
Computer Prediction of the Deformed Shape 
of a Draw Blank During the Binder-Wrap 

Stage 

S I N G  C. T A N G  

A method has been developed for predicting the draw-cavity shape of a draw blank 
during the blank-holder closed, predraw punch impact stage in the sheet metal draw 
stamping process. By selecting and progressively feeding particular increments of a 
proposed set of blank holder surface displacements as input boundary conditions, the 
nonlinear shell computer program developed by Ford Research is utilized to accurately 
predict the deformed shape of a blank during this stage. The method and computer 
program have been successfully applied to several symmetrical body panels on an 
experimental basis. Further work is required to both expand the scope and provide a 
practical system J~,;r the production engineering of sheet metal stampings. However, this 
method represents a step forward to computerized predictive binder design. 

INTRODUCTION 

In order to predict which points on a blank contact a 
punch first as it moves in the sheet metal stamping 
process, we must know the deformed shape of the blank 
during the binder-wrap stage. A simplified draw blank 
to form a car body panel is shown in Fig. 1 and its edges 

are deformed to the shape of a binder, as shown in Fig. 
2. In this blank, we assume two sides are free of force 

before the punch contacts the blank. The conventional 

computer graphics method of finding the deformed 
shape of a blank is by means of fitting the deformed 

surface with conical, cylindrical, and flat surfaces. This 
method could predict a deformed center section of the 

blank, as shown by the dotted line in Fig. 2. It gives 
excellent agreement with that actually measured from 

the trial blank in the plaster shop for regions close to 
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two sides over the punch opening; however, this pre- 

diction deviates much from that actually measured, as 
shown by dots in the same figure. As a matter of fact, 
the middle portion of this center section deforms 
differently from that at the binder edge such that this 

portion is a surface with double curvature, and it cannot 
be treated by the conventional method of fitting a 

cylindrical surface in that portion. The deformed sur- 

face with double curvature cannot be fitted by a set of 

developable surfaces. Because of the special character- 

istic of the deformation, the punch might contact there 

first; therefore, an accurate prediction of the deformed 
shape, especially in the middle portion, is necessary to 
determine the initial punch contact. 

Invoking the theory of elasticity or plasticity, this is a 
boundary value problem, with either displacements or 
forces specified at the blank holder surface which 
defines the deformed shape of a supported blank before 
punch contact. We note that the displacement of a point 

from the undeformed to the deformed state, for exam- 
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Fig. ] - - A  simplif ied rectangular draw blank. 
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Fig. 2--Deformed edge and center section of simple draw blank 
during the binder-wrap stage. 

ple a point located at the center of the edge, is very large 
and has the order of magnitude of the blank length or 
width. The classic linear theory will not be valid to 
compute deflection of that order of magnitude and we 
must apply the theory including the geometrical non- 
linearity due to large deflection. This complicates 

solution procedures. Fortunately, the present technique 
utilizing the finite element method is feasible for solving 
those nonlinear structure problems, resulting in the 
prediction of stresses and deformations. 

THE FINITE ELEMENT METHOD 
APPLIED TO NONLINEAR ANALYSIS 

We will briefly discuss the finite element method for 
stress and deformation analysis in this paper. For a 
complete understanding of this method, an analyst must 
have a reasonable background of elasticity, matrix 
algebra, and numerical analysis. There were a series of 
articles t which introduced the finite element method for 
those who are only familiar with elementary strength of 
materials. We shall summarize those articles in the 
appendix. 

The formulation in the appendix is valid only if the 
deformed configuration is not much different from the 
original shape and the stress is small enough so that the 
linear relationship (proportionality) between the stress 
and strain holds. This is the linear theory which most 
people are using in structural design. If any of the 
previously mentioned conditions is violated, the non- 
linear theory must be used for a correct solution. Figure 
3 shows a slender arch under a concentrated load P. 
When P is small, the deformed configuration (the 
dotted line in the figure) is not much different from the 
original (the solid line); therefore, we may use the 
original shape as the reference configuration to estab- 
lish the equilibrium conditions without introducing 
much error. When P is large, the deformed configu- 
ration could change from the convex to the concave 
(the chain line in Fig. 3) and the axial force N changes 
from compression to tension. The deformed configu- 
ration must be used as the reference to establish the 
equilibrium condition. This is the geometrical nonlin- 
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Fig. 3--Deformed configuration of a slender arch under a concen- 
trated load. 
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earity due to large deflection. In consideration of the 

geometrical nonlinearity, the stiffness matrix K in Eq. 

[A8] is no longer constant and it depends upon the 
solution; therefore, the equilibrium conditions are ex- 
pressed by a set of nonlinear simultaneous algebraic 

equations. 
The material nonlinearity also exists for most metals, 

if the stress at a point exceeds a certain level known as 
the yield strength of the material, there is plastic flow 

(permanent deformation after the load is completely 

released and the stress-strain relationship is no longer 

linear, as shown in Fig. 4. This is known as material 

nonlinearity. If there is plastic flow, the stress-strain 
relationship in Eq. [A2] is not valid. Based upon the 
Prandtl-Reuss relation, 2 Eq. [A2] is changed to the 

incremental form, as follows: 

= [ l ]  

in which do is the stress incremental vector, de the strain 
incremental vector, and D the material matrix which 

depends upon the stress level ;;t a point in each element. 

Coasequently, Eq. [A8] is clanged to 

Kd6 = elF [2] 

in which db and d F are incremel~ts of the displacement 
and load vectors, respectively. A step-by-step numerical 

integration technique can be applied to find the dis- 
placement vector ~ at the load cector F. For a linear 

problem where K is constant, we need only a one-step 

solution to obtain 6. 

METHOD OF SOLUTION 

Because the thickness of a blank in sheet metal 
stamping process is small in comparison to its sides or 
the radius of curvature of a binder section, the non- 
linear thin shell theory can be applied instead of the real 
three-dimensional theory of elasticity or plasticity. This 
reduces the number of degrees of freedom by one order 

of magnitude. In thin shell theory, we assume that: 
1) The strains are small everywhere, but large rotations 

and deflections are admitted; and 2)the transverse 

shear deformation and transverse normal stress acting 

on the surface parallel to the middle surface may be 
neglected. In this theory, the bending strain is consid- 
ered. A computer program 3.4 applying this nonlinear 

thin shell theory has been developed by Ford Research 
to compute the large deflection as well as the stress in 
the plastic range of a general thin shell structure. The 
curved triangular elements which can be proved to 
converge to the exact solution were adopted in this 
program; however, the shell surface must be C~--slope 
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Fig. 4- -Uniaxia l  stress-strain curve for a metal. 

continuous everywhere. The elasto-plastic theory for the 

material properties was also used in this program; 

therefore, it can compute the permanent deformation 
and residual stress distribution when loads are com- 

pletely released from a thin shell structure. The method 

used to solve the nonlinear problem is a step-by-step 
numerical integration method for each load increment. 
The special feature in this program is that an equilib- 
rium check is made at each load step. If the unbalanced 
forces in the equilibrium check are unacceptable, an 
iteration which is similar to that of the Newton- 

Raphson method is used until the unbalanced forces are 

small. 
This program can be applied without any modifi- 

cation to find the deformed shape of a blank during the 
binder-wrap stage in the sheet metal stamping process. 
The displacement boundary conditions are specified to 
the binder surface shape and the external loads are due 
to the weight of the blank and frictional forces acting on 
the blank in the blank holder contact area. To save 
computing time, we may neglect the deflection of the 

blank due to the plastic strain, so that we consider only 

the geometrical nonlinearity during the binder-wrap 

stage. We note that the radius R of the binder may be as 

small as 3 in. (7.62 cm) and that the maximum bending 

stress in the blank with thickness t = 0.030 in. (0.762 
mm), according to the elastic cylindrical bending equa- 

tion, 

E 1 r 
o . . . . . .  [31 

( l  --  p2) R 2 

is greater than 100,000 psi (689.5 MPa) for steel with 
Young's modulusE = 30 • 106 psi (207 GPa) and 

Poisson's ratio v = 0,3. By observation, the plastic flow 
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due to this high stress is restricted to a very narrow 
region; therefore, it does not have a significant effect on 
the overall deflection, as shown by Line t  al .  5 

The specified displacements of the blank in the blank 
holder surface are large and have the order of mag- 
nitude of the blank length or width; thus, we must use 
the step-by-step increment of the displacements to 
reach the final specified values for a trial design of the 
binder surface shape. If we increased proportionally the 
resulting displacement at every boundary point until 
reaching the final specified values for the trial design, 
we would discover that there was a tremendous amount 
of membrane stresses involved during the computation 
process. This would cause difficulties in computation. 
As a matter of fact, this procedure is contrary to what 
happens in the real world during the binderwrap stage, 
because we observe that there is not much membrane 
stresses in the blank in the process to reach that stage. 
The membrane stresses increase to a tremendous 
amount and then decrease due to an artificially imposed 
increment of the displacement boundary condition 
--increasing proportionally at each boundary point. To 
do ,this naturally without excessive membrane stress 
increase or decrease in the computing process, we may 
increase the curvatures of the edges of a blank gradually 
from flat to the specified curvatures or decrease the 
radii from infinity (flat initially) to the specified 
amounts. A pre-process computer program, computing 
the displacement increments due to these radius 
changes, can be written without any difficulty and this 
program progressively prepares input data for the 
nonlinear shell program. Achieving the displacement 
boundary condition at edges in this way, we discovered 
that there were always bending stresses without exces- 
sive membrane stresses and accurate results were easy 
to obtain because of the weakness of the nonlinearity. 
After the boundary displacements specified by the trial 
design are reached, we can start to apply the external 
pressure due to the weight of the blank and the 
frictional forces acting on the edges of the blank. This 
procedure is justified for the nonlinear problem because 
we neglect the plastic flow which is loading path 
dependent. In the nonlinear elastic problem, the final 
result is independent of a loading path. This means we 
may load the structure in a way to suit computational 
convenience. As long as the same final loading condi- 
tion is reached, the solution should not deviate from the 
desired one. 

NUMERICAL EXAMPLES 

The first example is a Thunderbird trunk deck lid 
made from a steel blank 48.625 in. (123.5 cm) x 70.840 
in. (179.9 cm) x 0.033 in. (0.84 mm). The specified 

displacements at binder edges are shown in Fig. 5 where 
the coordinate system is the same as that in Fig. 1. 
Taking advantage of symmetry about the plane y = 0, 
we modelled half of the blank surface with 24 nodal 
points and 30 triangular elements, as shown in Fig. 6. In 
running the nonlinear shell program, we reduced the 
radii, shown in Fig. 5, gradually from infinity (flat) to 
the final values 199.510 in. (506.8 cm), 4.00 in. (10.2 cm), 
and 69.019 in. (175.3 cm), respectively, in the several 
steps tabulated in Table I. In each step, it took no more 
than four iterations to converge, i .e .  the equilibrium 
conditions satisfied in the nonlinear shell program. 
After the displacements along edges specified by the 
trial design were reached, the weight of the blank equal 
to a uniformly distributed load of 0.0092 psi (0.063 kPa) 
was then imposed in the negative z-direction. Instead of 
applying the frictional forces acting on the blank edge, 
we pulled back the blank edge by 80 pct of the 
displacement in the y-direction computed previously. 
We tried to pull back the blank edge in the y-direction 
by various amounts (from 0 to 100 pct of the computed 
value). This pull back could change the deformation 
along two sides AO and BC in Fig. 1; however, it has 
negligible effect on the deformation of the profile P-P in 
Fig. 2. The deformed shape of the blank in the vicinity 
of that profile is the most important because the punch 
would contact that area first. The solution from pulling 
back by 80 pct seems to give the best agreement for the 
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Fig. 5--Specified deformed edges of a blank in Example 1. 
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deformation along these two sides with the measured 
values. In the last run, we froze the displacement 
boundary condit ion--no  further movement of the bind- 
er edges in both x and z directions. The computer 
results for sections at y -- 0, -12 in. (-30.5 cm), -24 in. 
(-61.0 cm), and -35.423 in. (-90.0 cm) in the final 
deformed state are shown in Figs. 7 and 8. At the 
section y = 0, we actually measured the deformation of 
the trial blank in the plaster shop. Excellent agreement 
between the computed and measured results is shown in 
Fig. 7. 

The second example is a Fairmont/Zephyr trunk 
deck lid made from a steel blank 53.318 in. (135.4 cm) 
• 69.00 in. (175.3 cm) • 0.033 in. (0.84 mm). The 
specified displacements at binder edges are shown in 
Fig. 9 where the coordinate system is also the same as 
that in Fig. 1. Taking advantage of symmetry about the 
plane y = 0, we modelled half of the blank surface with 
33 nodal points and 43 triangular elements, as shown in 
Fig. 10. In running the nonlinear shell program, we 
reduced the radii, shown in Fig. 9, gradually from 
infinity to the final values 28.985 in. (73.62 cm), 3000 in. 
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Fig. 7--Deformed shape at sections y = 0 and -12 in. (-30.5 cm) for 
Example 1. 

(7.62 cm), 4.100 in. (10.41 cm), and 10 in. (25.40 cm), 
respectively, in the several steps tabulated in Table II. 
We used the same strategy to treat the weight of the 
blank and the frictional forces as that described in 
Example 1. The computer result for the center section at 
y = 0 in the final deformed state is shown in Fig. i l .  
The actually measured values from the trial blank in the 
plaster shop are also shown in the same figure. Excellent 
agreement between the computed and measured results 
was also obtained in this example. 

Table I. Reduction of Radii for Example 1 

No. R] in. (cm) R 2 in. (cm) R 3 in. (cm) 

1 Do 500 (1270) Do 
2 Do 300 (762) o0 
3 Do 200 (508) 
4 ~ 100 (254) Do 
5 no 50 (127) Do 
6 Do 25 (63.5) 
7 Do 15 (38.1) Do 
8 500 (1270) 10 (25.4) 500 (1270) 
9 300 (762) 8 (20.3) 300 (762) 

I0 199.510 (506.8) 6 (15.2) 100 (254) 
11 199.510 (506.8) 5 (12.7) 69.019 (175.3) 
12 199.510 (506.8) 4 (10.2) 69.019 (175.3) 
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Fig. 9--Specified deformed edges of a blank in Example 2. 
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Fig. 8--Deformed shape at sections y = -24 in. (-61.0 cm) and -35.42 
in. (-90.0 cm) for Example 1. 
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Fig. 10---Finite element model for blank in Example 2. 
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Table II. Reduction of Radii for Example 2 

No. R 1 in. (cm) R 2 i n .  (cm) R 3 in. (cm) R 4 in. (crn) 

1 oo 500 (1270) 500 (1270) 500 (1270) 
2 oo 300 (762) 300 (762) 300 (762) 
3 ~ 100 (254) 100 (254) 100 (254) 
4 oo 70 (177.8) 70 (177.8) 70 (177.8) 
5 ~ 50 (127) 50 (127) 50 (127) 
6 oo 35 (88.9) 35 (88.9) 35 (88.9) 
7 oo 20 (50.8) 20 (50.8) 20 (50.8) 
8 oo 13 (33.0) 13 (33.0) 33 (33.0) 
9 500 (1270) 10 (25,4) 10 (25.4) 10 (25.4) 

10 300 (762) 8 (20.3) 8 (20.3) 10 (25.4) 
11 200 (508) 6 (15.2) 6 (15.2) 10 (25,4) 
12 100 (254) 5 (12.7) 5 (12.7) 10 (25.4) 
13 70 (177.8) 4 (10.2) 4.1 (10,4) 10 (25.4) 
14 40 (101.6) 3.5 (8.9) 4.1 (10.4) 10 (25.4) 
15 28.985 (73.6) 3.0 (7.6) 4.1 (10.4) 10 (25.4) 

4 

~ " ' ~  9 / .  X MEASURED 
9 UNDE FORMED SECTION -0- COMPUTED 
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Fig. I 1--Deformed shape at the center section y = 0 for Example 2. 

placement properly specified at any point, can be solved 

accurately by means of this nonlinear shell computer 

program. 
The only restriction of this program is that strains in 

the blank must be small, say, less than 5 pct in the final 

deformed state. Strains in a typical deformed blank 
during the binder-wrap stage are well below that 

amount. Even after the punch initially contacts the 

blank, strains in the blank will only approach the 5 pct 

level; therefore, we can utilize this program to predict 

stresses and deformation into that stage, as well. 
However, as the punch moves further, strain in the 

blank will exceed 5 pct and then large strain analysis 
must be invoked in order to predict correct stresses and 
deformation. The nonlinear shell theory for large strains 

is still under development. Therefore, we hope in the 

near future to develop a similar computer program to 

predict stresses and deformation for all stages in the 

sheet metal stamping process. 

As to the computing time for the prediction discussed 

in this report, it depends upon the number of elements 

used in the model and the size of the computer. For 
example, if a CDC Cyber 175/176 computer is used and 
the binder surface is not so complicated that one 
hundred shell elements are fine enough to model the 
blank, the computing time will be no more than 30 

minutes. 

APPENDIX 

CONCLUSION 

We have described a method to predict accurately the 
deformed shape of a draw blank during the binder-wrap 
stage in the sheet metal stamping process by the 
application of a nonlinear shell computer program. For 
the two numerical examples of body panels with center 
line symmetry described in this report, the boundary 
conditions were displacements specified at the parallel 

punch opening sections; therefore, the two sides near 
the center section could open up--double  butterfly, so 
called. We have applied this method to predict the case 

of a symmetrical body panel where the displacements 
along a third side were also specified as a straight 
through and only one side was free and could open up, 
so called single butterfly. Accurate results for the blank 
with displacements specified along three sides were also 

obtained from the computer program. For a nonsym- 
metric body panel, the described method can still be 

applied; however, we must model the whole blank and 

the computing time increased by a factor of two is 
expected. As a matter of fact, any well posed nonlinear 

boundary value problem, with either force or dis- 

The Finite Element Method 

The basic concept is that the finite element method 

treats a loaded structure as being built up of numerous 
tiny connected substructures or elements. The elements 

can be of various shapes, but we shall discuss the 
simplest shape, i .e. triangle. Points on corners where the 
elements are connected to one another are called nodes 
and are indicated by dots in Fig. 12. In the most 
popular displacement method, a set of functions 
- -known as the shape or interpolation functions--is 
chosen to define uniquely the state of displacement 
within each element in terms of its nodal displacements. 
The state of strain in an element can be expressed in 
terms of the nodal displacements by means of the strain 

-displacement relationship: 

in which ~ is a strain vector, _~e is an element nodal dis- 
placement vector, and B is a matrix uniquely determined 
by assigned element displacement function. In a general 

multi-axial stress problem, the strain s at a point has 
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Fig. 12--Translation of a load-bearing part to a finite element 
representation. 

more than one component so that it is expressed by a 

vector. There is more than one displacement component 

for each node and there is more than one node for each 

element; therefore, the nodal displacement for an ele- 

ment has more than one component and it is also repre- 
sented by a vector. From the mechanical property of a 
material, we can relate the stress vector o in an element 

to the strain vector ~ as follows: 

o = De  [A21 

In a linear-elastic uniaxial stress state, the material ma- 

trix D reduces to Young's modulus E and Eq. [A2] is the 

well known Hooke 's  Law. For a linear isotropic elastic 

material, Eq. [A2] is the generalized Hooke 's  Law. In 
this case, the matrix D only contains two independent 
material parameters--Young's  modulus E and Poisson's 

ratio ~,. Substituting s  Eq. [AI] into Eq. [A2] gives 

O = DB_~ e [A31 

In the finite element method, we establish the force 
equilibrium only at a set of discrete points, the nodal 
points: therefore, we want to compute equivalent nodal 
forces. Applying the equilibrium condition or the prin- 

ciple of virtual work, we obtain 

f = IvBrg.dv [A41 

in which f is the nodal force vector of  an element and its 
components are one to one corresponding to those of 

the nodal displacement vector ~e, the superscript T 

denotes the transpose of a matrix (interchange of rows 

and columns), and Iv is the integration over the element 
volume. For a special case of a constant strain triangle 
in a plane stress problem, Eq. [A4] reduces to 

f = BratA [A5] 

in which t is the uniform thickness and 6 the area of a 
triangle. Combination of Eqs. [A3] and [A4] gives for 

each element 

k6e = f [A6] 

in which the element stiffness matrix 

k = I BrDBdv [A7] 

The meaning of Eq. [A61 can be illustrated by an 

elastic spring in Fig. 13. The force f i  is related to the 
displacement ui by the equation ku~ = f~, where k is 

the spring stiffness coefficient, defined as the force 

required at a point to produce a unit displacement at 
that point. After we establish the stiffness equation as 
that in Eq. [A7] for each element, we assemble them 

into a global one. 

K6 = F [A8] 

in which 6__ is the global nodal displacement vector con- 

taining all nodes in a structure, F is the nodal force vec- 

tor including the equivalent forces due to distributed 

load, and K is the global stiffness matrix. 

Before we are able to solve 6 in Eq. [A8], we must 

impose some constraints--supporting or loading condi- 

tions. If only loads are prescribed, Eq. [A8] can be 
solved for (5 in a straightforward manner. However, spe- 

cial techniques will be required to obtain solutions for 
unknown components in both 6 and F if there are dis- 
placement constraints. One of  the techniques requires, 
prior to the solution, the rearrangement of Eq. [A8] in 

such a way that the known components in 6- be separated 
from the unknown components. This involves consider- 
able effort; therefore, it is not recommended. There are 
two known techniques ~,6 to modify K and ~" in Eq. [A8] 

without rearranging Eq. [A8] for solving 6-. The classic 

Gauss elimination method is the most popular one to 
solve this set of linear simultaneous algebraic equations. 

Once the nodal displacement vector 6 is known, we can 

then compute the strain and stress from Eqs. [AI] and 
[A2] for every element in the structure. Thus, the prob- 

lem is solved. 

_- - -  - -  - 4  " ~ f l  

[ u, _1 
Fig. 13--Elastic spring illustrating the concept of a stiffness coef- 
ficient. 
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