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Improvements to Alexander’s Computer
Model for Force and Torque Calculations
in Strip Rolling Processes

Devendra Rusia

Abstract. Increasing competition in the metal industry and advances in technology
lead to additional demands for accurate analyses so that better strip quality in terms
of gauge and shape at the minimum cost can be obtained. In strip rolling, accurate
determination of rolling force, torque, and slip are extremely important to the
proper design and control of the whole process. In the present investigation, a
computer model is developed for force and torque calculations for hot and cold
flat rolling processes based on the enhanced slab method. Alexander’s computer
model, which is based on Orowan’s model, is used as a starting point. To develop
the present model, improvements are made in Alexander’s model. Further, the
present model is verified with the hot strip rolling data and the results are compared
with the Sims, Orowan and Pascoe, Ekelund, and Crane and Alexander models.
In this paper, improvements to the Alexander model and verification of the mod-
ified model with the hot strip rolling data and comparison with the other models
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are discussed.

Introduction

In the past several years, a number of methods for
force and torque calculations in hot and cold rolling
processes have been developed. In a previous inves-
tigation [1], a study of various methods was carried
out. Based on the review of various methods for force
and torque calculations, it was found that a computer
model for force and torque calculations based on the
enhanced slab method (fast and accurate) would be
a powerful tool for mill design, for improvements of
gauge, shape, and crown, and for analyzing the mi-
crostructure of the strip.

In the current investigation, Alexander’s model is
further refined. Alexander’s computer model [2,3],
which is based on Orowan’s model [4], is used as a
starting point. The following improvements are in-
corporated into Alexander’s computer model:

1. Friction model improved, based on Wanheim
and Bay’s friction model [5].

The author is with Inland Steel Company, Research Labora-
tories, East Chicago, IN 46312, USA.

2. Treatment for the neutral zone, based on Chen
and Kobayashi’s arc tangent function, to deal
with neutral point [6].

3. Formulations modified for force and torque cal-
culations developed by the author.

The present model is verified with the hot strip
rolling data, and the results are compared with the
Sims [11,13], Orowan and Pascoe [14], Ekelund [15],
and Crane and Alexander [12,16] models. This paper
describes the above-mentioned modifications, the
verification of the model, and the comparison of the
model with the other models.

In addition, enhancements for graphics output and
user friendliness are made which are not discussed
here.

Alexander’s Computer Model
As discussed in the review by Ford [7], the most

comprehensive of the earlier theories was undoubt-
edly that of Orowan [4], who developed a ‘“homo-
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geneous graphical method” of solution, incorporat-
ing an attempt even to allow for the inhomogeneity
of deformation (redundant deformation) occurring
throughout the plastically deforming material pass-
ing through the roll gap. With the advent of com-
puters, Alexander [2] developed a computer model
using the same basic approach as that developed by
Orowan. The following assumptions are made in the
computer model:

1. Plane sections remain plane (i.e., slab method).

2. Von Mises yield criterion applies.

3. A mixed frictional boundary condition exists,
namely T = s or &k, whichever is smaller (Oro-
wan’s friction model), where 7 is shear stress due
to friction, s is normal pressure at the arc of
contact, k is flow stress in shear, and . is coef-
ficient of friction.

4. Deformation occurs under plane strain condi-
tions, that is, there is no change in the strip width.

5. The deformed arc of contacts of work rolls re-
main circular (Hitchcock’s Formula).

Ford et al. [8] modified Hitchcock’s formula to in-
clude the effects of both entry and exit elastic arc of
contact for calculation of the deformed roll radius.
Furthermore, they also developed the equations to
include the effects of both entry and exit elastic arc
of contact for calculation of roll force and torque.
Alexander incorporated Ford et al.’s above-men-
tioned equations in his model.

In Alexander’s computer model, treatment for
neutral point (or zone) is not provided. In his model,
the shear stress at neutral point is maximum; how-
ever, it should be zero. In the latter investigation,
Alexander et al. [9] used a friction model v+ = ps or
mk and provided a treatment for the neutral zone
which is akin to Tselikove, as described by Javoron-
kov and Charturvedi [17]. In the present investiga-
tion a different and simpler approach is used to in-
corporate a friction model, and a suitable treatment
for the neutral zone.

Modified Model

The following modifications are incorporated to en-
hance Alexander’s computer model:

Improved Friction Model

Wanheim and Bay [5] have shown that Orowan’s
friction mode, T = ps or k, whichever is smaller, is
not valid for all the values of . Their investigation
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has shown that the maximum shear stress, T, between
two objects should be equal to mk, where m is fric-
tion factor. The value of m varies based on the fric-
tional conditions between the two objects. Wanheim
and Bay have developed an improved model, in which
frictional stress is a function of the roll pressure, s,
and friction factor, m, as illustrated in Figure 1. In
their model, friction factor, m, varies with a variation
of the coefficient of friction, p. The frictional stress,
7, normalized by division with the yield shear stress,
k, is plotted as a function of the normal pressure, s,
normalized with the yield stress in plane strain, 2k,
and with the friction factor, m, as a parameter. At
low normal pressure, 0 < s/2k = 1.5, frictional stresses
are proportional. At high normal pressure, 3 < 5/2k
< o, the frictional stresses are almost constant. The
intermediate range, 1.5 < s/2k =< 3, is a transition
range. The correspondence between coefficient of
friction, ., within proportionality limit, and friction
factor, m, is estimated by the following equation.

po=m/l + 057 + cos™' (m) + V(1 — m?)] (1)

With the above equation, the value of friction factor,
m, for any value of coefficient of friction, p, can be
calculated iteratively. In the ranges of low normal
pressure and high normal pressure, Wanheim and
Bay’s model could be written as T = s or mk, which-
ever is smaller.

In the present investigation, the friction model, 7
= ws or mk, whichever is smaller is used. Value of
m in this equation is determined for a given value of
n. To avoid excessive computation for determining
the value of m by iterative method required in Eq.
(1), the following regression equation is developed
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Fig. 1. Friction model by Wanheim and Bay.



using the values of m calculated using Eq. (1) for
different values of w (n. = 0.01 to 0.36).

m = 2.1189 poesn 2)

The comparison of w versus m, using Eqgs. (1) and
(2) is shown in Figure 2. Also, a condition is used in
the model that the value of m should not exceed 1.
To improve the calculation of m from w, an inter-
polation method can also be used.

The differential equations are developed using the
friction model, + = ps or mk, whichever is smaller,
in the equilibrium equations and incorporated in the
present model. The differential equations and their
derivations are given in Appendix A. Similar equa-
tions can be found in reference [9] and elsewhere.

Treatment for Neutral Zone

In flat rolling one faces the problem of finding a point
of equal velocity between roll and strip, since this
point is not a known priori. This point is called the
neutral point. The orientation of frictional forces and
the direction of slip change at this point. Logically,
since there is no relative velocity between the roll
and the strip at this point, there should not be any
frictional stresses.

Chen and Kobayashi [6] have developed an arc
tangent function to deal with this type of problem
for finite element methods. The equation for the
friction force is given by:

T = mk {(2/) tan~! (V /a)} 3)

where V, is relative velocity between roll and strip,
and a is a constant several orders of magnitude less
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Fig. 2. Plots of w vs. m. (lk: Eq. (1); (I Eq. (2)).
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Fig. 3. Modeling of friction forces.

than the roll velocity. In Figure 3, 7 versus V, is
plotted using Eq. (3).

In the present model, it is assumed that a neutral
zone exists in the roll gap, and shear stresses grad-
ually reduce to zero at the neutral point. Formula-
tions based on Eq. (3) are developed for slab method
and incorporated in the computer model.

Modified Formulations for Force and Torque
Calculations

In the present investigation, Alexander’s formula-
tions for force and torque calculations from stress
distributions in the roll gap are reviewed. In Alex-
ander’s formulations, roll force and torque are cal-
culated on the assumption that the resultant roll force
acts through the midpoint of the arc of contact and
directed towards the center of the deformed arc of
contact. But this assumption is not always valid, be-
cause the neutral point is not always at the midpoint
of the arc of contact. In addition to the above as-
sumption, an error due to the approximation for cos-
ine of a small angle is found in the calculation of roll
torque, as discussed in Appendix B under “Roll torque
due to shear stress.”

In an effort to correct the above-mentioned short-
comings, modified formulations are developed by the
author and incorporated in the present model. Mod-
ified formulations and their derivations are given in
Appendix B.

Verification of Force Prediction by the
Present Model

Computer programs are developed for the present
model and for the models by Sims [11,13], Orowan
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and Pascoe [14], Crane and Alexander {12,16], and
Ekelund [15]. To verify the roll force predictions by
all the models, input data of low carbon aluminum
killed steel have been collected for the last roughing
stand, RS, and first and last finishing stands, F1 and
F6, of the 80 in. hot strip mill of Inland Steel Com-
pany. These stands were chosen because more ac-
curate input data could be obtained in these cases,
and these stands cover a wide range of processing
conditions. The data collected are percentage carbon
and manganese in the strip composition, strip entry
and exit thickness, work roll radius and speed, av-
erage strip temperature, and roll force. Average tem-
peratures for the cases of F1 are calculated from R5
temperature using a computer model based on the
finite difference method. Coefficient of friction is
approximated as 0.25 for all the cases. Average flow
stress values are estimated based on CANMET data
[10}].

Discussion of the Results

It is found from the analyses of the measured data
and the force prediction by the various models that

in a few cases, the measured data, probably roll force
or temperature, are not consistent. It is also worth
mentioning that although flow stress varies within
the roll gap as a function of strain, strain rate, and
temperature, an average flow stress is approximated
at mean strain and strain rate at an average temper-
ature. Furthermore, prediction of roll force is very
sensitive to the value of coefficient of friction in the
roll gap. However at the present time, a satisfactory
method for calculation of coefficient of friction for
hot rolling is not available. Therefore, based on lit-
erature review, coefficient of friction is approxi-
mated as 0.25 for hot rolling of steel without lubri-
cation.

Force predictions and differences with the meas-
ured force by the various models for the cases of RS,
F1, and F6 are shown respectively in Tables 1-3. All
the input data and measured forces are considered
accurate in the following analyses. To compare the
results, the percentage mean deviation of the pre-
dicted force from the measured force is calculated
using the following equation:

% mean deviation = 100 X I ,g¢ [(measured force

— predicted force)]/S (measured force)

Table 1. Comparison for Roughing Stand RS

R V. Prediction, tons/in.
h, h, Roll Roll T Measure

Serial Entry, Exit, Rad, Vel, Temp, Flow,* Force, Curr. Orowan
number %C %Mn in. in. in. in./sec °F Ibf/in.2  tons/in. Model Sims Pascoe EkeP Crane*
1 .04 .29 1.787  1.244 19.21 157.45 2021 13375 30.884 31.769  32.519  36.139 29.348  30.652
0.885 1.635 5.255 —-1.506 -—-0.232
2 .05 31 1.784  1.258 19.40 159.02 2020 13426 35.356 31.565  32.160 35.579 29.321  30.250
-3.791 -3.196 0.223 —6.035 5.106
3 .05 32 1.906 1.370 19.40 159.02 2018 13217 29.900 30.877 31.073 34.168 28.980  29.133
0.977 1.173 4.268 —0.921 —0.767
4 .05 .28 1905 1.371 19.40 159.02 2014 13269 30.459 30.944  31.118 34.201 28.296  29.167
0.485 0.659 3742 -2.163 —1.292
5 .05 31 1771 1.242 19.21 15745 2002 13814 34.030 32.456  33.087 36.655 30.166  31.136
) —1.574 0943 2.625 —3.864 —2.8%4
6 .06 .33 1.795 1.256 19.21 157.45 1996 14075 32.780 33.324 33978 37.667 30.992  31.977
0.544 1.198 4587 —1.758 —0.803
7 .05 32 1.795  1.254 19.21 157.45 1996 13962 32.210 33,114 33797  37.491 30.926  31.819
0.904 1.587 5.281 -1.284 —-0.391
8 .04 31 1.779  1.244 19.25 157.74 1993 13858 32.753 32.774 33.452 34.096 30.542 31.492
0.021 0.699 4343 —-1911 -1.261
9 .06 32 1.786  1.251 19.21 15745 1971 14575 32.770 34459  35.089 38.863 31.993  33.001
1.689 0.319 6.093 -0.777 0.231
{0 .05 .33 1.785 1.255 19.2t  157.45 1962 14680  34.080 34.544 35106  38.825 32,400  32.992
0.464 1.026 4.745 —1.680 —1.088
Percentage mean deviation from measured force 3.485 4.439 12.749 6.746 4.325

“Flow stress.
"Ekelund.
“Crane and Alexander.
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Table 2. Comparison for Finishing Stand F1

R V, Prediction, tons/in.
fty hy Roll  Roll 7 Measure

Serial Entry, Exit, Rad, Vel, Temp, Flow,® Force, Curr. Orowan
number %C %Mn in. in. in. in./sec °F Ibf/in.?  tons/in. Model Sims Pascoe Eke®  Crane©
1 .04 .29 1.244 0.659 1351 67.6 1850 18134  40.140 39.591 44705  54.920 36.483 43.483
—-0.549 4.565 14785 —3.654  3.343
2 .05 31 1.258 0.677 13.56 68.4 1850 18269 39.707 39.649 44,538  54.359 36.639 43.244
-0.058 4.831 14.652 -3.068 3.537
3 .05 .32 1.370 0.693 13.33 62.4 1848 18290 39.189 41.445 47.655  59.747 38.790 46.689
2.256 8.466 20.588 —0.399  7.500
4 .05 .28 1.371 0.703 1347 624 1844 18348 41.769 41.588 47.585  59.310 38.061 46.536
-0.181 5.816 17.541 —3.708 4.767
5 .05 31 1.242  0.639 1330 649 1830 18966 36.025 41.532 47.657  59.240 38.564 46.481
5.807 11.632  23.215 2.615 10.456
6 .05 32 1.254 0.697 13.66 62.0 1824 18671 42.650 39.789  44.181  53.191 36.996 42.712
-2.861 1.531 10.541 —5.654 0.061
7 .06 33 1.256 0.667 13.66 63.0 1824 19076 44.438 42.120 47.460  58.188 38.980 46.104
—-2.318 3.022 13750 —5.458  1.666
8 04 31 1.244 0.662 1335 676 1821 18990 39.101 41.006 46.194  56.601 34.996 44.879
1.905 7.093 17.500 —1.105 5.558
9 06 .32 1.251  0.680 1351 69.6 1808 19720 43.560 42.452 47435  57.572 38.619 45.935
—1.108 3.875 14.012 —4.941 2345
10 .05 .33 1.255 0.698 13.51 674 1802 19554 43.800 41.374 45.884  55.186 38.158 44.325

~2.453 2084 11386 —5.642 0.525

Percentage mean deviation from measured force 4750 12.894  38.485 8.833  9.696

“Flow stress.
"Ekelund.
“Crane and Alexander.

Table 3. Comparison for Finishing Stand F6

R v, Prediction, tons/in.
h, h, Roll Roll T Measure

Serial Entry, Exit, Rad, Vel, Temp, Flow,? Force, Curr. Orowan

number %C  %Mn in. in. in. in./sec °F Ibf/in.>  tons/in.  Model Sims Pascoe Eke? Crane*

1 .06 34 0.216 0.176 14.83 3024 1724 20662 18.270 17.924  18.003 17.404  20.986 15.638
-0.346 -0.267 —0.866 2716 —2.632

2 05 .30 0.12¢  0.105 14.82 403.6 1719 21000 15.538 17.522  17.727 16.054  23.070 14.557
1.984 2.189 0.516 7532 —0.981

3 .04 32 0.141 0.116 1490 4034 1715 20310 15.969 16.344  16.473 15.134  22.088 13.738
0.345 0.504 —0.830 6.119 —2.231

4 .06 31 0.130 0.102 1456 403.4 1711 22000 21.466 20.518  21.002 19.177 27.339 17.226
—0.948 —-0.464 —2.289 5873 —4.240

5 .05 .33 0.179 0.149 14.54 337.6 1704 19000 13.660 14.468  14.505 13.824  19.602 12.510
0.808 0.845 0.164 5.942 -1.150

6 .05 .29 0.110 0.090 14.61 4032 1701 20699 15.437 16.610  16.816 14.866  22.967 13.530
1.173 1.379 -0.571 7.530 —1.907

7 05 34 0.169 0.140 14.83 34338 1697 20310 18.340 16.125  16.145 15.159  20.345 13.727
—-2.215 -2.195 -3.181 2.005 —4.613

8 .06 .33 0.141 0.116 14.59 362.4 1692 20601 17.655 16.310  16.415 15.097 21.754 13.694
—1.345 —-1.240 —-2.558 4.099 -—-3.961

9 .05 .34 0.131 0.109 14.76 374.6 1688 20500 15.416 15.655 15.692 14.207 21.107 12.937
0.239 0.276 —1.209 5691 —2.474

10 .05 .30 0.131 0.106 14.83 378.6 1681 21760 17.715 18.669  18.924 17.103  24.386 15.483
0.954 1.209 —-0.612 6.710 —2.232

Percentage mean deviation from measured force 6.129 6.236 7.55t  31.970 15.594

*Flow stress.

"Ekelund.

*Crane and Alexander.
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The percentage mean deviation for each method is
shown in the bottom row in Tables 1-3. The follow-
ing observations are made from the analyses of the
data:

1. The predictions by the present modified model
is the best among all the models using the per-
centage mean deviation criterion. The percent-
age mean deviation for this model is the lowest
in all the three cases, that is R5, F1, and F6.

2. The predictions by Sims’ model are good in the
cases of RS and F6 (% mean dev. 4.439 and
6.236), but these are unreasonable for the cases
of F1 (% mean dev. 12.894). The predictions of
Sims’ model are always greater than the predic-
tions of the present model and Crane and Alex-
ander’s model and are generally greater than the
measured results.

3. The predictions by Ekelund’s model are good
for the cases of R5 (% mean dev. 6.746), rea-
sonable for the cases of F1 (% mean dev. 8.833),
but unreasonable for the cases of F6 (% mean
dev. 31.97). The predictions by Ekelund’s model
are always lower than the measured forces in the
cases of R5 and F1, but these are always greater
in the cases of F6.

4. The predictions by Crane and Alexander’s model
are good for R5 (% mean dev. 4.325), but these
are unreasonable for the cases of F1 and F6 (%
mean dev. 9.693 and 15.594). Predictions by Crane
and Alexander’s model are always lower than

the present model in the cases of RS and F6 but
are always greater in the cases of F1.

5. The predictions by Orowan and Pascoe’s model
are good for F6 (% mean dev. 7.551), but these
are unreasonable for the cases of RS and F1 (%
mean dev. 12.749 and 38.485). The predictions
by Orowan and Pascoe’s model are always greater
than the measured forces in the cases of F1 and
RS but are generally lower in the cases of F6.
For Orowan and Pascoe’s model, the percentage
mean deviation increases with the increase in
percentage reduction which is in the order of F6,
RS, and F1.

Larke [11] has compared values of Q factor for
Sims’, Orowan and Pascoe’s, and Ekelund’s models.
Q factor is considered according to the following
equation:

Roll force = average flow stress

X length of arc of contact x Q factor

The comparisons are shown in Figure 4 at different
ratio of roll radius/exit thickness (R/h,). Analyses of
the present results shows a similar behavior.

Apart from the models compared in this investi-
gation, a simplified model is suggested by Ford and
Alexander [12] which is based on slip-line method.
The results of Ford and Alexander’s model are claimed
[12] to be in agreement with Sims’ model, as shown
in Figure 5.

Fig. 4. Comparison of Q factors
[11]. S = Sims, P = Orowan and

I 40 SO o
REDUCTION PER CENT
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Conclusion can be a powerful industrial tool for prediction of

Based on the analyses and discussion of the results,
it can be seen that the predictions of the present
modified model are in reasonably good agreement
with the hot strip rolling data and are better than
the Sims, Orowan and Pascoe, Ekelund, and Crane
and Alexander models for hot strip rolling process.
Therefore, it can be concluded that the present model

roll force. Although predictions of torque and slip
are yet to be verified, preliminary investigations show
reasonable comparison with the hot strip rolling data.
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Appendix A—Derivation of the Basic
Differential Equation

The basic differential equation is derived by consid-
ering equilibrium of an elemental slice of the material
in the roll gap as shown in Figure Al.
Applying equilibrium in the horizontal direction
gives:
ph — (p + dp) (h + dh) + 2R's sind dd
+ 2R ' vcosd dd = 0 (A-1)

or by neglecting the dpdh, considering it very very
small, we get:

diph)

b = 2R’ (s sind * T cosd) (A-2)

The upper sign refers to the exit side of the neutral
plane while the lower sign refers to the entry side.
Applying equilibrium in the vertical direction gives:
g = s ¥ 7 tand (A-3)
From geometry, we obtain:

h=h, + 2R (1 — cosd) (A-4)

From von Mises yield criterion, we obtain:

S, ¢
, /)
o SEE— Q
p+dp p I
J—— € ——————
h + dh dx
L
/

|
"\, S

Fig. Al. An elemental slice of material in the roll gap.



q-p=2k (A-5)

where 2k is the plane strain compression yield stress.
By substituting the value of g from Eq. (A-3) into
Eq. (A-5), we obtain:

p =s — 2k ¥ 7 tand (A-6)

By substituting the value of p from Eq. (A-6) into
Eq. (A-2), we obtain:

A

& [h (s — 2k = 7 tand)]

= 2R’ (ssing = 7cosd) (A-7)

As already mentioned in the text, two frictional
conditions could exist on the interfacial boundary of
any elemental plane slab, that is v = ps or mk,
whichever is smaller. Based on this assumption, the
differential Eq. (A-7) is solved as follows:

(a) If 7 = ps, Eq. (A-7) leads to the differential
equation:

dsidd = g,(d) s + gAd) (A-8)

where
2R’ _
gi(d) = * psecd [T + secd)]/(l ¥ ptang) (A-9)

) = | 2 26 sind + L),

(1 ¥ ntand) (A-10)

(b) If 1 = mk, Eq. (A-7) leads to the differential
equation:

dsidd = gi(d) (A-11)
where
gx(d) = 2k [Zh__ sind [1 * r—;—tand)]
+ m [% cosd + = sec2¢]
+ [1 * %tancb] 1%2 (A-12)

In all the above equations, the uppermost of any

D. Rusia * Computer Calculations in Strip Rolling

pair of algebraic signs refers to the exit side and the
lower to the entry side of the neutral plane.

Appendix B—Modified Formulations for
Roll Force and Torque Calculations

In the present investigation, the components of nor-
mal and shear stresses in the roll gap acting toward
the center of undeformed roll are calculated. The
vertical and horizontal components of the stresses
acting through the center of undeformed roll (that
is, the above components) are integrated, respec-
tively, to calculate the vertical and horizontal forces.
The net force is calculated from these vertical and
horizontal forces. The tangential components of
stresses are used to calculate the roll torque.

Figure B1 is used to derive the equations. In the
figure, C is the center of undeformed roll, B is the
center of deformed arc of contact, s is normal stress
on deformed arc of contact, T is tangential (shear
stress on deformed arc of contact, and 3 ¢, is the half
angle of contact. R is radius of the undeformed arc
of contact, R’ is radius of the deformed arc of con-
tact, and & is an angle of any slab from the plane of
exit.

Components of Stresses Toward Undeformed
Roll Center, C

Components of s toward C. Components of s to-
ward C are s - cosa, where a is as shown in Figure
B1. The angle a is very small, therefore, after careful

Entry Plane Exit Plane
L/
<‘ %M -1

R R’

N / Detormad Arc of |

N\, Contact ;

a ~ 7
~

B N

Fig. B1. Stresses on deformed arc of contact.
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analysis, it is concluded that a reasonable approxi-
mation can be done as follows:

S cosa = 0.999 5 (B-1)

Alternate calculation of cosa equal to AD/AC is dis-
cussed under “Roll torque due to shear stress” below
and is found to be inaccurate.

Components of T toward C. Components of 1 to-
ward C are 7 - sina. The following mathematical
approximations are taken in calculating these com-
ponents:

7 sina = 1 CD/R (B-2)

where CD can be approximated from the A CBD as
follows:

CD = (R' — R)sin(d — *,) (B-3)

therefore,

'

sin(d — 14,)  (B-4)

Tsine = 1.0l 71

In the above approximations (B-2) and (B-3), (R" —
R) = BCand R = AC are taken, whereas actually,
(R" — R) = BCand R = AC,; therefore, a correction
factor, 1.01 is reasonable.

Calculation of Roll Force, P, per Unit Width

Vertical roll force due to normal stress(s).
b1
P, = 0.999 R’ f( s cose ddb (B-3)
Horizontal roll force due to normal stress(s).
$1
P,. =~ 0.999 R’ j s sind dd (B-6)
4]

Vertical roll force due to shear stress (7).

R(R' - R)

P.= -1.01 R

[El 7sin{d — 1 &,) cosd dd

o
- L Tsin (b — } ¢,) cosd dd>:| (B-7)
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(In the above equation sin(¢ — 3 ¢,) changes sign
while passing through the midpoint.)

Horizontal force due to shear stress (T).

’ ro_ &1
= BBy ey
R on

- sing dd — L@' 7sin(b — b)) sing d¢] (B-8)

Total vertical force.
P, =P, + P. (B-9)

Total horizontal force.

P, =P, + P, (B-10)
Total roll force.
P=V{PI+ P (B-11)

Direction of the roll force from the vertical plane.

vy = tan! [%’] (B~172)

v

Calculation of Roll Torque, G, per Unit Width
per Roll

Roll torque due to normal stress (s).
b1
G, =R f” s CD db (B-13)

By substituting the value of CD from Eq. (B-3), we
get:

Lt
G,~101R (R - R) L ssin(d — td) dd  (B-14)
Roll torque due to shear stress (7).
b1
G. =R L 7 cosa AC dd
bn
- R’ J; T cosa AC dd  (B-15)

Now, if we take AC = R and approximate cose as
follows:



cosa = AD (R’ - BD)
AC R

BD in the above equation can be substituted as fol-
lows:

BD BD

EEZm=COS(¢—%¢1)

Therefore,
cosa = % [R" — (R" — R)cos(¢p — 1 &) (B-16)

Now, we know that the value of cosa should be
=1. But, from the above equation, the value of cosa
is always =1, which will cause inaccuracy in the ap-
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proximations. If we substitute the value of cosa in
Eq. (B-15), we will get the same equations as de-
veloped by Alexander on resolving 7 in vertical and
horizontal components. Therefore, a better approx-
imation is as follows:

bn

b1 bn
G,=099RR [J Tdd — L T d¢} (B-17)

In the above approximation a correction factor, .99,
is taken because the value of cosa should be =1 and
AC = R.

Total torgue, per roll, per unit width.

G =G, +G, (B-18)
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