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Abstract 

In this paper, we construct some continuous but non-differentiable functions defined by quinary dec- 

imal, that are Kiesswetter-like functions. We discuss their properties, then investigate the Hausdorff 

dimensions of graphs of these functions and give a detailed proof. 
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1 In t roduct ion  

In 1966, Karl Kiesswetter[ 1] gave a simple example of everywhere continuous and nowhere 

differentiable function, namely, so-called Kiesswetter's function. 

Let z E [0, 1), its quartenary expansion: 

Xk 
x = Z ~-'  zk E {0,1,2,3}. 

n = l  

Then, Kiesswetter's function is defined as follows: 

K ( z )  = ~ ( - 1 ) g n u ( x n )  
2n ' 

n = l  
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where 
# 

U(xn) = ~ x,~ - 2, x ,  =1 ,2 ,3 ,  

[ O, x ,  = O, 

and N,, is the number of xk = 0 only if k < n. 

This is a very noticeable fra(:tal function (see [2],[3]), G.A.Edgar regarded it as one of the 

nineteen typical fractal articles that included Weierstrass's function, Von Koch curve and Cantor 

set etc, and introduced them in the collected papers: " Classics on Practal ''[4]. 

Since the continuous but non-differentiable function was proposed for the first time by 

Weierstrass in 1872, some other examples have been obtained. A question which naturally arises 

is how to construct the class of functions, and what is the relationship between classical fractals 

and modern fractals? 

Recently, a general method by using the combining b-adic expansion with iterated function 

system to define the everywhere continuous and nowhere differentiable functions is found in 

papers [5] and [6]. However, their discussion is merely on the situation: f ( x )  : [0, 1] ~ [0, 1], 

while giesswetter's function showed that K(x)  : [0, 1] ~ [-1, 1]. On the base of [5] and [6], we 

extend the Kiesswetter's function on the situation of quinary decimal and analyse their properties 

in this paper. Finally, we have proved that the Hausdorff dimensions of graphs of these functions 

are equal to 2 log 3 
log 5" 

2 C o n s t r u c t i o n  of  some  Kiesswet te r - l ike  func t ions  

Now, we construct some continuous but non-differentiable function defined by quinary dec- 

imal, which arc similar to Kiesswetter's functions. 

With the same idea of [5] and [6], consider the following five affine-mapping expressions 

W j ( j  = 0, 1,2,3,4): 

l) ( i x  0 ) / ) ( i )  o 1 + U )  ' 
y 0 ( -  1)", 5 v - -  

j = 0, 1,2,3,4, (1) 

where U(j)  are some constants depending on j and aj = 0 or 1. Let r/ = f(~) and y = f (x) ,  

then (1) can be written as 

v(j) 
f ( x ) = ( - 1 )  ~' f ( ~ ) +  5 ' 

j = 0, 1,2,3,4. (2) 

Suppose that  x E [0, 1], its quinary decimal expansion is 

o~ 
Xk  

k = l  
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We can obtain 

j - ---~1,  

x 2  0o x 2  /k 
= T + ~xk+15/: _ 5 + ~ ,  x 2 6 { 0 ,  I ,2 ,3 ,4},  0 < ~ < I ,  (3) 

k = 2  

and 

f ( x )  = ( - 1 )  a ' ,  3 f (~)  + - -  

From (4), using { instead of x, we have 

u(z~)  (4) 
3 

Hence, 

U(z2) 
f({) = ( -1 )  a,= I(A) + - - - - - ~  

I ( z ) -  - -  + 3 3 2 

Repeating the same iteration and so forth 

m (_l)O.,+...+c,.._,V(x,) (_l)C,.,+...+~.m 
f ( x ) = Z  3 n + 3 m 

Let m ~ oo, suppose that f ( x )  is bounded, then 

(_l)a. ,+' . .+a.n_,U(zn) 
f(=) = ~ 3" 

n-----I 

U(Xl) ( - 1 ) ~  (-1)"-1+~-= 
+ 32 f(A).  

f ( r ) ,  0 < r < 1. 

(5) 

We note that there are the following two different quinary decimal representations for each 
m 5t rational point x = ~ - ,m  = 1 , 2 , . . . ,  - 1,l = 1 ,2 , . . .  

l - I  oo l - 1  oo 
~-~ Xn Xl 0 Xn Xl - 1 4 ~-+#-+ ~ ~. and ~ - + - - - ~ +  ~ ~., :,:,,...,:c,~6{0,1,2,3,4}. (6) 
n :  1 n = l +  1 n =  1 n : l +  1 

Therefore, to insure the function (5) 

expansions (~ the corresponding value f ( ~ )  must be uniquely determined�9 

T h e o r e m  1. If  U(j)  and aj are satisfying one of following conditions: 

u ( j )  = u l ( j )  = 

a ( j )  = e l ( j )  = 

/ 
is well defined, for the above two quinary decimal 

I 2 - j ,  j = 0 , 1 , 2 , 3 ,  

0, j = 4 ,  

1, j = 4 ,  

O, j # 4 ,  

O, j = O ,  

d ( j )  = U2(j) = j - 2, j 1,2,3,4, 

~ ( j ) = ~ 2 ( j ) =  1, j = 0 ,  

o, j # 0 ,  

(7) 

(8) 
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0, j = O .  
U(j) = Ua(j) = 

2 - j ,  j = 1 , 2 , 3 , 4 ,  

a(j) = ct3(j) = / 1, j = O. 

[ O, j r  

a(j)  = a4(j) 

j - 2 ,  j = 0,1,2,3, 

0, j = 4 ,  

1, j = 4 ,  

0, j i~4 ,  

112 
then values of function (5) are independent of the representations (6) chosen of x = fir. 

Proof. Corresponding to conditions (7)-(10), we obtain four functions: 

(9) 

(lO) 

t ~  
fi(x) = ~ (-1)a"~U'(x")  

3 n 
I | = l  

(11) 

where 

Y"(~) = Z (-1)"~'~ 
3 n 

A(x) = 

A(x) = 

n = l  

E (-1)a~"U3(xn) 
3 n 

n = l  

-1)~ 
./1 

11 = 1 

a l ~ = a a i z ,  + . . . + a l ( x , , _ , ) ,  

a2,, = a~(xl) + . . .  + a2(z,,-1), 

a 3 n  = a 3 ( X l ) + ' ' ' + a 3 ( X n - l ) ,  

a4,~ = a 4 ( z l )  + . . .  + a4(z,,-1). 

(12) 

(13) 

(14) 

We only verify that the value of function fl(x) is uniquely determined, for other functions 

f i (x)( i  = 2, 3, 4) are similar. 

By tile definition 

l - -1  CO 

.= I 71=1+ 1 
I--I  c~. 

f l ( Z  x,A x/ - 1 
5 . + = 7  - +  

n =  I u = l +  1 

I--1 r162 

: Z (-1)o'"U'(x")3,, + (-1)~"Ui(x')3 t + E (-1)" ' ,+ ' ,  . 3  '~ 2, 
n =  I a = l +  1 

4 ~ (-1)~'"U~(x,~) ( -1)"~ 'U, ( 'x t -  1) 
~7) = 3" + 3 t 

I I = l  
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For the following four cases 

(1) xl = 1, UI (Z l )  : 1, 

(2) Zt = 2, U , ( z l )  = O, 

(3) x t = 3 ,  U , ( x t ) = - l ,  

(4) x , = 4 ,  U , ( x , ) = O ,  

it is easy to see 

l - 1  

yz+  + 
n = l  

U~(zl - 1) = 2, 

Ul(x t  - 1) = 1, 

Ul(x l  - 1) = O, 

Ul(x t  - 1) = -1 ,  

0~1(/+1} = O~ll , 

O~L(/+l} ~ 0~1/, 

C~I( /+I)  ~ 0~1/, 

a l ( l + l )  = a l l  q- 1, 

oo 

V. 
n = l + l  

l--1 ,~  

n = l  n m / + l  

and this completes the proof of Theorem 1. 

The graphs of f i ( x ) ( i  = 1, 2, 3, 4) are as follows 

ini t iator  genera tor  

(the i terated funct ion ' s  graph o f  f l  ( x ) )  
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initiator generator 

(the iterated function's gaph of f2 (x)) 

initiator generator 

(the iterated function's graph of f_~ (x)) 
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initiator generator 

(the iterated function's graph of f~ (x)) 

3 S m o o t h n e s s  Ana lys i s  

We investigate the HSlder continuity of functions f i ( x ) , i  = 1, 2, 3,4; this is an important 

characteristic of fractal function�9 

T h e o r e m  2. The function f i ( x ) , i  = 1,2,3,4, satisfy the tf61der condition with index 
log 3 

a = 1--~gS' speaking exactly, there exist constants c1, c > O, such that 

c ~ l x - y l  '~ < max If~(~)-.f~(r])l < c l x - y l  '~. 
- o < _ x < ~ < _ n < ~  

(15) 

Proof. We only give the proof of f l  (x). The proofs of f i (x) ,  i = 2, 3, 4, are similar. 

Firstly, we prove that ]'1 (x) satisfies the HSlder inequality: 

l/l(x) - / l ( y ) l  S clx - yt ~ (16) 

where 

where c > 0 is constant�9 

log 3 
x ,y  e [0, 1), a = log5' 

In fact, for any 0 _< x < y < 1, there exists a positive integer l, such that  

1 1 
5t+---- ~ < Iz - yl < ~ .  

There are two cases. 
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. 
m m + l  

For one positive integer m E { 0 , 1 , 2 , - . . , 5 t - 1 } , ~  < x < y <  5----- 7 - -  
�9 T h a t  is 

oo oo 
m z ,  m y ,  

X =  g ' 4 -  Z 5 n '  Y =  5-T -F Z 
n= l+ l  n = l + l  

x n , y n 6 { 0 , 1 , 2 , 3 , 4 } .  

Thus,  we have 

tfl (x) - fl (Y)[ 
< Z ( - - 1 ) ~ ' n U l ( x n )  -- ( - - 1 )~ ' "C r l ( yn )  

- 3 ,~  3 ,~  
n=l+ l  

1 9 . 5 _ ( ~ + ~ ) ~  < 9ix _ y l ~  
< 3.  3-z=~ _ ~  . 

t t : l  + l 

T h a t  is 

2. For the certain positive integer m E {0, 1, 2 , . . .  , 5 t - 1 }, 

m - 1  m m + l  
5t < x < ~ < y <  5----- 7 - -  

m - 1  
x -  51 

OG O0 
Xn rtl Yn 

y=g+ Z g + 

n=/+l  n=/+l  

We have 

fx(~') f1(Y) f1(~-) [ oo (_l)/3,.Ul(Yn) ~ 2 
m _ _< m _ f l ( ~ ) +  Z 3" <- Z ~-~' 

n = l  + l n=l-t-  I 

m - 1  m _ _  ,,--Z-tt + l 3 n J oo 2 f~(......~__)_ f l ( y  ) <_ (m- 1 t tm-  1 , .  ~-, (-1)~""Ui(x,,)] <_ Z ~ '  

Y l - 7 - ) -  ~1~ 5t J'~ - - - -  I ,,=l+~ 

m - 1  [ ~ (-1)c""Ul(xn)] r  ~ 2 

Hence, 

Ifl (x) - fl  (Y)I . m . -  1 f t  . m -  I m f t ( - ~ )  ft(Y) < f ~ ( x ) - f , ( ~ )  § ( ~ ) _  f~(~) + ,n _ 

o , lo 3 
2 5 - ( l + L ) ~  9IX yl ~ .  _< 3. 3.-,7=9. _< - 

n=l+ l  

Consequently,  the inequality (16) is valid. 

Now, for any x E [0, 1), we can get y(x ~ y), such tha t  

1 Io 3 
Ix-ul <_ -~, I A ( = ) -  f t ( y ) t  ___ c ~ l = -  vl '~N'~ �9 

log 3 
T h a t  is, the  Hhlder index a = ~ in (16) is exact.  

In fact, there  exists one positive integer m E {0, 1, 2 , . . .  , 51 - 1}, such that  

m m +  1 
- - < x <  - -  
5 ~ - 5 l 

(17) 
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m m + l  
If x = 5-?, we shall select y - 5t (it satisfies the condition), because 

Ifx(x) - fl(Y)[ = f x ( ~ )  - fl(- ' -"~)m + 1 > 1 yl  >__ 
n=lq-1 

Consequently, the inequality (17) is valid�9 

m m + l  
Now, we only need to consider the case of ~T < x < 7 -  

inequalities: 

and 

�9 Since one of the two following 

fl(~-) 1 f l (~)  . , m + l , I  1 
m - : ~ ( z )  >_ -~ - t ~ ( ~ )  - 4:-3t 

. m + l , I  1 . , r e + l ,  m I 1 
f l ( x ) -  f l ( - - ~ )  > ~ : 1 ( - - - ~ ) -  f l (~- )  - 4 �9  

m m + l  
must be hold. We can select y = ~? or y - 5t - - ,  such that Ix - Yl <- ~ ,  and we have 

n = l + l  

Consequently, the inequality (17) is still valid. 

By inequalities (16) and (17), we infer that the ineqhality (15) is valid�9 

Coro l l a ry .  The fi(x)(i = 1,2,3,4) are continuous but non-differentiable. 

4 H a u s d o r f f  D i m e n s i o n  

It is known that it is difficult to obtain the Hausdorff dimension of general self-affine 

fractal [7], but  as a particular, G.A.Edgar [sl has shown that the graph of Kiesswetter's func- 

tion has Hausdorff dimension 3/2. However, the argument is complicated. The proof of next 

theorem will proceed following the technique in [5]. 

T h e o r e m  3. The Hausdorff dimensions of graphs of f/(x)(i = 1,2, 3, 4) are 

s = dimH(graphfi) = 2 - - -  
log 3 
log 5' 

i = 1 , 2 , 3 , 4 .  

Proof. We define that E0 = [0, 1] x [-1,  1] as an initiator, then generator E1 are five 

rectangles Ej with width 5 -1 and height 3 -1, and each rectangle is contained in E0. Through 

k-iteration of affine-mapping Wj, j = 1, 2, 3, 4, 5, 5 k rectangles Ejk are obtained with width 5 -k 

and height 3 -k, (see the above iterated graphs), such that 

graphfi=(x, f i ( x ) ) = N E j k ,  j = 0 , 1 , 2 , 3 , 4  and k is a positive integer. 
k 
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These rectangular collections {Ejk}  are the covering of the graphs of function . f i (x) , i  = 

1, 2,3, 4. Every Ejk can be covered by [(~)k]+ 1 small squares Sk with length of edge 5 -k ,  ([(~)k] 

indicates the integer part of (~)k). 

Suppose that v ~  5 -k < 6, we have 

H~(graphfi) 

Consequently, 

= i n f { Z ] U i l  ~, diarnlUi I _< a} 
i 

5k v. 

_< ~(1(~/~.]  + 1)(v~.  s-~) * < 2~. 5~(1 + a -~ .  5")5 -k* < 2'+~. 
i=1 

dimH(graphf{) <_ ~. (18) 

Applying the mass distribution principle [71 to estimate its lower bound of the dimension, we 

define a measure # on the rectangle Eo, such that 

#(Eo) = 1, p(Ejk )  = 5 -~', 

#(Eo - graphfi) = 0, 

j = 0 , 1 , 2 , 3 , 4 ;  k = 1 , 2 , 3 , . . . ,  

i = 1 , 2 , 3 , 4 .  

Then, # limited in the graph fi, i = 1, 2, 3, 4, is a mass distribution. 

Let Sk be squares with length 5 -k, if Sk A Ejk = 0, then #(Sk) = 0; if Sk N Ejk # O, then 

Consequently, 

#(Sk)  _ #(Sk n Ejk)  <_ areaSk 

#(Ejk )  # (Ejk )  areaEjk -- ( )k. 

3 k 
u(Sk) _< ~ : 5 -~'. 

For any given Borel set U C Eo, let k be a positive integer, such that 

v ~ .  5 -ok+l) < diam57 < v '2 .5  -k. 

Then, there are at. most 9 small squares Sk intersect U, so we have 

#(-U) < 9. #(Sk) < 9 . 5  -k~ = 9 . 5  ~ �9 5 -~(k+a) < 2-~ - 9 . 5  ~ �9 (diamU) ". 

Hence, 

This implies 

1 
H~(graphfi) _> ~ .  2~ �9 5-~#(graphfi) 

dimH(graphfi) > s. 

By (18) and (19), we infer 

dimH(graphf i )  = s = 2 - - -  
log 3 
log 5' 

> 0 .  

i = 1 , 2 , 3 , 4 .  

(19) 

The theorem 3 is proved. 
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