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Abstract

For a special class of non-injective maps on Riemannian manifolds an upper bound for the fractal di-
mension of invariant set in terms of singular values of the tangent map and degree of non-injectivity is giv-
en.
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1 Introduction

In [1] Hausdorff dimension estimate for compact set KCR" that is invariant under C'-
map @is given, and this estimate is generalized in [6] to maps on Riemannian manifolds.
Analogously fractal dimension estimate is derived in [2] for C'-maps on Riemannian mani-
folds.

In practice it is well-known that the maps describing concrete physical or technical
systems are often non-injectivem. For such non-injective maps, the Douady-QOesterlé-type
Hausdorff dimension estimates using the “degree of non—injeciivity” are considered in [5]
for the first time.

Let (M,g) be a smooth n-dimensional Riemannian manifold, let UC M be an open
subset and let :U—M be a map. One possibility to handle non-differentiable maps gon an

n-dimensional Riemannian manifold is to assume that
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(C1) There are a finite number of compact subsets KCM, K,CM,+,K,CM with K
=‘_L:JIK,-, o(K;)=K for all i=1,-,4.

(C2) Every partial map ¢ can be extended to a C'-diffeomorphism on an open neigh-
bourhood U:C M of K;(i=1,--,k).

In the following we will refer the map @ : =¢| in (C1) as partial maps.

To estimate the Hausdor{f and fractal dimensions, the singular value function of this
map is used. Consider a liear operator L: E~—> E' between two n-dimensional Euclidean
spaces E and E' with the scalar products ( +, » Ygand ( * , * )5, respectively, and L"* de-
note the adjoint operator of L, i.e. the unique linear operator L* ; E'—=E satisfying (Lz,

yre={z,L" y)efor all z€E E and y€ E’. The singular value of L are defined as the eigen-

values of the positive semi-definite operator (L'L)%. They are denoted by &, (L)=+++>a,
(L). For any j€ {0,1,+,n} we introduce for L the notation
L) = {al(L)---aj(L), for j >0,
1, for j = 0.
For an arbitrary number € (0,n], we define
wy (L) = w (L)' " wp,, (L)
the singular value function of order d, where [d] is the integer part of d,s=d—[d].

Let (M,g) be an n-dimensional Riemannian manifold, UCM be an open subset and
@:U—~M be a C' map, then the tangential map d,p: T ,M—T,,M is a linear operator. Let
a,(d,p) =+ =a,(d,p) denote the singular values of d,p. Put

wy (@) = 32,2‘”4(‘1-9”)’ p.(@: = .ig’f(a.(d..@, pt (P = s:gga.(duq?).

Theorem A™.  Suppose that (M,g) is a smooth n-dimensional Riemannian manifold,

let UCM be an open subset and ¢:U—~M be a map satisfying (C1) and (C2). If there exists

a number d such that
1 1
max w, (g ) < 7
i-l_n._‘

then the Hausdorff dimension of K can be estimated by
dim,(K) < d.

In this paper we give the upper bound of the fractal dimension using the technique in
[2].

Theorem 1. 1. Suppose that (M,g) is a smooth n-dimensional Riemannian manifold,
let UCM be an open subset and ¢.U—>M be a map satisfying (C1) and (C2). If there exists
a number d such that
(p° (@ ))*

1 1
;B}?.-X.Aw"x(sq ) (p. (g )" <%
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then the fractal dimension of K can be estimated by
dim;(K) < d.

2 Some Lemmas

Lemma 2. 1", For two liear operators L. E—~E' and L' ;. E'—>E" between n-dimen-
stonal Euclidean spaces there holds the relation
w(LL) < wy(LYw (L") for d € [0,n].
Let & be an ellipsoid with semiaxes a;(& )=+ >=a,(& )>0, and for any jE€ {0,1,*,n}
define
w (&) = {:‘,(éa e, ;:: j ~ 2
For an arbitrary number d € (0,n], we define
W (&) = W (& ) oy, (&)
Lemma 2. 2. Let (E,{,)g) be an n-dimensional Euclidean space, wu,,*,u, an or-
thonormal basis and

a, a,

a, (&) a,(&)
an ellipsoid. Then for any 1>>0, the set &+ B,(0),is contained in the ellipsoid &' = (1+

1
a.(&)

Let N;(A) be the smallest number of balls of radius & needed to cover A, then we

& = {ayu; + - + au, € E:(a,,a,) € R", ( LI SIRTUI S ¢

2L 1}

)&, where B,(0) denotes the ball with radius 7) centered at the origin.

have.
Lemma 2. 3%, Let (E, (,)s) be an n-dimensional Euclidean spacey uyy* su, an or-
thonormal basis and

ay

al(é")

a,

&= {alu1+"'+a,u.EE:(01,"',an)ER", ( 2. (&)

)2 4 e+ (

321}

2w, (€)
rll

Suppose that (M, g) is a smooth n-dimensional Riemannian manifold,

an ellipsoid and 0<r<a,(&). Then the relation N 7 (&)<

holds.
Lemma 2. 4%,
let UCM be an open subset and ¢:U—+M be a map satisfying (C1) and (C2), then for arbi-

trary natural number p, the map ¢ also satisfies (C1) and (C2).

3 Proof of Theorem

Proof of Theorem 1.1.  Since every partial map @ can be extended to a C'-diffeomor-

phism on an open neighbourhood U;CM of K;(i=1,++,%), by Lemma 2. 4 for every map
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@' o+ o ¢ there is an open set Ui,....i, containing K such that @l go,:l;U,-l_,.__,. —-M
? 4

is a C'-map. Since KCU,‘l,...‘,' is compact, there exists an open set V,-l,...,,-,CM containing

K which itself lies inside a compact subset of Ui,--"-i,,' For convenience, put

pr o =gleegl, V=V, .

4

Let 7€ (0,p0. (¢)) be an arbitrary number and r, (9) >0 be small enough such that
| cfendugrs — dupll <7 D
for any u,v€V with p(u,v)<r, (@) is satisfied, where || « | denotes the operator norm.
By p( ¢ ) we mean the geodesic distance between the points of M and by r} we denote the i-
sometry between the tangent spaces T.M and T, M defined by parallel transport. Let exp,:
T.M—M denote the exponential map at an arbitrary point « € M. Since exp, is a smooth
map satisfying || do_exp. || =1 for any point « € M we find a number r,>>0 such that |
d.exp. || €2 for any v€& B, (0.), where O, denotes the origin of the tangent space T, M.
Since V is contained in a compact set there is a number 7,>>0 such that
| doexp. | <2 (2)
for any «€V and any v€ B,Z(O,,).
Since K is compact, there is a(¢)>>0 such that supa, (d.p)<<a(p). Now we can find a

number 7, (@) <min{r,(¢), } such that any ball B, (,(x) containing points of K

LS S
2+a(p)+7
is entirely contained in V. Let & (0,7,(®)) be fixed. Since K is compact there is a finite
N'(K)

number of points ¢;EV (j=1,+,N,(K)) such that K= AL_J1 B.(x; N K and therefore
=

N(K)

WK) = U (B, N K.

The Taylor formula for the differentiable map ¢ guartantees the relation

Il expal,@(v) — d, gexp;'v) || = sup | thipndupry —d, ¢l
J i ) WEB’(M].) 7 7

+ exp] (w) |

for every v€ B,(u;). Combing with (1) we obtain
P(B, (1;)) C expuuy(d, ®B.(0,))) + B, (O,

Since é’,—=d“jqo(Bl(O,‘l)) is an ellipsoid in E=T¢ui)M, by Lemma 2. 2 we have
(B, (u;)) C exp,(,,j)(r(é",- + BV(O,,(,,)_)))) C exp,,(,‘)_)(ré’,-),

- 7 ,
where &= (1+ X )&,. Put

o) = Ve 9,
we have

max N, (exp,(,l_) TEN).

-1‘..-.Nr(K)

N, (®K)) <N.(K)

For any v€ M, if B, (v)(] expy.) &) #* &, then
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B, (v) C B(z+-,(:}))f(¢(u;)) C B,z (‘P(u,') ).
Using (2) we have

q(,),('U) - exp,(, )(Br(,>,(exp;:i,v)) y

which means
N,(,,,(exp,(.i) (rédl)) < N—é-a(y)r(rédi)‘

Since p. (sv)<a.(d,,_gv)=a.(é’,-)<a,.(é’}) » by Lemma 2. 2 we have

A+ =10 g d, 9

Z'w.(rév') P. (?)
_,( )r(rg,) . -~ -~
#. (?rp. (¢)). P':» (?) {dlc (¢)
Therefore

8'w,(d, @)

R
c(r)r(qj(K)) N (K) P’. (¢) . (3)
(p° (@ 1))

Now denote Jmax o, g by v, then vé%, this implies that there is a

(P.( )"
number p, such that (ku)’<(8"n2) ! for any p>po, and by Lemma 2. 1 for any ,,+*,i, €
{1,,k} we have

, I A @)
, (g e e o @) (7:(9’._,1 e ay Y <5 4)
Set K,-l...,-’ : =ﬂ:l o e o «p;l(K), by LLemma 2. 4, we have
K= UK,., (5)
On the other hand, take g=@ ' o - g:l,l frc:m (3) and (4), we have
N (KDY < N, (K)n™ 3k (max (o7 (1 = e o)™ 6
Take o
ro = min {ro(p):p = @,le o)
o= 'ma)'; {o(@).p= ﬂ:1 o see o %—’1}_
For any r&€ (0,r,), by (5) andl(ﬁ)'we have
ma_)’cp. (;a e o %—'1)
#(K ,d,y0r) < N.(K) (= Y < p(K,d,r). )]

m xp ( © ese o ﬂ: )
ll l'
From (4) we have 0<{1. Therefore, for any e€ (0,r,) we can find a number /EN

I+1

such that ¢'"'r;<<e<d'r,, combining with (7) we have

#(K,d\e) < u(K,d,07'e) < N, (K)rs.

Therefore dimr(K)<d, which completes the proof of Theorem 1. 1.
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4 An Application

Example 4.1. Let ¢;(0—e,1+¢€) X (0—¢,1+4¢€)—R? be defined by

(u9ﬂ —1__2_’_6)9 'U<'%'9

P u,v) =

1+B

(u, — Bv), v>é—,

with parameters €>0 and £>>2. This map when applied to the unit squere [0,1]X [0,1]

first stretches the square in v-direction with factor £ and then folds it.

//////.%.//

stretching === folding

A7 77, )

The set K=_ﬁl¢“([0,1]>( {0,1]) is a compact invariant set. Let

K= {(u,0) € K:u< %}

and

1
7}.

Since the partial maps are affine-linear, the properties (C1) and (C2) are satisfied, and we

= {(u,v) € K:u =

have o, (d. @ ') =1, az(d.,gq'l)=-é-, thus

(p-((p,“))d_{l, foro<d<1,

maxw, . (@)
i=1.2

. (@ |7, for1<d<2.
If d>1+i0g§, we have B‘_d<—é—, by Theorem 1.1 we have dims(K)<d, thus dimr(K)

<1+;0g2 On the other hand, by [5] we have dim (K) =1 + :ogé
+ iggﬂ » which means that the dimension estimate of Theorem 1.1 is sharp.

Thus dim £K) =1
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