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SHORT -TERM ANALYSES OF THE VARI_ATION
OF LATITUDE

In an earlier paper on ""The Future of the International Latitude
Service', Young reported a conclusion that short-term analyses of the
variation of latitude could never be expected the produce accurate
representations of the variation. Short term analyses may be needed
either for the interpolation of results for immediate use, or for the
investigation of the theoretical motion. In this paper we consider both
these needs.

Two and Five Year Analyses.

In order to examine the results of the variation of latitude, assu-
ming that two definite periodic oscillations are present, we have fitted
the formulae-

1l = A+ A cos Yt —B sin Yt + C cos 302t + D sin 30° ¢t

m-P-+A‘sin Yt +B cos Yt + E cos 30°t + F sin 30° ¢

(measuring t in months) to the observational data. These represent the
motion of the pole as the sum of the forced elliptical motion of annual
period and the free, the pole as the sum of the forced elliptical motion
of annual period and the free, circular (Chandlerian) motion with period
2n/y. The possibility of systematic errors in the adopted position of the
mean pole is allowed for by the inclusion of A and it.

The data used for this investigation are the values of 1 and m
given at monthly intervals in Walker and Young’s Table Ia - the reasons
for preferring the monthly to the tenth-yearly values will be found in
that paper.

The normal equations for the least squares fit for any particular
value of Y are easily inverted in analytical form and it is found that the
estimates of A4 ABCDEF are given by

Y= Mx
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where
7~ [ }\- x = -21 i
i Im
C 21 cos 30°t
D 31 sin 30°t
E Im cos 30°t
F Im sin 30°t
A 2 (1l cos Yt + m sin Y)
B T (-1 sin Yt + m cos Yt)
L. L .
M~ NLA [Ava2b2 0 2actbd) aesbf)  Nad-bc)  2Aaf-be) - Na Nb)
0 A+a2ib? 2Abc~ad) 2Abe-af) 2(bd+ac)  2Abf+ae) - Nb~Na
2ac+bd) 2(bc-ad) 2a+4c?+4d?  4(ce+df) 0 4(cf-de)  -2Nc 2Nd
Nae+bf) 2be-af) 4(ce+d)  2A+4e?44f2  4(de-cf) 0 ~2Ne 2Nf
2ad-bc) 2(bd+ac) 0 4(de—ch)  2A+4c24d? 4(df+ce) -2Nd-2Nc
NAaf-be)  2(bfrae) 4(cf-de) 0 d(dfsce)  2A+4e2e4r? —2NI-2Ne
~Na ~Nb -2Nc -2Ne -2Nd =2Nf N2 0
Nb —Na 2Nd 2Nf -2Ne -2Ne 0 N2
a =3 cos Yt, ¢ =3 cos 30°t cos Yt, e = X sin 30°t cos Yt
b =3 sin YU, d = 2 cos 30°t sin YL, f = 3 sin 30°t sin Yt
and

A = N2 - a? - b2 ~ 2¢2 - 242 - 2¢% - 2f2
For two and five year analyses, N = 24 and 60 respectively.

The best fitted formulae for a particular Y in the sense of least
squares are therefore those given by the above analysis. It suffices to
repeat this analysis for different values of Y obtaining each time the
sum of the squares of the residuals, and continuing until the least of
these sums is found. There are several sophisticated techniques such
as descent methods for reducing the amount of searching necessary.
However, we have found that these methods tend to be iteratively uns-
table near the actual minimum and rather elaborate tests have to be
incorporated into the computer programs to ensure convergence. On our
computer - a DEUCE - we found that these tests used up a large frac-
tion of the actual computing time, and we found it easier to use the
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apparently wasteful but easily controlled search technique of trying every
value of Y in a convenient range.

For the two year intervals, N = 24, we calculated the inverse
matrices for 65 equally spaced points covering the range Y = 23° to
Y = 27°2' - corresponding to Chandler periods of about 1.3 and 1.1
years, This allowed 2n/Y to be obtained at an interval of less than two
days which we considered adequate. We calculated the best fits for each
two year run 1899 Dec. - 1901 Jan., 1900 Jan - 1901 Dec etc.., up to
1953 Jan - 1954 Dec. giving 638 analyses in all. In the program written
for DEUCE - which is a fixed-point computer - we used a scaling fac-
tor based on the assumption that no coefficient would exceed 0'".500 but
in practice some of the fitted coefficients did so, thus causing "overflow'
to occur which in turn led to erroneous estimates of the various coef-
ficients being given. In very many cases the value of Y giving the least
minimum sum of squares of residuals was at one of the extreme ends
of the range in which we searched so that we could not be certain that
the minimum had in fact been reached. Although two such successive
intervals have 23 pairs of observations in common, the observational
errors are so large that the two pairs of observations not in common
can differ so widely that quite different estimates of the parameters can
be obtained. For example, the radii of the circular components (R), the
major and minor axes of the elliptical components (a,b) and the Chand-
ler period (27/Y) for the four successive intervals 1901 March - 1903
Feb., 1901 April - 1903 March, 1901 May - 1803 April, and 1901 June
- 1903 May (runs 15 to 18) are as follows :

Run 15 16 17 18
R 0'. 155 0'".201 0".084 0. 197
a 0", 087 0",110 0", 158 0".076
b 0'".065 0. 093 0", 058 0'".065
2n/Y (years) 1. 143 1,099 1.296 1,099

These resulis lead us to conclude that two years is too short an inter-
val to analyse.

If overflow, which implies coefficients in excess of 0'.500 and
large sums of squares of residuals, is taken as indicative of very dis-
turbed motion, its occurrence is suggestive. It first occurred at run
91 and continued thereafter for several runs. These coincide with the
change of the site of the observatory at Tschardjui in 1909 July. Over-
flow occurred again between runs 160 and 196 coinciding with the aban-
donment of the I.L.S. program at Gaithersburg (1914 Dec.) and Cincin-
nati (1915 Dec.) and also frequently during the runs covering the decades
since the beginning of the second war.

For the five year intervals (N = 60) we extended the computer
program to cover values of Y between 23° and 29° The results are very
much more regular than those for two year intervals, and overflow never
occurred, the differences between the two pairs not in common apparently
not being so important when there are 63 pairs in common to successive
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runs. The full results are very voluminous, but in Table II we give a
typical set of twenty four consecutive analyses for the intervals 1937
Jan - 1941 Dec., 1937 Feb - 1942 Jan etc. (runs 445 to 466 inclusive).

The root-mean-square deviations, taken as the sum of the squares

observed ~ 1 calculated and m observed - ™ calculated divided by 120,

lie between 0'".019 and 0".040. These are still large compared with the
amplitude of the actual observed motion.

of 1

It is well known that in the analysis of oscillatory time series by
Fourier Analysis, the separation of components of nearly equal periods
is difficult; the effective number of observations is, in fact, virtually
the number of beat periods covered by the interval analysed. With pe-
riods of 12 and 14 months, the beat period is 7 years so that Fourier
Analysis of intervals of 5 years cannot be expected to give good results.
When the observational errors are as large as they appear to be in the
variation of latitude, the analysis is even less likely to be valuable. If
they are really as large as the analyses purport, the fitted curves are
of dubious use for purposes of interpolation.

Theory of Short-Term Analyses

It may be that, despite the statistical and practical difficulties
involved, attempts must be made to analyse the results of short inter-
vals of observations for theoretical reasons.

Many writers have seen the widely varying results obtained from
short-term analyses and concluted that there is a need for a theory to
explain them. Some, following Jeffreys, believe that the motion is highly
and irregularly distrubed and that though there exists a fundamental
period of free motion, this is masked by the disturbances.

Without these disturbances, the free motion would be undetectable
because it would undergo damping. To members of this school of thought,
the analysis of the variation of latitude is important because of the need
to determine the degree of damping as a prelude to explaining the me-
chanism which maintaing the motion. This is a geophysical rather than
an astronomical problem. All those who have engaged upon the problem
from this point of view have been agreed on the necessity for long series
of observations; most have used the correlation properties of the series
in their attempts at analysis.

Other writers believe that the free period is not constant, and
examine results over short intervals to try to determine the manner in
which the period varies. Probably the most thorough-going attempts of
this nature have been made by Melchior (1954). He took the equations
of motion in the form

d .
—(x +iy) -iy(x +iy) = -iY(ne'*t + n’e
dt
- 27
with 2n/a = 1 year (the forced annual motion) and A = T (the free
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period in years); treating Y, n and n’ as constant he obtained the axes
of the elliptical motion ag,

whence

a(t2-1) =(n+2’)T+(n~1")
. (3)

b(t2-1)= (2 -7+ (a +07)

In Table IX of his monograph, Melchior gave some fifty estimates
of T and a made by various authors; of these he chose seven as follows :

Interval t{in years) a
A 1900.0 - 12.9 1,183 0", 089
B 1900.0 - 17.9 1,183 86
Cc 1916.7 - 22.6 1.170 . 92
D 1917.3 - 23.2 1.170 90
E 1920.0 - 38.9 1.130 103
F 1922.0 - 38.9 1.132 107
G 1941.0 - 46.9 1.200 82

to which he fitted n and n’ by least squares. This.procedure is open to
the objection that the seven estimates are not independent. Estimates
A and B have 130 pairs of observations in common, C and D 54,
D and E 33, E and F 170 so that errors in T and a are strongly
correlated and fitting by least squares must be suspect. In fact, it would
be more realistic to describe Melchior’s result as being obtained from
a weighted least squares fit, to at the most four observations. Melchior
also made some 40 estimates of T, a and b for various overlapping
intervals by a graphical method (see his Table IX). To these estimates
he fitted

a(t2-1) = 070394 T- 070117

. (4)
b(t2 - 1) =-070117 T+ 0”.0394

This he called his 'statistical law' - when T is larger,a,b are smal-
ler and vice-versa. The same objection to the statistical method can be
raised to this extended investigation. His intervals were of 5, 6 or 7
years in duration; if 5 year intervals are used throughout, only 10 com-
pletely independent estimates of T, a and b are available since 1900,

In Table III we summarise the results of our investigation giving
the greatest and least values of a and b as well as the average for each
value of T (we include only cases where T was obtained 3 or more times).
For comparison we give a and b calculated from Melchior's formula (4).
The results afford poor confirmation of the law.
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However, an even stronger objection to Melchior’s treatment of
the problem is that the relations between a, b and T depend on the
solution of the equations of motion (1) with Y, n and n” constant. Hence,
his relations (2) are relations between constants and not between varia-
bles. If n and n’ are periodic variables, then they introduce further
periodicities into the forced motion, which the estimates made by Fou-
rier Analysis fail to take into account. Moreover, the more periodic
components are present, the longer is the interval required to determine
them by methods of Fourier Analysis. If they are stochastic variables
they bring in correlated errors of the type which Jeffreys and his suc-
cessors have tried to deal with by correlogram methods. If on the other
hand Y is really a variable, then equations (1) must be solved accordin-
gly. On page 79 of his monograph, Melchior gives the formula

T = L176 + 0.012 cos {%g-‘ (t - t,) - 50° 30'2

+0.022 cos ﬁ.—:‘ (t-1,) - 2880 }
(5)
+ 0.016 cos {%‘ (t-1,) - 243 f

+ 0.008 cos '22—015 (¢t - to) - 198° }

where t and T are measured in years and t, = 1870.0, With this formu-
la a variation of about 5 % in T is possible. Similar forms have been
given by other earlier writers.

In order to see if such a variation would in fact lead to no detec-
table departure from the solution (1) with y constant, we have solved the
equations in the form

dz

rTo ivyz + (1)

with
z = x+iy and i(t) = Ael®t + Bemiot

For the sake of simplifying the work we have had to choose the origin
of t so that

Y = Yo + & cos Ot

but the method of solution can be used to include more harmonic com-
ponents in Y.

If

P*i(Y°t+-;-sin ot) , T € )

the required solution is

2 = eP{ C+fePrmdt}] (D
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To carry out the integrations we have found Jacobi’s expansions

cos (N sin 6) = J, () +2 ZJ,,,(n) cos 206

n=]

sin (Nsin 0) = 2 ZJ,,H(n) sin (20 + 1) 8
n=0

cos (T cos 6)

Jo (M) +2 z (=) Joy (N) cos 206

n=l

sin (N sin 6) = 2 Z (-r J2n+l (n) cos (2n + 1)6
n=0
useful, particularly as the Bessel Function J, (n) starts with 0"

These series are uniformly convergent for all n.

€
Substituting them with 1 = T in (6) we obtain

ila=y,)t Be-i(a+yo)t:|

z exp (-P) -C+J°(T])|:Ae -
ile-v,) ita+y,)

oo Aei(a.—yo)t
+2 J,.(n) |—— }i(a-y,) cos 2n0t + 206 sin 206t
nz-l 2n an 92_(a_Y°)2 [ [ g
] e-i(a+Y°)t
+2 Jop (M) [———-——— -i{a+Y,) cos 206t +2n6sin 206t ]
:41 = 402 02 - (a+Y,)? { of §
~ Ad )" i (a-Y,) sin (2041) 6t
'2i212n+1(”)[ |~ (2001)6 cos (20416 !]
“~ (204+1)2 62 - (a-y,)? ~(2n+1)9 cos (2n+1) 6t
o —i{a+ )t .
o - . 2 1 e
-9 lenﬂ(n)[ e { ila+y,) sem( a+l) teil
(20+1)2 82 - (x+Y,)? —(20+1)8 cos (2n+1) 6t

n=0

The free motion is
P ( H . € . 6 . . € N e
Ce® = Clcos Yot + i sin Yot){cos(-e-sm t)+1sm(§sm t)

which is still circular with radius equal to IC' . In the long run it has
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"period" 2m/Y, , but the radius vector oscillates about the position it
would have reached had Y been constant and equal to Y, .

The case € = 0 reduces to the usual solution. However, the pre-
sent solution shows that resonance effects may occur when either 226
or (2n+1)08 is equal to @ +Y,. This in fact occurs with the components
in Melchior’s formula (5), as is shown by the following values.

8 - 27/80 21/50 2n/27 27/20
I-Yo 1097 7.48 4.04 2.99
f-;_YE - 148.03 92.52 49.96 37.01

If Melchior’s formula is correct, serious amplification of terms invol-
ving o1 = 1,2,3 would need to be taken into account. Thus, if we take
for illustration

T+ LI76 + 0.008 cos —tt
20
where T is measured in years, we obtain

2n 2 .008 2=
Y-—-- i ll—

T 1.176 1.176 20

n = % - - 0.11569

and
I, (1) = 0.99%7 , Iy (1) = -0.0577 , Jy (n) = 0.00167
I3 (n) = -0.0000322
Significant contributions to the right hand side of (8) are found to be as

follows

i(a~y, )t ~i{a+y))t

From J, (1) : -1.06iAe +0.09iBe

i(a=y, )t —i(at+y,)t

From J, (n) : (0.14 sin 6t + 0.05i cos Ot) Ae + (0.01i sin 6t) Be

From J, (1) : (~0.00i cos 2 60) Ae > %0°

From J; (1) : (~0.02 sin 3 6t - 0.02i cos 3 61) Ae = ¥0)°
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Thus, the contribution of the term Ae‘(m"n)t
be as much as 13 % of the corresponding one from Jg (1). Clearly, the
variation of Y cannot be treated as a small perturbation. The full ex-
pansion of the solution shows the presence of several terms with various
periodicities all close to a year. Short-term Fourier Analysis is quite
inadequate to separate these, so even if the basic contention that the
free period is variable is admitted, short-term analyses are of little
value.

from Jy (1) may
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TABLE II1

SUMMARY OF ESTIMATES OF FREE PERIOD AND
AXES OF ELLIPTICAL COMPONENT OF MOTION.

Period in [Number of Major axis, a (07.001) Minor axis, b (07.001)
years |estimates Maximum Average Minimum Formula [Maximum Average Minimum Formula|
T (4) (4)
1.048 4 102 83 64 301 64 59 51 276
1,082 3 176 121 65 279 64 51 25 254
1.079 3 130 101 70 188 64 46 31 163
1,083 4 103 79 65 179 69 71 44 155
1.090 6 | 147 99 57 166 | 64 30 3 142
1,094 7 167 128 63 160 68 27 0 135
1,098 6 156 107 69 154 | 16 59 4 129
1,102 7 174 130 79 148 72 49 13 124
1.107 6 164 136 49 142 81 62 43 117
1.111 7 175 103 49 137 63 44 8 113
1.119 5 159 96 58 128 57 42 22 104
1,123 9 176 101 14 125 82. 31 14 101
1.127 5 177 88 17 121 78 40 5 97
1.132 16 99 54 11 117 53 17 1 93
1.136 17 151 87 28 114 83 15 0 89
1. 140 14 178 106 18 111 54 21 1 87
1,145 19 169 98 38 107 76 33 6 84
1. 149 20 177 117 45 105 69 27 1 81
1,153 15 175 82 4 102 52 20 0 79
1.158 30 178 73 12 99 55 19 0 76
1.162 17 161 100 27 97 54 35 1 74
1.167 30 176 98 19 95 70 35 2 71
1.171 26 179 79 7 93 53 21 2 69
1,176 20 176 112 21 90 74 29 0 67
1,181 27 177 109 22 88 85 34 8 65
1.185 27 173 99 26 87 72 32 9 63
1.190 39 175 99 29 85 70 25 2 61
1.195 44 175 80 7 83 69 31 2 59
1,199 46 174 94 6 81 75 37 2 58
1.204 40 177 111 13 79 75 40 0 56
1.209 22 176 87 12 78 70 38 1 55
1.214 15 154 77 10 76 73 40 10 53
1.219 16 179 94 32 74 60 33 2 52
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