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A b s t r a c t  

Properties of Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. 

It is proved that Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 

and Jacobi polynomzals. Moreover, an integral expression of Lebesgue function is also obtained and the 

asymptotic behavior of Lebesgue constant is studied. 
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1 In t roduc t ion  

The importance of the study of Lebesgue functions for polynomial interpolation was demon- 

strated in [1] through the investigation of their local maxima. In the last four decades, such an 

analysis has received constant attention from researchers for some sets of nodes which are of spe- 

cial importance in interpolation theory, such as equidistant nodes [2]-[5], Chebyshev roots [6]-[7] 

and extrema or other ones. 

Let C[-1, 1] be the Banach space of continuous functions on [-1, 1] equipped with uniform 

norm 

][fl[ = max [f(x)[ 
xE[-1,1] 
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and let L,~(f, X, x) the Lagrange interpolating polynomial of degree at most n - 1 coinciding 

with f(x) at the nodes 

X = {Xk,n}, k = 1 ,2 , . - .  ,n, 

where 

- 1  < x l ,n  < X2,n < "" < Xn,n <~ 1, n E N .  

The Lagrange interpolating polynomial is 

n 

Ln(f ,X,x)  = E f(xk,.)Ik,n(X,x ), n e N, (1) 
k = l  

where 

• , ( x ,  z) k = 1, 2 , . . . ,  n (2) 
t k , , , ( x , z )  = ( z  - z ~ , . ) ~ ' . ( X ,  z k , . ) '  

are the so-called fundamental polynomials of degree exactly n - 1 Is1 and 

n 

~ . ( x , . )  = I I ( ~  - ~ , - )"  
k--1 

The Lebesgue function is defined as 

n 

~ . ( x , x )  = ~ Itk, .(x,x)I (3) 
k = l  

and the Lebesgue constant 

An(X) = max ~n(X,'x) (4) 
~Ei-m] 

is closely connected with convergence and divergence of the Lagrange interpolation polynomials 

(e.g. see [9]). 

Although Runge [1~ proved that the set of equally spaced points represents a "bad" choice 

for Lagrange interpolation, there still exist considerable literatures concerning the behavior of 

Lebesgue function corresponding to equidistant nodes. Such an interest is perhaps due to the 

fact that  this choice frequently occurs in many applications [:1. 

Let 

E =  x~,,  - ~ 2 f  , k =  1 , 2 , . - . , n  (5) 

be the set of equidistant nodes on the interval I = [-1 ,  1]. 

A first result, due to Turetskii [31, proposes an asymptotic expression for the largest maximum 

2 n + l  

A n ( E ) =  - -  n - ~  ~ .  (6) 
en log(n)'  
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SchSnhage [4] derived an asymptotic expression for An(E) that is a little bit more precise than 

(6), namely 
2 n + l  

A ~ ( E )  - , ~ -~  ~ .  (7)  
en [log n + 7] 

In [5], Mills and Smith improved the expression (7) by finding an asymptotic expansion of 

logAn(E) 

r~ Ak 
logAn(E) = (n + 1)log2 - logn - l o g l o g n  - 1 + E [log n]k ' n ~ ~o, (S) 

where 

.4, = - 7 ,  A2 = 72/2 - ~ / 1 2 ,  A3 = - 7 3 / 3  + 7 v 2 / 6 -  ~(3) /3 , . . .  

and C(3) = Z r-u" 
r-~l 

2 M a i n  R e s u l t s  

In the sequel, without loss of generality, we shall consider the following nodes set 

- -  = Zk,n = nk - ll } ' k = l , 2 , . . .  ,n. (9) 

Since through the change of variable 

x = 2 z - 1 ,  

one can map the interval I into I = [0, 1]. 

As a consequence the formula (3) becomes 

n 

~ ( ~ ,  z) = ~ Itk,,(~, z)l. (10) 
k----I 

Remark  1. Note that the Lebesgue constant is invariant under affine transformations [2] 

An(E). = max An(E,z ) .  (11) 
=e[o,q 

The first proposition gives an alternative formulation of the Lagrange fundamental polyno- 

mials at equidistant nodes in terms of binomial coefficients which is simpler than that known in 

literature. 

P r o p o s i t i o n  1. 

: z - k )  
' \ k - l / \  u - k  ' k = l , 2 , . . . , n ,  (12) 
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,~here (~) is th~ bino,niaz ~oe/~ie.g~l 

(~ )  = p ( p - 1 ) . . . ( p -  q+ 1) 
q(q- 1)...1 

Proof. 

condition 

lk,.(-E, zq,.) = ~k,q, 

where 6~,s is the Kronecker function. 

By using the identity [II] 

(13) 

The equidistant Lagrange fundamental polynomials are defined by means of the 

k,q = 1,2,.. .  ,n, (14) 

(:), 
one derives that 

and by inspection arguments the expression (14) follows. 

s integer 

k,q = 1,2,.. .  ,n (15) 

2.1 Lebesgue Funct ion 

- -  [ 1 ] 
As is pointed out in [2], ,~n(E, z) takes its maximum when z E 0, ~ , therefore our 

attention will be focused on the behavior of the Lebesgue function in the first subinterval, namely 

0, ~ . Following the same approach as in [7] we derive 

[1] 
An(-E,z) = ll,n(-E,Z) + ~-~(-1)klk,n(-E,z), z e 0,'~'~_ 1 . (16) 

k=-2 

The next result proposes two alternative expressions of the Lebesgue function restricted to such 

a subinterval. 

Propos i t ion  2. 

~(-~,z) = (-1)n+l{nz-z-k n - 1  1) [2-  2F~(1 - n , z - ~ z ; l + z  - nz;-1)] (17) 

.+, ( n z - z - )  (lS) An(E,z) = (-1) 2 1 _ p(-,z+z,-,)r 

The proof will apply the following lemma. 

L e m m a  1. 

k=l nz - z - -  k + 1 
(19) 
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where 
o~ 

(a )k(b)k  W k 

2F1 (a, b; c; w) = Z 
k=o (e)k k! 

and (a)q is the Poehhammer function defined as 

q-1  

(a)q = H ( a  + j), 
j=O 

( ~ ) 0  = 1. 

(20) 

Note that the formula (19) is the analytical extension of the hypergeometric function 

2F1 (a, b; c; w) defined for ]w I < 1 [9,12]. 

Proof of Lemma 1. Using the formula (20) and the definition of Pochhammer function in 

r ( .  + q) 
P(a) ' q = 0 , 1 , . - . ,  

terms of Gamma functions [131 

(a )q  - _ _  

the right hand side of (19) becomes 

-~ ( -1)  k r(1 - n + k)r(z  - nz + k)r(1 + z - nz) 

k=0 

r(1 - n + k) 
Since it can easily proved that the indeterminate term of (21), F ~ - - n )  , is equal to 

(21) 

(_1) k ( n -  1)! (22) 
(n - k - 1)! 

and using the recursive properties of the Gamma function [13] 

from (21) one obtains 

r(1 

+ z - nz) = (z - n z ) r ( z  - nz) ,  

+ z - n z  + k )  = ( z  - n z  + k) r (z  - n z  + k ) ,  

n z - z - k + l "  
k-=l 

(23) 

(24) 

Proof of Proposition 2. The expression (16) through (12) becomes 

\ n - 1  + Z ( - 1 ) n \ k - l / \  n - k  ' 
k=2 

and by standard algebraic manipulations it assumes the following form: 

\ n - 1  n z - z - k + l  
k= l  

(25)  

(26) 



.328. Analysis in Theory and Applications 20:4, 2004 

Hence by Lemma 1 (17) follows. 

In view of the identity [121 

p ( - n z , - n - ' ) ( 3  ) _ 
(1 -nz). 

n! 
2 Fl ( - n ,  -nz ;  1 - nz; -1),  

where Pn (~'~) is the Jacobi polynomial and by using the equivalence 

(n z  - z - 1) (n - 1)! 
(-1)(n+1)\ n - 1  ( 1 - n z + Z ) n - 1  =1 ,  

we can write (17) as (18). 

Remark 2. 

recalling that [12l 

A further integral expression of the Lebesgue function can be retrieved by 

2F1 ( - n ,  -nz ;  1 - nz; -1) = 

consequently (17) can be rewritten as 

2n (2nTrz) L ~ 
7r sin[2nlrz] (cos r cos[(2nz - n)r162 

An(E,z) 

( l~n+l(nZ-z-,~ [2 
' , - -  ] k n - 1  / / 

2 n - '  2(n-1)Trz f0" ] 7r sin[----~---l~z] (cosr n-1 cos[(n - 1)(2z - 1)r162 . 

(27) 

2.2 The Lebesgue Constant  

In this section we prove a formula for the asymptotic behavior of the Lebesgue constant, by 

showing a relationship among An, combinatoric theory and Jacobi polynomials. 

P ropos i t ion  3. 

( ~  - 1 )  - ~ -~ 
p(  ~ '  ) (28) A n  = ( - 1 )  (n+ l )  l o g ( n - 1 ) + ' r  - "  n - 1  (3) ,  n ~ oo ,  

n - 1  

where the asymptotic value of z corresponding to the maximum of the Lebesgue function in the 

first subinterval is given by 

1 
z* = n ~ co, (29) 

(n - 1)[ log(n - 1) + V]' 

with "y ..~ 0.577215665 the Eulero-Mascheroni constant. 

The following identities will be used for the proof of Proposition 3. 

n 1 

lira k=l 

k g  
k=l  

- O ,  (30) 
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lim k=L 

s  

- O. ( 3 1 )  

The proof of (30) and (31) is obtained by means of simple algebraic arguments. 

Proof. First, let us derive the expression for z*. The derivative of An(E, z) can be expressed 

a s  

d E -  z-z 
An(-E,z) =2 E n z _ z _ k  ( n z - z - k ) ( n z - z - q +  l) 

k = l  k = l  q = l  

+ E (z - nz + k - 1) 9 
k = l  

(32) 

due to the fact tha t  

n - I  
d ( n z ( z - 1 ) ( n  1 ) ( n z - z - 1 ) ~  1 

dz - 1  \ n - 1  = n z - z - k "  
(33) 

By some algebraic manipula t ions ,  it can be rewri t ten  as follows 

dz ~ ,~-1 I n z - z - k  ( n z - z - k ) ( n z - z - q + l )  
k = l  k = l  q = 2  

+ 
( z -  nz + k -  1) 2. 

k = 2  

(34) 

Hence, using the Mclaurin series expansion, the right hand side of (34) becomes 

n n 1 n- -  1 oc 

k = 2  = k = l  s = l  

- Z Z k -~- 1)~-~+, + ~ (k-  1)s+~ , 
k = l  q = 2  s = l  r = l  = s = l  

(35) 

from which, through identities (30), (31) and for large values of n, one obtains 

E n - 1  i 

1 -- s = l r = ,  Lk=l k=2 ( k - l )  ( k - l )  "-~+1 

\ k - l l  k--1 
k : 2  

(n  - 1 )Sz  s. (36) 

Then, noting that (36) has only sense for s = r, one has 

1 - ~ ( ~ - 1 ) ~  ~ 
s=l  Lk=1 

(37) 



�9 330. Analysis in Theory and Applications 20:4, 2004 

or in a different form 

"-' i i)z ~(.- i)',' i 
k=:  8=2 Lk=l 

(38) 

Moreover, by identity (31), it results that (38) is asymptotically equal to 

n - 1  1 

i-(~-1)zX] ~ 
k=: 

(39) 

and, finally, since[: :l 

it is trivial to conclude that 

n--1 

lim ~ 1 n-~oo ~ k = log(n - 1) + % 
k----1 

1 
Z* -~- 

(n - 1)[log(n - 1) + 7]" 

The asymptotic expansion of the Lebesgue constant readily follows by substitution of (29) 

into (18). 

In order to show the accuracy of the expression (28) of the Lebesgue constant with respect 

to the other formulas proposed in literature and here cited, an extensive numerical comparisons 

of the relative errors are performed. In Fig. 1 the numerical results are shown up to n = 200. 

As clearly it can be noted, the proposed estimation (Formula (28)) always allows one to obtain 

a better degree of accuracy than the other ones, except that in a brief interval n E [25, 32]. 

0 2 5  , ! , ,. 

i r ~  F o r m u l a  ( 2 8 )  
Turetskii: Formula ( 6 )  
Schonhage: Formula ( 7 )  

:- Mills and Smith: Formula ( 8 )  

02 : . . . . . .  : . . . . . . . . .  : . . . . . . . . .  : . . . . . . . . . .  : . . . . . . .  ; . . . . . . .  : . . . . . . . .  : . . . . . . . . . .  : . . . . . . . .  

: i 

r " I  : : ~==~  . : 
0 , 1 5  . . . . . .  ~ . :  . . . . . . . . . . . . . .  : . . . . . . . .  ~ ' .  " . - - - . .  ; . "  . . . . . . .  : . . . . . . . . . .  : . . . . . . .  : . . . . . . . .  : . . . . . . . .  

' -  /-- : i ' ' " ' "  " : : 

> ~ ' :  : 

2" o.1 . . . .  ~ .  

i 
I " *, 

L t ; . - .  . i i 

005  . . . . .  ~ .  . . . .  % . - :  . . . . . .  : . . . . . .  : . . . . . . . .  �9 . . . . .  i . . . . . . . .  i . . . . . . . .  i . . . . . . . .  : . . . . . . .  

~ a  . . , - , :  " ' - : " ' * :  . . . . .  "=" -,',-,.,'. - : - . ' , . ' . ' -7 : . ' . .  , '7 '  -,-'-_.,,....,, ," 
0 2 0  4 '0  6 0  8 0  1 0 0  1 2 0  1 4 0  1 6 0  1 8 0  2 0 0  

n 

F i g u r e  1 Comparison of Lebesgue Constant Estimations 
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