
J. Mater. Shaping Technol. (1991) 9:153-159 �9 1991 Springer-Verlag New York Inc. 

The Determination of Optimum Blank 
Shapes When Deep Drawing 

Prismatic Cups 

F. Liu and R. Sowerby 

Abstract. The article discusses some techniques for the determination of ideal (or 
optimum) blank contours when deep drawing prismatic cups. The ideal contours 
are designed to produce essentially flat topped cups and thus trimming of excess 
material is minimized. The techniques lend themselves to such processes where 
the cups are drawn from initially flat blanks in the presence of a blank holder. 
Tooling which involves lock beads or draw beads is not considered. 

Attention is devoted to two techniques developed by the authors; each method 
is based on the solution of Laplace's equation. One technique is experimental and 
uses an electrostatic analogue, the second is numerical and the solution procedure 
employs the boundary element method. Neither method attempts a rigorous anal- 
ysis of the actual drawing operation. They are intended as a means of producing 
near-net shaped blanks with little computational effort. Since material costs usually 
represent a major portion of the overall cost of a sheet metal part, the theme of 
the paper has immediate practical significance. 

Introduction 

Material costs are usually a major portion of the 
overall cost of a sheet metal component. One way 
of reducing scrap is to minimize the amount of ma- 
terial trimmed from the part. For deep drawn pris- 
matic cups, when constraints to material flow are due 
only to a blank holder or hold down plate, it is pos- 
sible to predict near-net shape (or optimum) blanks, 
which will result in savings of material. Several tech- 
niques are available and some of the more popular 
methods are reviewed here. 

Nowadays, finite element analysis is the favored 
numerical method for modelling sheet metal defor- 
mation processes. The formulation can be very so- 
phisticated, and finite element codes can be obtained 
which can accommodate large strain and large dis- 
placement (rotation) processes, anisotropy, elastic- 
plastic material behavior, membrane and bending 
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elements, and different plasticity theories, such as 
incremental, deformation, and vertex theories. 

Considerable attention has been paid to modelling 
axisymmetric deformation processes like punch 
stretching and deep drawing, and with some effort 
theoretical results can be obtained which agree quite 
well with experimental observations [1]. The appli- 
cation of the same methods to the deep drawing of 
other than axisymmetric shapes has been less suc- 
cessful. In these studies, the initial blank shape is 
specified, and very few papers have appeared in the 
open literature which deal with the development of 
near-net shaped blanks using a finite element method. 

One example is the work of Toh and Kobayashi 
[2] who predicted optimum blank shapes when deep 
drawing square cups. The main thrust of the article 
was the analysis of the drawing process starting with 
either a circular, square, or octagonal blank. A 
knowledge of the flow patterns for each of the dif- 
ferent blank shapes would certainly give some indi- 
cation of the form of the optimum shape. The al- 
gorithm for producing the optimum shape was not 
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discussed in detail in the article. However, experi- 
mental data were provided of square cups drawn 
from the predicted ideal blank contours, and the re- 
suits were quite good. 

In Ref. [3], the deep drawing of square and el- 
liptical cups was studied both experimentally and the- 
oretically. The initial blank contour was circular and 
no attempt was made to develop optimum profiles. 
However, predicted flow patterns were provided along 
with the contour of the deforming blank at different 
stages in the drawing process; these predictions com- 
pared very well with the experimental results. A 
knowledge of the flow patterns for circular blanks 
will also provide some indication of the optimum 
blank shapes. The finite element programs devel- 
oped in Refs. [2] and [3] were designed to analyze 
the entire deep drawing process. If the goal is an 
estimate only of the ideal blank contour, then simpler 
codes could be developed. 

Slip line field (SLF) theory [4] has been applied 
to analyze the deformation in the flange when draw- 
ing irregular shaped cups [5]. At first sight SLF anal- 
ysis would appear to be of limited practical worth, 
since the theory (in its simplest form) deals with a 
nonhardening solid and assumes no change in the 
thickness of the flange. Furthermore,  since the 
boundary of the blank is changing during the drawing 
process, it might be anticipated that this would pre- 
sent problems in developing appropriate SLF pat- 
terns. 

However, the utility of the SLF method for de- 
veloping optimum shaped blanks was demonstrated 
by Lange and his coworkers [6,7]. It was assumed 
that the die contour and the perimeter of the blank 
are principal stress directions, and hence the slip lines 
intersect these boundaries at +45 deg. If the die 
contour can be made up of straight lines and circular 
arcs (which in general would always be true), then 
it is easy to extend the SLF into the flange. Under 
these circumstances the starting slip lines, that is, 
those emanating from the die contour, are always 
straight lines and logarithmic spirals, and providing 
the die contour is everywhere convex outwards the 
field can be extended either graphically or numeri- 
cally with equal facility. It was pointed out in Ref. 
[7] that many of the slip line fields developed in this 
manner failed to satisfy the Hencky equations, which 
means that the fields are in error. Nevertheless, the 
fields can still be used to develop blank contours. It 
can be demonstrated [7,8] that for each blank profile 
constructed, the time taken for particles to flow from 
the blank boundary to the die contour along the in~ 
dividual stream lines is always the same. Each par- 

ticle on the blank boundary reaches the die contour 
at the same time, thus producing a flat topped cup. 
In this sense the blank contours are ideal. 

In Ref. [8] computer programs were developed to 
run on a microcomputer. The programs calculate the 
SLF mesh (and associated hodograph), the blank 
contour, and stream lines for any convex outward 
punch profile. The flow is ideal since the blank con- 
tours and the stream lines form an orthogonal net- 
work of lines. The calculation time to produce sev- 
eral successive blank contours (corresponding to 
different draw depths) is 2 to 3 minutes. A hard copy 
of the blank contours can be obtained from a plotter 
or laser printer. The authors have performed a num- 
ber of experiments (see Ref. [8]) on the deep drawing 
of square cups, using square punches of different 
geometry. Optimum blanks were developed using 
SLF theory. The resulting cups were not flat topped, 
but the undulations around the rim were quite small. 

Note that when the punch contour possesses reen- 
trant regions, such as L shaped punches, the exten- 
sion of the slip line field into the flange is limited. 
At some stage in the development of the field one 
family of slip lines run together and the field cannot 
be continued. 

In the following section two techniques, devel- 
oped by the authors, for producing optimum blank 
shapes are described. Each technique is based on the 
solution of Laplace's equation. One method is ex- 
perimental and the other numerical; in either case 
no restriction is placed on the shape of the punch 
contour. 

M e t h o d s  of  Eva luat ing  O p t i m u m  B l a n k s  

Electrostatic Analogue Method 

Since Laplace's and Poisson's equations arise in many 
areas of applied physics and engineering, extensive 
efforts have been made to finding methods for their 
solution. The use of analogue techniques as a method 
of solution is well documented [9,10]. In this section 
an electrical analogue for blank development is de- 
scribed. This is not the first time an electrical ana- 
logue has been used to determine blank shapes. 
Zhaotao and Bingwen [11] used an electrolytic tank, 
built according to a specification by Boothroyd et al. 
[12]. In the present work a conductive sheet analogue 
[10] is employed, and this is considered to be cheaper 
and easier to use than the electrolytic tank method. 

The equilibrium equations for the plane strain, 
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quasistatic deformation of an incompressible solid 
are 

Ocr,~._._~ + O(r~,y = 0 
Ox & 

OCryy + OCry x = 0 

ay ax 

(1) 

while the continuity equation is 

av--z~ + ~ = 0 (2) 
ax & 

If the material obeys the von Mises yield criterion 
and Levy-Mises flow rule, then as demonstrated in 
Ref. [11], the hydrostatic pressure obeys Laplace's 
equation. This was the basis for the analogy drawn 
by Zhaotao and Bingwen [11]. We want to make the 
analogy by assuming the flow of the material in the 
flange of the drawn cup is comparable to the irro- 
rational flow of an inviscid liquid. It was mentioned 
in the previous section that an outcome of the SLF 
solution was that the contours of the blank profiles 
and the stream lines form an orthogonal network of 
lines. This is a characteristic of the flow of an ideal 
liquid where the flow lines are orthogonal to contours 
of equipotential, ~ ,  and the velocity components are 
derivable from qb. It is easy to prove that the velocity 
potential obeys Laplace's equation: 

a2(l ) 02(I ) 

0x--- S + - -  = 0 (3) Oy 2 

The voltage (E) distribution in an isotropic, con- 
ductive sheet of uniform thickness can also be shown 
to obey Laplace's equation 

02E 02E 
+ ~_----S = 0 (4) 

Ox~-; oy 

For a more detailed discussion on the analogy be- 
tween Eqs. (3) and (4), see Ref. [13]. The conductive 
sheet analogue allows the determination of contours 
of equal E,  which correspond to contours of equal 
velocity potential, ~ ,  and hence the ideal blank con- 
tours. 

The experimental technique is shown schemati- 
cally in Figure 1. The conductive sheet is sold com- 
mercially in a variety of cut sizes or in roll form; the 
sheet thickness is about 0.15 mm. Ideally the paper 
should be uniform in thickness, with a smooth sur- 
face finish, and possess a high, but uniform, resis- 
tivity. The profile of the punch is drawn on one sur- 

O U T E ~  
(AT INFINITY) 

NK PROFILE 

t 
\ INNER BOURNoD?RY / 

Fig. 1. Circuit diagram for the electrical (conductive sheet) 
analogue. 

Fig. 2. Blank contours for an L shaped cup using the con- 
ductive sheet analogue. 

face using conductive ink or paint. We applied 
conductive ink using a standard drafting pen. An 
outer boundary is then drawn (convex outwards) on 
the paper, as far away as possible from the punch 
boundary. A 10 V dc battery was connected across 
the two boundaries as shown in Figure 1. A steel 
pointed stylus attached to a high impedance volt- 
meter (in order  that negligible current is drawn from 
the circuit) is used to map out contours of equipo- 
tential, which represent the ideal blank contours. A 
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PUNCH BOUNDARY 

SHEET 1 

INSULATION ~ 

UCTING 
INK 

Fig. 3. Alternative circuit diagram to Fig. 1. 

succession of nested contours correspond to blank 
profiles for different draw depths. Profiles generated 
for the deep drawing of L shaped cups are shown in 
Figure 2. 

Large sheets of resistance paper are required if 
the outer boundary is to be drawn far away from the 
punch profile boundary. As an alternative, the ar- 
rangement shown in Figure 3 can be adopted. Two 
circular pieces of resistance paper are used, they are 
joined around the periphery, but insulated from each 
other everywhere else. On the surface of one sheet 
the punch profile is drawn using conductive ink, while 
a small patch of conductive ink is deposited at the 
center of the second sheet. It can be demonstrated 
[12] that this small patch of ink is equivalent to a 
pole (or boundary) at infinity. Both experimental 
arrangements were employed, and yielded essen- 
tially the same results for the equipotential contours. 

Boundary Element Method 
The various ways of solving Laplace's equation were 
mentioned above and the analogy was drawn be- 
tween the irrotational flow of an inviscid liquid and 
the ideal flow of the material in the flange of a drawn 
cup. The same analogy is used here, but Eq. (3), 
involving the velocity potential qb, is solved using a 
numerical technique referred to as the boundary ele- 
ment method [14,15]. 

Figure 4 is a schematic representation of the punch 
boundary, F1, the current boundary, F2, of the ideal 
blank, and the domain, ~ ,  which represents the flange. 
It is assumed that �9 is a constant along the boundary 
F 2, and that the inward velocity (say, q) is normal 
to F 2. How the boundary F2 is determined will be 
indicated later. It is further assumed that on the punch 
boundary F1 the flow is normal to the boundary and 
is a constant along the boundary. Hence �9 is un- 
known along F 1 and q is unknown along F2. How- 
ever, q = Odd~On where n is the inward normal to the 

~ u 

@ Fig. 4. Schematic representa- 
tion of the inner (punch) and 
outer (blank) boundaries in 
the boundary element 
method. 

boundary. With these conditions there exists a well- 
posed problem of the Laplace type with 

V2(I ) = 0 in  f~ 

= (~ (say) on Fz 

q = ~ (say) on F~ 

(5) 

The above set of equations can be solved by the 
method of "weighted residuals," which are taken to 
be Green's function belonging to the Laplacian 0p- 
erator in two dimension. The theoretical fundamen- 
tals are covered in Refs. [14-16], where it is dem- 
onstrated that the above equations can be restated 
in the form of a boundary integral equation 

ci~i+ frd~q*dF = frq~*dF (6) 

where F = F1 + F2, i is a generic source point (in 
this work only points on the boundary are consid- 
ered), and qb i is the corresponding potential; ci is a 
coefficient and can be determined if the shape of the 
boundary is known at i. The quantity qb* is the 
weighted residual defined as 

qb* = ~ In (7a) 

and 

0qb* 
q* = (7b) 

Ori 

In Eq. (7a) r is a position vector from a source point 
on the boundary to any other boundary point. 

When solving the integral Eq. (6), by the bound- 
ary element method, the approach is to discretize the 
equation into a system of elements on the boundary. 
Linear elements were employed in the present work, 
and hence qb and q vary linearly over each element 
and can be expressed in terms of the nodal point 
values. Ultimately the equations will be integrated 
numerically using a four-point Gaussian quadrature, 
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s 

I 
,1, q , l ~ l %  q2 

~, i ~ 2 
NODE J - X, ~" 

Fig. 5. Linear elements and a local dimensionless coor- 
dinate system. 

j * l ~  

NODE 

j F, 

I ELEMENT 

X~, 

Fig. 6. Discretization of boundaries. 

and it is convenient to introduce a dimensionless lo- 
cal coordinate, ~, to define the linear elements, see 
Figure 5. The values of r and q can now be ex- 
pressed as 

(I)(6) = Sl(I) 1 -{- S2(ID 2 

q({) = S,q, + S2q 2 
(8) 

where the dimensionless coordinate ~ equals x / ( f / 2 )  

and 

S1 = (1 - 6)/2 and S 2 = (1 + 6)/2 

To keep the normal of the boundary outwards 
over the domain 12, the inner boundary F1 is discre- 
tized in a clockwise manner  and the outer boundary 
F2 anticlockwise, as illustrated in Figure 6. Each 
boundary contains N elements. Equation (6) in dis- 
cretized form can be written 

cidPi+ ~ frjdPq*dF = ~.~ fr qdP*dF (9) 
i=1 j=l 

The method of integrating over the j segment can be 
demonstrated by considering the integral term on the 
left hand side of Eq. (9); by using Eq. (8) it can be 
written as 

where 

h)j = ~rjS~q*dF and  h~ = fv, S2q*dF 

and q* is defined in Eq. (7b). 
The method is similar for integrating over the ] 

segment on the right hand side of Eq. (9). Note these 
integrals can now be evaluated numerically using 
Gaussian quadrature. Details can be found in Refs. 
[14,16] along with a discussion on how the discretized 
terms can be assembled. In the book by Brebbia [14], 
detailed Fortran computer programs are provided for 
solving the discretized integral equation. As dem- 
onstrated in Refs. [14,16], when all the nodes are 
considered and the various terms assembled, there 
results a 2N x 2N system of equations which can be 
expressed in matrix form 

[H][dP] = [Gl[q] (11) 

where each term in [H], defined as Hij, represents 
the sum of the h 2 term of element ( j  - 1) and the 
h 1 term of element j, and similarly for the [G] matrix. 
The matrices can be partitioned in the following man- 
ner 

H1/1 H1/2 

H2/1 H2/2 
apN + 1 

Gm 

G2/1 

Gllz 

G2/e 

ql 
i 

qu 

qN+ 1 
q2N 

(12) 

The notation Hi~ 1 implies nodes on the inner bound- 
ary with integration being carried out over elements 
on the inner boundary; while H2/1 implies nodes on 
the outer boundary with the integratio'n over ele- 
ments on the inner boundary, etc. It is a simple mat- 
ter to rearrange Eq. (12) to solve for the unknowns 

(I) 1 "-> (I)N, and qN+l  ""-> q2N" 
In the present case we analyzed the drawing prob- 

lem by successively moving back the outer boundary. 
The solution was started from the inside boundary 
(the punch profile boundary) F1. The velocity q at 
each node on the inner boundary is assumed constant 
and therefore by selecting a time step At, each node 
was stepped back a distance qAt .  This established 
the first outer boundary F2. The node is moved back 
in a normal direction, and an averaging technique 
was developed using the normal direction of each 
adjacent element.  With boundary F2 in position, the 
elements of the matrices in Eq. (11) were evaluated 
along with the unknown q values over the outer 
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boundary. Once having solved for the q values, the 
time step can be repeated using an average value of 
the nodal velocities at the inner and outer  boundary. 
This refinement is not really necessary if the time 
step At is small enough. With the known values of q 
on the outer boundary, a new outer boundary is formed 
in the manner just indicated. The elements  of the H 
and G matrices are now formed between the inner 
boundary F~ (this never changes) and the new outer 
boundary. Each successive outer boundary corre- 
sponds to an ideal blank contour. 

An important property of the H matrix in Eqs. 
(11) and (12) is that the sum of the elements in any 
row is zero. A full discussion on this point is provided 
in Ref. [14]. This particular property of the H matrix 
makes it possible to choose any constant value, do, 
for the nodal potential, (I)N+ 1 t o  (IDzN , on the outer 

boundary F 2. It follows that any constant value of do 
on F 2 has no influence on the computed nodal ve- 
locities, qN+l to q2N, o r  F 2. Only the values of do on 
the inner boundary F1 are affected, and these do not 
influence the construction of the boundary F2. In our 
work we selected do = 0, for simplicity. 

Calculations were performed for a variety of punch 
shapes. Some predicted profiles for a L shaped punch 
and square punch are shown in Figures 7 and 8. For 
the plane strain deformation of an incompressible 
material the following relationship must hold 

f r, qdF = f r 2 qdF = constant (13) 

The condition was checked for several of the newly 
created outer boundaries and was found to hold. 

/ ~ B L A N K  

Fig. 7. Predicted optimum blank for an L shaped cup using 
the boundary element method. 

~ BLANK ES 
/ \ 

\ / 

Fig. 8. Predicted optimum blank shapes for a square cup 
using the boundary element method. 

C o n c l u s i o n s  

Industrial stamping operations are difficult to model,  
and blank development is but one aspect of a com- 
plicated process. The techniques of blank develop- 
ment described in the article are not exact, since they 
do not attempt to model the forming process. Fur- 
thermore,  they apply only to the situation where an 
initially flat blank is drawn into a prismatic cup in 
the presence of a blank holder; additional constraints 
through draw beads, etc., are not considered. In spite 
of these limitations, we consider each technique can 
result in material savings with little experimental or 
computational effort. 

Finite element codes which are designed to model 
the entire forming process are more difficult to for- 
mulate than the boundary element method. There 
are numerous finite element packages which are 
commercially available, but they tend to be costly. 
A finite element approach does not necessarily result 
in an improved optimum blank shape, primarily be- 
cause the contact conditions between the tooling and 
the workpiece are not known precisely. 
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