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Abstract

In the present paper we introduce a random iteration scheme for three random operators defined on a
closed and convex subset of a uniformly convex Banach space and prove its convergence to a common fized
point of three random operators. The result is also an extension of a known theorem in the corresponding

non-random case.
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1 Introduction

There have been efforts to construct general fixed point iterations for different types

of nonlinear operators in lincar spaces. Ishikawa iteration™’

is one such general iteration
which and variations of which have successfully been applied to a number of cases of non-
linear operators [1],{2],(3] and [10].

Random iteration schemes have been defined and their convergences to random fixed
points or to solutions of random operator equations have been considered in {4],[5] and
[6]. In particular random Ishikawa iteration scheme has been defined in [4].

In this paper we introduce a random iteration scheme involving three random opera-

tors and consider its convergence to a common random fixed point of the three operators.

These operators are defined on closed and convex subsets of a uniformly convex separable
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Banach space. This iteration is based on the same idea as that of Random Ishikawa Ttera-
tion™. The corresponding result in the non-random case is a generalization of a theorem in
(10].

The following concepts are essential for our discussion in this paper.

Unless otherwise stated, throughout this paper (£, %) stands for the measurable
space, B denotes a uniformly convex separable Banach space and C denotes a non-empty,
closed and convex subset of B.

Any function f:02—C is said to be measurable if f'(CE) € X for all Borel subset E
of B.

T:2XC—C is said to be a random operator if T( * ,x) :£2—C is measurable for all
eC.

A random operator T:2XC—C is said to be continuous if T (¢, ¢ ):C—C is continu-
ous for all t€ .

Definition 1. 1. Random Iteration.

Let R,S,T: 2XC—+C where C is a non-empty convex subset of a separable uniformly

convex Banach space B. Starting with an arbitrary measurable function

&: 3—~C, 1.1
we define a sequence of functions {g.} as in the following:
8,e1(8) = a,R(t,g,(t)) + B.S(t,g,(t)) + 7. T (t,h,(2)), (1.2)
where
h(t) = a,R{t,g.,(t)) + B.S(t,8.()) + V. T(2,8.(£))> (1.3
0<a<a,, B,,7 <b<1 (aand b are given), (1. 4
0<q, £, 7. <1, (1.5)
&+ +Y=a+f+%=1 (1. 6)
and
0”7, <M <1 (M, is given). a.mn

The following result was proved in [7]. We state the result in the following lemma.

Lemma 17°.  If {z.} and {y,} are sequences in the closed unit ball of a uniformly con-
vex Banach space B and if z,= (1—a,)z.+a,y. satisfies

limflz| =1, (1.8)

n—+o0

where
I1<a<ae, bK<, 1.9

then
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,I.LIE, |x. — y. || = 0. (1.10)

A quasi non-expansive mapping”” is a mapping A:C—C which has at least one fixed
point and further

Ap = pimplies Az —p|| < {|la— p| forall z € C. (1.1D
We denote by F(A) the set of all fixed points of a mapping A. The following result is
quoted as a lemma.

Lemma 1.2, Let C be a non-empty closed convex subset of a uniformly convexr Ba-
nach space and T :C—C be a quasi-nonexpansive mapping. Then

F(T) ={x:x € Cand Tx = z}
is non-empty closed and convex on which T is continuous.

The lemma was actually proved for strictly convex spaces. Uniformly convex spaces
being strictly convex, the lemma also holds for the former. We have stated it for uniform-
ly convex Banach spaces.

For three mappings A,,A;,A;:C—~C, we write F=F(A,) N F(A;) NF(A;), that is,
F is precisely the set of all common fixed points of A;,A; and Aj.

Condition- * Three mappings A,, A;, As;: C—~C satisfies ‘condition- * 7 if
F=F(A)NF(A;)F(A;) is non-empty and there exists a non-decreasing function f;[0,
00)—[0,20) with f(0)=0 and f(r)>0 for »€ (0,00) such that

| (1 —XAz+ A,z — Ay || = fd(z,F)), (1.12)
where
z€C, y=0aAz+ BAx + YAz, (1.13)
d(z,F) =inf{||z —z | :2 € F}, (1.14)
0K Y M, <1(M, is given), (1.15)
and
a+ f+7=1 (1.16)

The following condition was introduced in [10].

Condition-A"”. A mapping T:C—~CC B with F(T)#  is said to satisfy ‘condi-
tion-A’ if there exists f:[0,00)—[0,00) with f(0)=0 and f(0)>0 for all r€ (0,00)
such that

lz =Tyl = fW@GF) forallz € C, (1.17)
where
y= 10—tz +Tx, (1.18)
and

0<t < M, <1 (M,is given). 119
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It may be noted that if we put A;=A,=1 (identity mapping) then ‘condition- » ’ re-
duces to ‘condition-A’. It may be noted that ‘condition-A’ in [10] is a further generaliza-

tion of ‘condition-1’ in [11].
2 Main Results

In this section we prove that under certain conditions the random iteration in defini-
tion 1. 1 converges to a common random fixed point of the three random operators R,S and
T.

Theorem 2.1. Let R,S,T:2XC—C be three continuous random operators defined on
a non-empty closed convex subset C of a separable uniformly convex Banach space B such
that following conditions are satisfied

(@) for all t€ 2, R(t, ), S, * ), T(t, s ): C—=C are quasi non-expansive.

(b) for all tE D, the set F(t) of common fizxed points for R(t, » ), S(t, * ) and
Tty + ) is non-empty.

(¢) for all t€0, R(t, *), S(t, * ) and Tz, * ) satisfy ‘condition- *’.

Then the random iteration in definition 1.1 converges to a common random fixed point
of R,S and T.

proof. The construction (1.1)— (1. 6) along with the fact that C is nonempty con-
vex shows that g,(z) € 2 for all t€ 2 and »=0,1,2.

Since B is separable, for any continuous random operator A:{2XC—C and any mea-
surable function f:2—C, the function h(¢)=A(t, f(¢)) is a measurable function™. Since
go 1s measurable and C is convex, it follows that {g.} constructed in the random iteration
(definition 1.1) is a sequence of measurable functions.

For fixed t € £, let £(t) € F(t). This is possible since by condition (b) of the theo-
rem, F(¢) is non-empty.

For fixed t€ 2, n=0,1,2,+-.

| gas1(t) — R ||
= || q,R(t,g.()) + B.St,g.®)) + V., T,k (1)) — k@) || (by (1.2))
< | R(tg. () — k@) | + B 11 S(t,8.0)) — k@ | + 7, T,k (1)) — &) |
<allg.@) —k@ | + 8 g — k@] +
7. || RaCt) — k() || (by condition (a))
&l g &) — k(@ | + Bl gu(®) — k@) | + 7. | €,R(2,8.(2)) +
B.S(t,g. (1)) + V.T(t,8,)) — k(@) || (by (1.3))
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<o, + B g — kO | + 74, | R g, (1)) — kD || +
Bl Stog.(t)) — k) || + 7, I T,g.(0)) — k) | '}
< (o, + B g, () — k) || +7,{a, +
B4+ 7>l g.t) — k) } (by condition (a))
= || g.(&) — k)|l (by (1.6) 2.1
if follows that for t€2,n=0.1,2,
d{g,..(t), F)) < d(g,@),F))
or
{ I g.(&) — &) || } and {d(g,(&),F ()}
are decreasing sequences and hence are convergent.
Let for t€ (2,
hmd(g.(t), F()) = a®).

Nee o0

Then for all r €2,
lim || g,(t) — &) || = limd (g, @), F (1)) = a (D). (2.2)
We next show that a(¢)=0 for all t& Q.
If it is not true, let a{s' )0 {or some t' € Q.
Then

lim || g.(¢) — &G | = b6 ) = al') > 0. (2.3)

n—+co

FOr ZEQ, n=1929"'9 let
a,R(t,g,(t)) + B.St,g.(t)) — (1 — Y k()

=0 = A =7) .0 — k@ | 2.4
and
T (,h,() — k@)
y.(t) = T2 () — & (2.5
Then for all t€ 02, n=1,2,--,
e (R g. () — k(D) 4 B.(S, (,g,()) — k@) |
| z. () || = A7 3T2.0 — k@ | (by (1.6))
(a, + B | g.(t) — k(D) | .
=T, + B Tan@) — k) | {1 (by condition (a)). (2.6)
For t € 02,
. T, — k@) |
| A, — B | .
< FEOEYION (by condition (a))
: 'St g YT(t,g. _
_ JaRG g, 1)) + BS¢e,0) + NTtg, ) = kO (0 5,

lg.t) — k@)
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(@, + B. + 7)) | g.(t) — k() ||

N

< 1. Q.0

For t=¢',
| Q—=7)z. () + 7,5y, |

II a, (Rt ,g. (")) + B, (St ,g,')) + V. T ,h, (")) — k() |
Tg.¢H — k&)

— I gn+1(t,) — k(') " - b(t")
Ta. (") — G b(t)

(2.6),(2.7) and (2. 8) imply by virtue of lemma 1.1 that
lim || z,(¢') — y. (&) || = 0. (2.9)

n—>o0

=lasn—> o0 (by (2.3)). (2.8

But
|z, (') — v,

I ¢ .

! —_—
e R &) + TS (g (W) — Ttk () |
[ g,(t') — k@]

+/?)

(by (1.6))
Z g — kG|

JACICD))
= b(t")

This contradicts (2. 9). Hence we have proved that for all € 2,
limd(g.(t), F(t)) = 0. (2.10)

A—~occ

From (2.1) and (2.10) it follows that for t€ 2, given €0, there exists N(t,e)>0 and
y(t,€) € F(¢) such that
| g2.t) — y(t,8) | <e forall n > N(,e). (2.11D)

(by (1.5) — (1. 7)) and condition (c) of the theorem)

>0 (since f(r) > 0 for r > 0).

21, where p is any positive integer. Then for all € 02, there exists a positive inte-

ger N(¢,p) and y(¢,p) € F(¢) such that

Let g,=

I g.C8) — y(2,p) | <‘f for all n > N(z,p). (2.12)

The constuction in (2.12) shows that for all €N,
NG, p) < NG, p + 1. (2.13)
Again for all t& 2, and any positive integer p, and n>N(¢,p+1),
|yt )= ytp + DI
= ||l y(t,p) — g.(8) + g.() — yt,p + 1 ||
< ly@p) — gl + lg.@) —yit,p+ 1|

<—£+"L+1 (zp+2_p117)<% p+1=3_€4L+l' (2.14)
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Sty.e)={z€B:lz—yl =¢}
is the closed sphere of radius € and centre y. Let z€
S(y(t,sp+1),6,4,), then
Iy p) =z < I ytp) —y@p+ DI + [ yGp + 1D — 2|

£
£l 4 i’f <e, (by (2.14))

W)

|

<

Therefore, 2€ S(y{t,p) s¢,).
This establishes the fact that

SCytap + 1)55,40) S Sy (e, p),6,). (2.15)

1 . .
But ¢,=—;—0 as k~+oo, then by Cantor’s intersection theorem for ¢t € (2,
r2

jle(y(t,p) 1€p)
contains exactly one point g(¢). Then for t€ £,
‘l,i*rgy(t,p) = q(1). ' (2.16)
Again by lemma 1.2, F() is closed. It follows by virtue of (2.16) that for all t€ 2,
g(t) € F(). 2.17)
(2.12) and (2.16) jointly imply that for all €,
limg, () = q(£). (2.18)

n~+co

Again {g.} is a sequence of measurable functions and hence ¢(z) being the limit of a se-
quence of measurable function is also measurable. This fact along with (2.17) and (2. 18)
establishes that {g,} actually converges to a common random fixed point of R,S and 7.

Taking £2 to be a singleton set, we obtain the following corollary.

Corollary 2. 1. Let R,S,T :C—C be three continuous mappings defined on a nonempty
closed convex subset of a uniformly convexr Banach space B such that the following condi-
tions are satisfied :

(a) R,S and T are quasi-non-expansive,

) FIRINFOINFMH#J,

() R,S,T satisfy ‘condition- %’

Then the sequence {z.} defined as

z, € C is arbitrary (2.19)
T, = Rz, + B.Sx. + 7. Ty, (2.20)
where

Yn = a;Rx,, + ﬂ,,Sx,, + ynTI,,, (2 21)
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0<<a<a, B.,7.<b<<1 (a,bare given), (2.22)
0<4,8.,7. <1, (2.23)
a,+B+Y=1=da+8.+7, (2. 24)

and
07, <M <1 (M,is given) (2. 25)

converges to a common fixed point of R,S and T.

Choosing R=S=1 (identity mapping) we obtain the following result of [10].

Corollary 2. 20 JetCbhea nonempty closed and conver subset of a uniformly convex
Banach space B and T is a quasi-nonexpansive mapping of C into itself. Lf T satisfies con-
dition— A then for arbitrary x,€ C the sequence {x,} construct like the following.

For all n=0,1,2,+

Xy = A~ a)z, + a,Ty,, (2.26)
where
o= A =Bz, + BTz, (2.2
0<a<a <b<] (a,bare given), (2.28)
0 B. < M; <1 (M;is given), (2.29)

actually converges to a fixed point of T.
Remark. It may be noted that the Banach spaces in the corollaries need not be sepa-
rable.
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