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Abstract 

For a special class of  non-injective maps on Riemannian manifolds an upper bound for the fractal di- 

mension of  invariant set in terms of  singular values of  the tangent map and degree of non-injectivity is giv- 

en. 
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1 Introduction 

In [-1] Hausdorff dimension estimate for compact set KCR" that is invariant under C ~- 

map ~vis given, and this estimate is generalized in [-6-] to maps on Riemannian manifolds. 

Analogously fractal dimension estimate is derived in [-2"] for Cl-maps on Riemannian mani- 

folds. 

In practice it is well-known that the maps describing concrete physical or technical 

systems are often non-injective EI~. For such non-injective maps, the Douady-Oesterl~-type 

Hausdorff dimension estimates using the "degree of non-injeciivity" are considered in [-5-] 

for the first time. 

Let ( M , g )  be a smooth n-dimensional Riemannian manifold, let U C M  be an open 

subset and let q~.U--~M be a map. One possibility to handle non-differentiable maps q~on an 

n-dimensional Riemannian manifold is to assume that 



Qu Chengqin et al : Fractal Dimension Estimates for Invariant Sets 109 

(C1) There  are a finite number of compact subsets K C M ,  K~CM, . . .  , K b C M  with K 

k 
= UKi ,  ~ ( K i ) = K  for all i = l , - . . , k .  

iml 

(C2) Every  partial map ~ can be extended to a C~-diffeomorphism on an open neigh- 

bourhood U i C M  of K i ( i = l  , . . .  ,k) .  

In the following we will refer the map q~ : =91K~ in (C1) as partial maps. 

To  estimate the Hausdorff  and fractal dimensions,  the singular value function of this 

map is used. Consider a liear operator  L:  E ' - * E '  between two n-dimensional Euclidean 

spaces E and E' with the scalar products  ( �9 , �9 )Eand < �9 , �9 ) v ,  respectively,  and L"  de- 

note the adjoint operator  of L ,  i .e.  the unique linear operator  L" :E'--*E satisfying <Lz,  

y)s. = ( x ,L"  y)E for all x E  E and y E  E' .  The  singular value of L are defined as the eigen- 

values of the positive semi-definite operator  (L"  L)~ .  They  are denoted by a~(L)~...>~a, 

(L) .  For  any j E  { 0 , 1 , ' . . , n }  we introduce for L the notation 

Ja I (L ) . . .%(L) ,  for j > 0, 
~ j ( L )  3 

l l ,  for j = 0. 

For  an arbi t rary  number  d E  ( 0 , n ] ,  we define 

~o~(L) = wEa](L)1- 'w[~]+1(L)"  

the singular value function of order d ,  where [d'] is the integer part of d , s = d - - [ d ] .  

Let ( M , g )  be an n-dimensional Riemannian manifold,  U C M  be an open subset and 

9:U--*'M be a C ~ map,  then the tangential map dp9:TpM--~Tr is a linear operator .  Let  

al (dp9)~ . . '~a . (dp9)  denote the singular values of dpg. Put  

aJ~.x(9) : = supoJd(d.9), p.  (9) : = i n f a . ( d . 9 ) ,  P" (9) : : supa . (d .9) .  
~ K  wEK t*EK 

Theorem A Is3. Suppose that (M,g )  is a smooth n-dimensional Riemannian manifold, 

let U C M  be an open subset and 9:U-*M be a map satisfying (C1) and (C2).  I f  there exists 

a number d such that 

1 max wa.K(~ 1) < ~ ,  
i - - l . . . . . k  

then the Hausdorff  dimension of K can be estimated by 

d im~(K )  ~< d. 

In this paper we give the upper bound of the fractal dimension using the technique in 

[23. 
Theorem 1.1.  Suppose that ( M , g )  is a smooth n-dimensional Riemannian manifold, 

let U C M  be an open subset and 9:U-~M be a map satisfying (C1) and (C2).  I f  there exists 

a number d such that 

-i (P" (951) ) ~ 1 max co., x (~ ) < ,-l....~ (p .  ( ~ 1 ) ) .  ~- ,  
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then the fractal  dimension o f  K can be estimated by 

dimF(K) ~ d. 

2 Some Lemmas 

Lemma 2. 1 C2~. For two liear operators L:  E' -~E r and L ' :E t - -~E"  between n-dimen- 

sional Euclidean spaces there holds the relation 

wd(LL ' )  ~ oJ~(L)wd(L') for d E [0 ,n] .  

Let ~' be an ellipsoid with semiaxes al(d' ) ~ " ' ~ a l ( ~  ) > 0 ,  and for any j E  { 0 , 1 , " ' , n }  

define 

~ a , (~  ). . .%(d' ) ,  f o r  j > O, 
%(g' ) = 

( 1 ,  f o r  j -~ O. 

For an arbitrary number d E  (0 ,n ] ,  we define 

~ ( g "  ) = ~[z~(~ )]-%ta~+~(~" )'. 

Lemma 2. 2 C2J. Let ( E , ( , ) ~ )  be an n-dimensional Euclidean space, ul , "" , u. an or- 

thonormal basis and 

~ =  { a l u l + . . . + a . u .  E E : ( a ] , ' . ' , a . )  E R " ,  .a1($, ) . :  al ~2_b...  q_ .(a._~_~ ) a "  - Z ~ l }  

an ellipsoid. Then for  any ~ ~ 0 , the set ~ q- B~ ( O ) , is contained in the ellipsoid ~r = ( l  + 

7/ ) ~ ,  where B~(O) denotes the ball with radius 7 l centered at the origin. a.(~') 

Let N s ( A )  be the smallest number of balls of radius 3 needed to cover A, then we 

have. 

Lemma 2. 3 [2]. Let ( E , ( , ) E )  be an n-dimensional Euclidean space, ul , "" ,u.  an or- 

thonormal basis and 

... ( a . y  ~ = {alua -~ + a.u. E E : ( a ] , " . , a . )  E R", ( al ~2 + ... q_ 4 1 }  "a 1 ( ~ )  " a. ( ~ )  

.~_ (~ )  ~ 2",,~( 
an ellipsoid and O ~ r ~ a . ( ~ ) .  Then the relation N r holds. 

Lemma 2. 4 [s~. Suppose that ( M , g )  is a smooth n-dimensional Riemannian mani fo ld ,  

let U ~ M  be an open subset and ~o:U--~M be a map satisfying (C1) and (C2),  then for  arbi- 

trary natural number p ,  the map qf also satisfies (C1) and (C2). 

3 Proof of  Theorem 

Proof of Theorem 1.1. Since every partial map 9~ can be extended to a Cl-diffeomor - 

phism on an open neighbourhood U i C M  of K i ( i = l  , . . .  , k ) ,  by Lemma 2. 4 for every map 
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-1 . - l : U q  .9-'~M ~q, . . . .  ~ l  there is an open set Uq .. ip containing K such that ~71 . . . . .  91,p 

is a Cl-map. Since KCUq ,p is compact ,  there exists an open set Vq ~ C M  containing 

K which itself lies inside a compact subset  of Uq 9" For convenience, put 

9 :  =9.,-~ . . . . .  9, 71 , ~  V "  = V q  .~. 

Let r/E ( 0 , p .  (9))  be an arbitrary number and r1(9)>0 be small enough such that 

for any u , v E V  with p(u,v)~rx(~o) is satisfied, where l[ " ]1 denotes the operator norm. 

By p( �9 ) we mean the geodesic distance between the points of M and by G we denote the i- 

sometry  between the tangent spaces T.M and T~M defined by parallel transport.  Let exp~ : 

T~M--~M denote the exponential map at an arbitrary point u E M. Since exp. is a smooth 

map satisfying I[ do exp~ [[ = 1  for any point u E M  we find a number r~>O such that l[ 

doexp. I[ ~ 2  for any vE B . ( O . ) ,  where 0~ denotes the origin of the tangent space T.M. 

Since V is contained in a compact set there is a number rz>O such that 

II d .exp.  II <~ 2 (2) 

for any u E V  and any vEB.z(O,,). 

Since K is compact ,  there is a(9)~O such that su~ax(d.9)~a(9). Now we can find a 

7"2 
number r0 (9) ~ m i n  {rt (9) ,  2 + a ( 9 )  +7/} such that any ball B.o(~ ~ (u) containing points of K 

is entirely contained in V. Let r E  (0 , ro (9 ) )  be fixed. Since K is compact there is a finite 

Nr(K) 

number of points uiEV ( j =  1 , " - , N , ( K ) )  such that K =  L_I B~(u~)OK and therefore 
j - !  

Nr(K)  

9XK) = U 9(B,(uj) O K). 

The Taylor  formula for the differentiable map 9 guartantees the relation 

II exp~,,q~(v) --  d.ffKexp:;~v) II -- ~,~sup~/.; II ~,~-,")d~x.~ -- d . ~  II �9 II e x p ~ ' ( ~ )  II 

for every vEB.(uj) .  Combing with (1) we obtain 

9(Br(u j ) )  C exp~.2(d.,9(B,(O,))) + B~(O~.2). 

Since ~=d.r is an ellipsoid in E=T~.2M,  by Lemma 2.2 we have 

9(B,(uj) ) C exp~,9)(r(6* j + Bv(O~,~) ) ) C exp~. i ) ( r~ i ) ,  

where ~ = ( l + ( a ~ ( ~ ) ) d ~ j .  Put 

, ( ~ o )  �9 

we have 

No(~,(9(K) ) <~ Nr(K) 

= r  p .  (~o ) ,  

max N,(~) . (exp~, j ) ( r~) ) .  
j ~  1 ."" ,Nr (K)  

For any v E M ,  if B~.(v)O exp~.?(r~S"~) :# ~ ,  then 
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Using (2) we have 

which means 

B..(v) C B(~+.Vi?,.(qXu ~) ) C B.: (~u~) ). 

B ~ ( v ) D exp,%) (B~o(~)r(exp~(~i)v)), 

N,r 2 (r~"j)) ~ N�89 

Since p. (iv)~a.(d.iiv) = a . ( ~ i ) ~ a . ( d c i ) ,  by I.emma 2.2 we have 

Therefore 

4"(1 + 7/" " )%~ 8"w.(d.9) 
N�89 ) < 2"w.(rE~) ~ p. (iv) ~ , 

( l r p "  (~) ). g'. (9) P'. (iv) 

N,( ,~,(~K) ) ~ N . ( K )  
8"r (d.iiv) 

t r- (9) 
(3) 

Now denote max %.x(q~ -1) (p" (~-a))d 1 ,-a ..... , (p. ( ~ i ) ) .  by u, then u ~  

number P0 such that (ku)P~(8"n'~) -a for any P>Po, and by Lemma 2. 1 for any i~,... ,ipE 

{ 1 , ' " , k  } we have 
- -1  d (maxp"  (~,~l . . . . .  9., )) a 

i I . ..- . i  t % . x ( ~  ~ -1) ~ w' < (8"n~)-I 
. . . . .  ~', (p .  (~,~' . . . . .  ~ ' ) ) -  k, (4) 

Set K~r..i, : _ ~ l  . . . . .  ~ I ( K ) ,  by Lemma 2.4, we have 

K =  (3 KW. %. (5) 
i I . . . .  , ip  

On the other hand, take T==q~ l . . . . .  ~ l  from (3) and (4) ,  we have 
d 

N.( ,o . (~K) ) ~ N . ( K ) n - ' f k - t (  max (p" (qt~ ~ . . . . .  ~a))-a.  (6) 
i I . . , . . i p  

-1}, ro ---- rain {ro(iv):iv = ~.~1 . . . . .  9., 
i l . . . . , i  p 

- 1  a = max {a(9) :iv = ~x  . . . . .  ~, }. 
i I . ... �9 ip 

Take 

For any r E  (0 , ro) ,  by (5) and (6) we have 
- 1  . . . . .  ~ p  ) 

)ara ~ p ( K , d , r ) .  - -1  . . . . .  9,, ) 

, this implies that there is a 

From (4) we have a ~ l .  Therefore, for any r (0,ro) we can find a number I E N  

such that al+lro<-~alro, combining with (7) we have 

i~(K,d,e)  ~ tz(K,d,a- tr  ~ N% ( K ) ~ .  

Therefore d i m r ( K ) ~ d ,  which completes the proof of Theorem 1.1. 

max p. (9,11 
/~(K,d,ar)  <. N , ( K ) (  '~ 't 

max p" (q~:' 
i I , , , ,  . i $  

(7) 
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4 A n  A p p l i c a t i o n  

Let 9 : ( O - - E , l + e ) •  (O--E,I+e)--~R' be defined by 

1 v < - f ,  
~ u , v )  = 

1 v > y ,  

Example 4.1. 

1 R (~,pv - ~'), 
2 

(u,i + ~  fly) 
2 

with parameters e > 0  and fl>2. This map when applied to the unit squere [-0,17 • [-0, 17 

first stretches the square in v-direction with factor p and then folds it. 

//////A 
//////A stretching 

) 

with fLc~or 

folding I 

and 

The set K =  ~ - : ( E O , I " ] X  [-0,1-]) is a compact invariant set. Let 
i~1 

1 
K1 = {(u,v) E K:u ~ -~} 

1 Kz = {(u,v) 6 K:u ~ ~ } .  

Since the partial maps are affine-linear, the properties (C1) and (C2) are satisfied, and we 

have a l ( d . ~ l ) = l ,  az (d .~ l )=-~ ,  thus 

(p'(q~71)) a = ~ 1 ,  for 0 < ~ d < ~ l ,  
m a x t ~ 2  x (~ ,  -1  ) 
i=l.z " (p. (~-1))2 "[~1_~, for 1 < d ~ <  2. 

log2 1 
If d > l + l - o g  fl, we have fl~-a< , by Theorem 1.1 we have d i m v ( K ) ~ d ,  thus dimv(K) 

~<. _ log2 log2 
• p. On the other hand, by [-5-1 we have dim hK) = 1 + l-~gfl" Thus dim ~K) = 1 

log2 
+ logfl ' which means that the dimension estimate of Theorem 1.1 is sharp. 
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