MULTIPLICITY OF POSITIVE SOLUTIONS FOR AN ELLIPTIC SYSTEM

Han Zhaoxiu

(Zhejiang University, China)

Received May 21, 2003

Abstract

By considering the properties of $\frac{f(t,u,v)}{u+v}$, $\frac{g(t,u,v)}{u+v}$, we show the multiplicity of at least two positive solutions of the elliptic system.

Key Words multiplicity, elliptic system

AMS(2000) subject classification 41A37

1 Introduction

In this paper we consider the multiplicity of positive solutions for elliptic system of the form

$$u''(t) + f(t,u(t),v(t)) = 0, t \in (0,1),$$

$$v''(t) + g(t,u(t),v(t)) = 0, t \in (0,1),$$

$$\alpha_1 u(0) - \beta_1 u'(0) = 0, \alpha_2 v(0) - \beta_2 v'(0) = 0,$$

$$\gamma_1 u(1) + \delta_1 u'(1) = 0, \gamma_2 v(1) + \delta_2 v'(1) = 0,$$
(1)

where $(u,v) \in C^2[0,1] \times C^2[0,1]$, $\alpha_i, \beta_i, \gamma_i, \delta_i \geqslant 0$, and $\rho_i = \gamma_i \beta_i + \alpha_i \gamma_i + \alpha_i \delta_i > 0$, i = 1, 2.

The following condition will be assumed throughout:

$$f,g:[0,1]\times[0,\infty)\times[0,\infty)\to[0,\infty)$$
 are continuous.

By a positive solution of (1) we understand a solution $(u,v) \in C^2[0,1] \times C^2[0,1]$ with $u \ge 0$, $v \ge 0$ and either $u \ne 0$ or $v \ne 0$. By the maximum principle and above conditions, each notrivial component of (u,v) is thus positive for $t \in (0,1)$.

In recent years it has been proved that for a single equation, superlinearity at one end and sublinearity at the other end (zero and infinity) can guarantee the existence of a positive solution on an annulus. See [4,5], for instance. On the other hand, as was shown in [3], superlinearity or sublinearity of the nonlinearity at both ends can imply the existence of at least two positive solutions.

Seeing such a fact, we can not but ask "whether or not we can obtain a similar conclusion in elliptic systems". Inspired by the above mentioned results, we attempt to establish a simple criterion for the multiplicity of positive solutions of (1).

We introduce the following notation

$$f_0 \equiv \lim_{(u,v)\to 0} \frac{f(t,u,v)}{u+v}, \qquad g_0 \equiv \lim_{(u,v)\to 0} \frac{g(t,u,v)}{u+v},$$

$$f_\infty \equiv \lim_{(u,v)\to \infty} \frac{f(t,u,v)}{u+v}, \qquad g_\infty \equiv \lim_{(u,v)\to \infty} \frac{g(t,u,v)}{u+v}.$$

By Fixed-Point Theorem of cone expansion/compression type, we prove the following:

Theorem 1.1. Assume that the following cases hold:

(H1) either
$$f_0 = \infty$$
, or $g_0 = \infty$,

(H2) either
$$f_{\infty} = \infty$$
, or $g_{\infty} = \infty$,

and

(H3) there is a
$$p>0$$
, such that $0 \le u$, $v \le p$, $t \in [0,1]$, imply
$$f(t,u(t),v(t)) \le \lambda_1 p, \qquad g(t,u(t),v(t)) \le \lambda_2 p,$$

where

$$\lambda_i = \left(2\int_0^1 G_i(s,s)\mathrm{d}s\right)^{-1}, \qquad i = 1, 2.$$

Here $G_i(t,s)$, i=1,2, is the Green's function,

$$G_i(t,s) = \frac{1}{\rho_i} \begin{cases} (\gamma_i + \delta_i - \gamma_i t)(\beta_i + \alpha_i s), & 0 \leq s \leq t \leq 1, \\ (\beta_i + \alpha_i t)(\gamma_i + \delta_i - \gamma_i s), & 0 \leq t \leq s \leq 1. \end{cases}$$

The problem (1) has at least two positive solutions (u_1,v_1) , (u_2,v_2) such that

$$0 < \| (u_1, v_1) \| < p < \| (u_2, v_2) \|$$
.

where
$$||(u,v)|| = ||u|| + ||v||$$
, and $||u|| = \max_{0 \le t \le 1} |u(t)|$.

Theorem 1. 2. Assume that the following cases hold:

(H4)
$$f_0 = g_0 = f_\infty = g_\infty = 0$$
,

and

(H5) there is a
$$p>0$$
, such that $\sigma p \leq u+v \leq p$, $t \in \left[\frac{1}{4}, \frac{3}{4}\right]$, imply

$$f(t,u(t),v(t)) \geqslant \eta_1 p$$
, $g(t,u(t),v(t)) \geqslant \eta_2 p$,

where

$$\eta_i = \left[\max_{0 \leqslant i \leqslant 1} \int_{\frac{1}{4}}^{\frac{3}{4}} G_i(t, s) \mathrm{d}s \right]^{-1}, \qquad i = 1, 2$$

and

$$\sigma = \min \left\{ \frac{\alpha_1 + 4\beta_1}{4(\alpha_1 + \beta_1)}, \frac{\alpha_2 + 4\beta_2}{4(\alpha_2 + \beta_2)}, \frac{\gamma_1 + 4\delta_1}{4(\gamma_1 + \delta_1)}, \frac{\gamma_2 + \delta_2}{4(\gamma_2 + \delta_2)} \right\}.$$

Then the problem (1) has at least two positive solutions (u_1, v_1) , (u_2, v_2) such that

$$0 < \| (u_1, v_1) \| < p < \| (u_2, v_2) \|.$$

2 Preliminaries

It is easy to check (see also [5]) that for i=1,2,

$$G_i(t,s) \leqslant G_i(s,s), \quad (t,s) \in [0,1] \times [0,1],$$

$$G_i(t,s) \geqslant \sigma G_i(s,s), \quad (t,s) \in \left[\frac{1}{A}, \frac{3}{A}\right] \times [0,1].$$
(2)

On the other hand, (1) is equivalent to the system of integral equations

$$u(t) = \int_0^1 G_1(t,s) f(s,u(s),v(s)) ds, \qquad t \in (0,1),$$

$$v(t) = \int_0^1 G_2(t,s) g(s,u(s),v(s)) ds, \qquad t \in (0,1).$$
(3)

From now on we concentrate on (3). Indeed, any positive solution of (3) is a positive solution of (1).

Let

$$A(u,v)(t) = \int_0^1 G_1(t,s) f(s,u(s),v(s)) ds,$$

$$B(u,v)(t) = \int_0^1 G_2(t,s) g(s,u(s),v(s)) ds,$$

$$T(u,v)(t) = (A(u,v)(t),B(u,v)(t)).$$

Then (3) is equivalent to the fixed point equation T(u,v) = (u,v) in the usual Banach space $X = C[0,1] \times C[0,1]$ with the norm $\| (u,v) \| = \| u \| + \| v \|$, where

$$||u|| = \max_{0 \leq t \leq 1} |u(t)|.$$

Let K be the cone in X defined by

$$K = \{(u,v) \in X : u,v \geqslant 0, \min_{\frac{1}{4} \leqslant v \leqslant \frac{3}{4}} (u(t) + v(t)) \geqslant \sigma(\|u\| + \|v\|)\}.$$

Lemma 2.1. $T: K \rightarrow K$, and T is completely continuous.

Proof. To proof $T(K) \subseteq K$, choose $(u,v) \in K$. Then for $t \in \left[\frac{1}{4}, \frac{3}{4}\right]$,

$$\min_{\frac{1}{4} < i < \frac{3}{4}} A(u,v)(t) = \min_{\frac{1}{4} < i < \frac{3}{4}} \int_{0}^{1} G_{1}(t,s) f(s,u(s),v(s)) ds$$

$$\geqslant \sigma \int_{0}^{1} G_{1}(s,s) f(s,u(s),v(s)) ds$$

$$\geqslant \sigma \max_{0 < i < 1} \int_{0}^{1} G_{1}(t,s) f(s,u(s),v(s)) ds$$

$$= \sigma \| A(u,v) \|.$$

Similarly,

$$\min_{\frac{1}{4} < r < \frac{3}{4}} B(u,v)(t) \geqslant \sigma \| B(u,v) \|.$$

Hence, $T(u,v)(t) \in K$. The complete continuity of T is obvious. See also [1].

Lemma 2. $2^{[2]}$. Let X be a Banach space and K a cone in X. Assume Ω_1, Ω_2 are open subsets of X with $0 \in \Omega_1, \overline{\Omega}_1 \subset \Omega_2$, and

$$A:K \cap (\overline{\Omega}_2 \backslash \Omega_1) \to K$$

be a completely continuous operator such that either

(1)
$$Ax \geqslant x$$
, $\forall x \in K \cap \partial \Omega_1$, $Ax \leqslant x$, $\forall x \in K \cap \partial \Omega_2$;

or

(2) $Ax \geqslant x$, $\forall x \in K \cap \partial \Omega_2$, $Ax \leqslant x$, $\forall x \in K \cap \partial \Omega_1$. Then A has a fixed point in $K \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

3 Proofs of Theorems

In this section we give the proofs of the theorems 1.1 and 1.2.

Proof of Theorem 1.1. Since (H1), $f_0 = \infty$, we may choose $0 < 2H_1 < p$ so that $f(t,u,v) \ge \eta(u+v)$, for $0 \le u,v \le H_1$, where the constant $\eta > 0$ satisfies

$$\sigma\eta\int_{\frac{1}{4}}^{\frac{3}{4}}G_1(\frac{1}{2},s)\mathrm{d}s\geqslant 1, \qquad \sigma\eta\int_{\frac{1}{4}}^{\frac{3}{4}}G_2(\frac{1}{2},s)\mathrm{d}s\geqslant 1.$$

Set $\Omega_1 = \{(u,v) \in K: || (u,v) || < H_1 \}$. If $(u,v) \in \partial\Omega_1$, we have

$$A(u,v)(\frac{1}{2}) \geqslant \int_{\frac{1}{4}}^{\frac{3}{4}} G_1(\frac{1}{2},s) f(s,u(s),v(s)) ds$$
$$\geqslant \eta \int_{\frac{1}{2}}^{\frac{3}{4}} G_1(\frac{1}{2},s) (u(s)+v(s)) ds$$

$$\geqslant \sigma \eta(\parallel u \parallel + \parallel v \parallel) \int_{\frac{1}{4}}^{\frac{3}{4}} G_1(\frac{1}{2}, s) ds$$

$$\geqslant \parallel (u, v) \parallel.$$

Hence

$$||T(u,v)|| \geqslant A(u,v)(\frac{1}{2}) \geqslant ||(u,v)|| \text{ for } (u,v) \in \partial\Omega_1.$$

An analogous estimate holds if $g_0 = \infty$.

Since (H2), $f_{\infty} = \infty$, we can choose $H_3 > 2p$, so that $f(t, u, v) \geqslant \eta(u+v)$ for $u+v \geqslant H_3$, where the constant $\eta > 0$ satisfies

$$\sigma \eta \int_{\frac{1}{4}}^{\frac{3}{4}} G_1(\frac{1}{2}, s) ds \geqslant 1, \qquad \sigma \eta \int_{\frac{1}{4}}^{\frac{3}{4}} G_2(\frac{1}{2}, s) ds \geqslant 1.$$

Set $\Omega_3 = \{(u,v) \in K: || (u,v) || < H_3\}$. If $(u,v) \in \partial\Omega_3$, we have

$$\min_{\substack{\frac{1}{4} \leq \iota \leq \frac{3}{4}}} (u(t) + v(t)) \geqslant \sigma(\parallel (u, v) \parallel).$$

Hence

$$A(u,v)(\frac{1}{2}) \geqslant \int_{\frac{1}{4}}^{\frac{3}{4}} G_{1}(\frac{1}{2},s) f(s,u(s),v(s)) ds$$

$$\geqslant \eta \int_{\frac{1}{4}}^{\frac{3}{4}} G_{1}(\frac{1}{2},s) (u(s) + v(s)) ds$$

$$\geqslant \sigma \eta (\|u\| + \|v\|) \int_{\frac{1}{4}}^{\frac{3}{4}} G_{1}(\frac{1}{2},s) ds$$

$$\geqslant \|(u,v)\|.$$

Then

$$||T(u,v)|| \ge A(u,v)(\frac{1}{2}) \ge ||(u,v)||$$
.

An analogous estimate holds if $g_{\infty} = \infty$.

If we further assume (H3) holds, we set $\Omega_2 = \{(u,v) \in K : || (u,v) || < p\}$. If $(u,v) \in \partial\Omega_2$, we have

$$A(u,v)(t) \leqslant \int_0^1 G_1(s,s) f(s,u(s),v(s)) ds$$

$$\leqslant \lambda_1 p \int_0^1 G_1(s,s) ds$$

$$\leqslant \frac{\parallel (u,v) \parallel}{2}.$$

Similarly, we have

$$B(u,v)(t) \leqslant \frac{\parallel (u,v) \parallel}{2},$$

Therefore

$$||T(u,v)|| = ||A(u,v)|| + ||B(u,v)|| \le ||(u,v)||.$$

Now by Lemma 2. 2, T has least one positive solutions (u_1, v_1) in $\overline{\Omega}_2 \backslash \Omega_1$, and another positive solution (u_2, v_2) in $\overline{\Omega}_3 \backslash \Omega_2$ with $0 < \| (u_1, v_1) \| < p < \| (u_2, v_2) \|$.

Proof of Theorem 1.2. Since (H4), $f_0 = g_0 = 0$, we may choose $0 < 2H_1 < p$ so that

$$f(t,u,v) \leqslant \varepsilon(u+v), \qquad g(t,u,v) \leqslant \varepsilon(u+v)$$

for $0 \le u, v \le H_1$, where the constant $\varepsilon > 0$ satisfies

$$2\varepsilon \int_0^1 G_1(s,s)h(s)ds \leqslant 1, \qquad 2\varepsilon \int_0^1 G_2(s,s)ds \leqslant 1.$$

Set

$$\Omega_1 = \{(u,v) \in K : || (u,v) || < H_1 \}.$$

If $(u,v) \in \partial \Omega_1$, we have

$$A(u,v)(t) \leqslant \int_0^1 G_1(s,s) f(s,u(s),v(s)) ds$$

$$\leqslant \varepsilon \int_0^1 G_1(s,s) (u(s) + v(s)) ds$$

$$\leqslant \varepsilon (\parallel u \parallel + \parallel v \parallel) \int_0^1 G_1(s,s) ds$$

$$\leqslant \frac{\parallel (u,v) \parallel}{2}.$$

Similarly,

$$B(u,v)(t) \leqslant \frac{\parallel (u,v) \parallel}{2}.$$

Hence,

$$||T(u,v)|| = ||A(u,v)|| + ||B(u,v)|| \le ||(u,v)||$$

for $(u,v) \in \partial \Omega_1$.

Let us define two new functions $f^*(l) = \max_{0 \le u+v \le l} f(t,u,v)$, $g^*(l) = \max_{0 \le u+v \le l} g(t,u,v)$. Note that $f^*(l)$, $g^*(l)$ are nondecreasing in their respective arguments. Moreover, from $f_{\infty} = g_{\infty} = 0$, it follows that

$$\lim_{l\to\infty}\frac{f^*(l)}{l}=0, \qquad \lim_{l\to\infty}\frac{g^*(l)}{l}=0.$$

Therefore, there is an $H_3 > \max\{2p, \frac{H_1}{\sigma}\}$ such that $f^*(l) \leqslant \varepsilon l$, $g^*(l) \leqslant \varepsilon l$ for $l \geqslant H_3$, where the constant $\varepsilon > 0$ satisfies

$$2\varepsilon \int_0^1 G_1(s,s)h(s)ds \leqslant 1, \qquad 2\varepsilon \int_0^1 G_2(s,s)ds \leqslant 1.$$

Set $\Omega_3 = \{(u,v) \in K : || (u,v) || < H_3 \}$. If $(u,v) \in \partial \Omega_3$, we have

$$A(u,v)(t) \leqslant \int_0^1 G_1(s,s) f(s,u(s),v(s)) ds$$

$$\leqslant \int_0^1 G_1(s,s) f'(H_3) ds$$

$$\leqslant \varepsilon \int_0^1 G_1(s,s) (u(s) + v(s)) ds$$

$$\leqslant \varepsilon H_3 \int_0^1 G_1(s,s) ds$$

$$\leqslant \frac{H_3}{2},$$

hence $A(u,v)(t) \leq ||(u,v)||/2$.

Similarly,

$$B(u,v)(t) \leqslant \frac{\parallel (u,v) \parallel}{2}.$$

Then

$$||T(u,v)|| = ||A(u,v)|| + ||B(u,v)|| \le ||(u,v)|| \text{ for } (u,v) \in \partial\Omega_3.$$

Since (H5), we set $\Omega_2 = \{(u,v) \in K: || (u,v) || < p\}$. If $(u,v) \in \partial\Omega_2$, $\min_{\frac{1}{4} < i < \frac{3}{4}} (u+v) \geqslant$

 $\sigma \parallel (u,v) \parallel = \sigma p$, we have

$$\| A(u,v) \| \geqslant \max_{0 \leqslant t \leqslant 1} \int_{\frac{1}{4}}^{\frac{3}{4}} G_1(t,s) f(s,u(s),v(s)) ds$$

$$\geqslant \eta_1 p \max_{0 \leqslant t \leqslant 1} \int_{\frac{1}{4}}^{\frac{3}{4}} G_2(t,s) ds$$

$$= p = \| (u,v) \|.$$

Then

$$||T(u,v)|| \ge ||A(u,v)(t)|| \ge ||(u,v)||.$$

Similarly,

$$||T(u,v)|| \ge ||B(u,v)(t)|| \ge ||(u,v)||$$

for
$$(u,v) \in \partial\Omega_2$$
, $\min_{\frac{1}{4} \le r \le \frac{3}{4}} (u+v) \geqslant \sigma \| (u,v) \| = \sigma p$.

Applying Lemma 2.2, we obtain the multiplicity of positive solution (u,v) for (1).

References

- [1] Dunninger, D. R., and Wang, H., Multiplicity of Positive Radial Solutions for an Elliptic System on an Annulus, Nonlinear Anal., 42(2000), 803-811.
- [2] Deimling, K., Nonlinear Functional Analysis, Springer, New York, 1985.
- [3] Erbe, L. H., Hu, S., and Wang, H., Multiple Positive Solutions of Some Boundary Value Problems, J. Math. Anal. Appl., 184(1994), 640-648.
- [4] Erbe, L. H., and Wang, H., On the Existence of Positive Solutions of Ordinary Differential Equations, Proc. Amer. Math. Soc., 120(1994), 742-748.
- [5] Lian, W., Wong, F., and Yeh, C., On the Existence of Positive Solutions of Nonlinear Second Order Differential Equations, Proc. Amer. Math. Soc., 124(1996), 1117-1126.

Department of Mathematics
Zhejiang University
Hangzhou, Zhejiang, 310028
P. R. China