Let
L(b.a) = /B b(y)a(y)dy.

Then we see that

X Oz — u) 1 . P/t
cr > 9i(n(1=1/q1)+B)p / L e
- j=zk;-2 E; |z~ ufr—1 |z| + 25+
kAN . /e
> Z 9i(n(1-1/0)+8)p ( |1,(p, a)| Az - 1:1) dzr
j=k+3 %z:<u uwi<iei | |z —ul
k+N 27

12 P/q2
= Z 93(n(1-1/q1)+B)p (|L(b,a)|"2/ p-ﬂflz-i-n——l/ lﬂ(x)l""’da(m)dp)
. gt

j=k+3 g2/
= C(N —2)|L(, a)PP|| Ul ez (5m-1y-

1t is easy to verify that (ii) holds, that is, L(b,a) = 0 or Q@ = 0.

In the extreme case of Theorem 3.2, we also have an estimate of weak type which is similar
to Theorem 2.3. Let us first introduce the weak Herz spaces which was first introduced in [14].

Definition 3.4. Leta € Rand 0 < p,q < o0.
(i) A measurable function f is said to belong to homogeneous weak Herz space WK o P(R™)

if

I/
Wl keae —sup/\< Z 2keP |z € By« |f(z)! > /\}l"/q) < 0.

k=-00

(ii) A measurable function f is said to belong to inhomogeneous weak Herz space W K7 'P(R")



- 228 - Analysis in Theory and Applications 20:3, 2004

if

I fllw g sup A{|{z € Bo : |f(z)] > AP/

+3 2% |{z € B 1 |f(z)] > M}/9}P < oo
k=1

Obviously, WK,?'P(R") = WK}P(R") = WLP(R") and WK°/” P(R") = WLT’I'(,( ™} for
0 < p < o0 and a € R. That is, weak Herz spaces include weak LP(R™) spaces as special cases
and homogeneous weak Herz spaces are a generalization of the weak LP(R"™) spaces with power
weights.

Theorem 3.3. Suppose that 2 € Lip,(S™"7') (0 < a < 1),b € Lipg(R"), 0< 8 < a/2. If

1 1 :
0<p<l, 1<q,q < oo, - = i g then [pq,b) maps HK(“1 Va)+8:2(Rn) contintously
2 1
into WI'(‘;;(l—l/ql)-Fﬁ‘P(Rn)-
o0
Proof. By Lemma 3.1, we write f = Z Axag, where each ay is a central (n(1—1/q) +
k=—o0

©
B,q1) atom supported on Bj and Z | AP < 00. Write

k=-00

. pla H/P

{.’E €E: > /\/2} }
plezy /P

{:E €E: > /\/2} }

By the (L%, L%) boundedness of [ uq,b], and an estimate similar to that for I; in Theorem 3.1,
we obtain

”[p'ﬂy b]f||Wk:2(l—l/°‘)+ﬁ"

oo
Sup)\{ Z 2’("(1_1/‘11)+B)p

A>0 =—0

IA

(ua,b] ( z kak)

=!-3

o0
+sup/\{ Z 9l(n(1-1/q1)+8)p

o | L=

[pa,b] ( Z /\kak)

= Gy +Ga.

00 4
Gi < ¢C Z 2=/ 4DP [ g, b] < > /\ka_k> (z)xi
l=-00 k=l-3 a2
o0
< ClbliE,, Yo I

k=—o00
That is -
Gr < Clbllin, ( 3 1ul?).

k=—00

To estimate G2, let us now use the estimate

{10, blak(z)| < ClIbllLip, lz|~m2FPTR(-1/@)-a)
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which we get in the proof of Theorem 3.1. Note that when z € E,

1—4 -4 [
A< ST Il bY@ (@) < Cliblluin, 9 M2 < Cllblluip, 27 Y IAef?)M?.
k=—00 k=—oc k=-oc

Here we used a = n(1 - 1/¢;) + 8 and 0 < p <.1. For VA > 0, let ) be the maximal positive
integer satisfying

. o0
22" < CY[bllLipg AN Y 1AelP)Y,

k=—20
{ZL‘ € E . > /\/2}

I 1/p o
G SSUP*{ 2 2’"”} < Csup 222" < Clibliuip, ( 3 IafP)”.
I=—o00 A>0

then if [ > [\, we have

= 0.

1—4
(ke b) ( > /\kak> (z)

k=—cc

So we obtain

A>0 k=—o00

Now, combining the above estimates for G| and G-, we obtain
(oo}
Lka,01f lyy gra-rrasse < ClibllLip, € > P,
k=—o00
and Theorem 3.3 follows by taking the infimum over all central atomic decompositions of f.
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