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Review and Evaluation of Different 
Methods for Force and Torque 

Calculations in the Strip Rolling Process 

Devendra Rusia 

Abstract. This paper  presents a review and an evaluation of slip line methods,  
upper  bound methods,  slab methods,  and finite e lement  methods for force and 
torque calculations in the hot and cold strip rolling processes. Based on the study, 
it is r ecommended  that a specific method that suits the analysis should be selected. 
The following factors should be considered: (a) application of the results, (b) 
accuracy of the results, and (c) requirements  of computer  and personnel  time. In 
general,  an enhanced slab method for a preliminary analysis and a finite e lement  
method for a detailed analysis are recommended.  

Nomenclature 

Ex, Ey, Ez, ~lxy , "~xz, "~yz 

crx, Cry, crz, "rxy, ~'xz, ~'yz 

f / =  surface traction 
k = shear flow stress 

kijkt = elasticity constants 
nj = normal  unit vector 
qi = body forces 

t = t ime 
Ti = surface forces 

ui,j = displacement 
duia = displacement incre- 

ments  
= thermal  expansion 

coefficient 
= effective strain 
= effective strain rate 
= g e n e r a l i z e d  s t a t e  of  

strain 
I~ = coefficient of friction 

= equivalent or effective 
stress 

= generalized state of 
stress 

cr I = flow stress in a uniax- 
ial test 

O" m ~--- average stress 
~ry = yield stress 

The author  is with Inland Steel Company ,  Research Laboratories,  
E. Chicago, IN 46312. 

or o = constant yield stress 
-r = friction shear stress or 

tangential shear stress 
V = volume of the body 

Introduction 

Increasing competi t ion in the metal  industry and ad- 
vances in technology lead to additional demands  for 
accurate analysis so that bet ter  strip quality in terms 
of gauge and shape can be obtained with minimum 
energy consumption.  In strip rolling, the accurate 
determination of rolling force, torque,  and slip, as 
well as the values of  stress, strain, strain rate,  and 
tempera ture  distributions, are extremely important  
to the proper  design and control of  the process. In 
order to select an appropr ia te  method for obtaining 
this information,  it is necessary to review the differ- 
ent methods.  In this paper ,  slip line methods,  upper  
bound methods,  slab methods,  and finite e lement  
methods for force and torque calculations in the hot 
and cold strip rolling processes are reviewed and 
evaluated. 

Strip Rolling Process 

The reduction of material  by rolling it between rolls 
is simple to visualize. Figure 1 illustrates diagram- 
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Fig. I. Plane strip rolling. 

Detorrnatlon 

matically the basic deformation that takes place. The 
strip material deforms elastically before entry and 
after exit of the roll gap. During deformation within 
the roll gap, the material behavior is elastic-plastic. 
Friction plays a major role in transferring the energy 
from the rolls to deform the strip. The speed of the 
strip changes while passing through the roll gap. At 
the entrance, the speed of the strip is less than the 
roll speed; at the exit, the speed of the strip is more 
than the roll speed. Therefore, a neutral point exists 
within the roll gap. High rolling forces make the rolls 
deflect quite considerably due to imposed bending, 
so that the rolled strip may have a bad profile, for 
example, be thicker in the middle than at the edges. 
Apart from the above elastic deformation of the rolls, 
they also deform elastically while compressing the 
strip. The act of continuous loading and unloading 
of the circumference of the rolls also leads to fatigue. 
Material properties change as material passes through 
the roll gap. Heat transfer from the strip to the rolls 
and to the atmosphere, and heat generation due to 
plastic deformation affect the whole process consid- 
erably. 

In order to properly roll the strip, the following 
problems need to be addressed: 

1. Force on the rolls during the rolling operation. 
2. Roll torque required to deform the strip. 
3. The entrance and exit speeds of the strip. 
4. The stress, strain, strain rate, and temperature 

distributions within the strip during the defor- 
mation process. 

5. Heat generated due to deformation and trans- 
ferred to the rolls. 

6. Effect of one or more of the parameters (e.g,, 
roll diameter, draft, entry and exit tensions, etc.) 
on the roiling process. 

7. Residual stresses in the strip after rolling (in case 
of cold roiling). 

In order to solve these problems, it is essential to 
use the theory of plasticity. Although at first sight it 
might seem possible to predict the macroscopic be- 
havior in terms of stress and strain from the knowl- 
edge of interatomic forces and the movement of dis- 
locations, in practice, the difficulties associated with 
such an approach are insurmountable. At the micro- 
scopic level, the phenomena of plastic deformation 
is very complicated. There are usually several pos- 
sible slip systems in any crystal, and practical metals 
are polycrystalline so the movement and interaction 
of dislocations can be exceedingly complex. As such, 
one must employ the "macroscopic" theory of plas- 
ticity [2-5]. This theory has for its starting point the 
assumption of an idealized metal whose properties 
(such as when it will yield and how it will behave 
under applied stresses) are considered to be com- 
pletely definable in terms of basic stress-strain curves. 
By using such a theory, a limited amount of infor- 
marion may be obtained about the way the metal will 
behave. 

M a t h e m a t i c a l  P r o b l e m  F o r m u l a t i o n  

The strip rolling problem is a boundary value prob- 
lem, in which a volume, V, of material is bound by 
a surface, S, as in Figure 2. Compatibility equations 
and equilibrium equations apply within the volume. 
In order to simplify the written arrangement of the 
equations, a tensor notation is used. The compati- 
bility equations mean that for any force producing 
an infinitesimal strain increment field de0, it must 
be possible to derive such a field from a displacement 
increment field du~ through: 

1 
dei) = ~ (du,.~ + duj.,) {1) 

k 

ST..~ 

E--~ 

Z 

S D 

~D 

Fig. 2. Solid mechanics boundary value problem. 
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where dui . j  = du /d j .  
Furthermore, the plastic part of strain increment 

satisfies its incompressibility: 

de~ = 0 (2) 

The equilibrium equations mean that for any force 
producing a stress field crij in which body forces, qi, 
are present, the following applies: 

%.j + q, = 0 (3) 

where a summation convention is implied. Further- 
more, a part of the surface on which force/unit area, 
T i, is applied and on which force boundary conditions 
have to be satisfied: 

%n i = 7",. (4) 

where nj is a unit vector normal to the surface. 
The stresses and strain increments produced by a 

certain force are related by constitutive equations. 
The body may be divided into two parts:one E, in 
which yielding does not take place, and another part 
E-P where yielding has occurred. In the E part, where 
elasticity equations apply: 

d~q - RA T~i  = K,i~,d~ o (5) 

where Kqk  ~ are the elasticity constants, o~ is the ther- 
mal expansion coefficient, and ~ is the Kronecker 
delta representation. In the other part, E-P, where 
yielding has occurred, the yield criterion applies: 

6- = ~r r (6) 

where ~ is effective stress and cr r is flow stress. Elas- 
ticity and plasticity stress-strain relations: 

d %  - dETi - eLAT8 0 = Kijk, do'ij (7) 

and all the Levy-Mises flow rules are applicable in 
this region. 

During rolling, there is a certain amount of heat 
generated by deformation as well as heat lost to the 
environment. This produces two effects. One, if ma- 
terial properties are very sensitive to temperature, 
deformation patterns can be modified substantially. 
Two, if the thermal gradients are large, heat trans- 
ferred to the rolls can reduce the roll strength sub- 
stantially. It is important in many cases to perform 
an analysis of the thermal aspect of a problem par- 
allel with a mechanics analysis. They are coupled in 

the sense that temperatures influence material prop- 
erties and deformation generates heat. 

M e t h o d s  o f  S o l u t i o n  

Obtaining a closed form solution that satisfies all the 
above requirements is very difficult. Several approx- 
imate analytical and numerical solutions have been 
developed through the years even before the theory 
was completely defined. 

All the well-known methods of solving the strip 
rolling problems can be divided into four groups, 
namely (a) slip line field methods, (b) upper bound 
methods, (c) slab methods, and (d) finite element 
methods. The detailed description of these methods 
can be found in [1-5] and elsewhere. 

The major simplification for ease of solution is to 
consider the strip rolling problem as plane strain. 
This means that there is no increase in the width of 
the strip due to the rolling operation. This simplifi- 
cation allows us to consider this problem as a two- 
dimensional problem. However, for spread analysis, 
the problem can be solved with consideration of three- 
dimensional deformation using upper bound or finite 
element methods. 

All the above methods are briefly discussed here 
to see their applicability in solving the strip rolling 
problems. 

Sl ip  L i n e  M e t h o d s  

The first approach to the analysis of metalworking 
processes that did not assume homogeneous defor- 
mation is the slip line method. Slip line models pos- 
tulate a geometrical arrangement of two sets (~ and 
[3) of slip planes, in the roll bite, which cut each other 
orthogonally. Figure 3 shows a slip line field in the 
roll bite. The orthogonal network of lines of maxi- 
mum shear is commonly called the slip line field. The 
upper bound to the true deforming force is obtained 
simply by finding the configuration of shear planes. 
Usually, a number of assumptions are taken to con- 
struct these fields. 

Having constructed a slip line network, the ver- 
tical stresses exerted on the base of each triangle 
coincident with the center line of the workpiece may 
be computed. The sum of these values corresponds 
to the specific rolling force. Similarly, the resultant 
of the shearing stresses along the bases of the tri- 
angles coincident with the roll surface can be used 
to compute the specific roll torque. 

This method permits a point-by-point calculation 
of stresses and velocity distributions. But the method 
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Fig. 3. Slip line fields for hot 
strip rolling, reprinted from 
Ref. [4], p. 690, by courtesy 
of Marcel Dekker, Inc., New 
York. 

lacks uniqueness for constructing slip line field and 
it does not permit flexibility for treatment of bound- 
ary conditions. For example, in the case of strip roll- 
ing, it is difficult to consider slipping friction. Fur- 
thermore, the solutions are limited to rigid-perfectly 
plastic material under plane strain conditions. 

Upper Bound Methods 

The "kinematicaUy admissible velocity field" is a field 
of generalized velocities (which may be strains, linear 
displacements, or angular rotations) which is kine- 
matically compatible within itself and with the ex- 
ternally imposed displacements at the boundaries. 

The upper bound theorem for strip rolling states 
that among all kinematicaUy admissible velocity fields 
the actual one minimizes the expression [27], 

+ ~r "~Av ds - f Tivi ds (8) 

where J denotes the actual externally supplied power. 
The first term in the above equation expresses power 
for internal deformation over the volume of the de- 
forming body. The second term includes shear power 
losses over the surfaces of velocity discontinuity in- 

cluding that at the boundary between the tool and 
the workpiece. The last term covers power supplied 
by predetermined surface tractions as, for example, 
front and back tensions in rolling. 

In strip rolling, the neutral point is not a known 
prior; therefore, iterative methods can be used to 
minimize Eq. (8) and find the velocity field. Once 
the velocity field is known, the roll force and torque 
can be obtained. 

These methods give only estimated upper limits 
of the required deformation force, according to ki- 
nematically admissible velocity fields. In addition, 
these methods lack the ability to deal with work hard- 
ening materials and to reveal detailed deformation 
information such as stress and strain distributions. 

Slab Methods 

This method considers the stresses on a plane per- 
pendicular to the metal flow direction. A slab of 
infinitesimal thickness is selected in this plane at any 
arbitrary position in the deformed metal. The forces 
on the slab are balanced, which results in a differ- 
ential equation of static equilibrium. By analytical 
or numerical integration of the differential equation 
and with the introduction of the boundary condi- 
tions, it is possible to determine forming forces, 
torques, neutral point, and stress, strain, strain rate, 
and temperature distributions. 
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The starting point of the slab method is a major 
simplification of the material flow. It is assumed that 
the velocity along the slab cutting surfaces is con- 
stant, which means that the slab cutting surfaces will 
be planes during forming. 

Figure 4 illustrates the pattern of deformation and 
the stresses acting on a transverse "slab" element at 
angle + to the line of centers. The horizontal stress 
p is assumed to be uniformly distributed across the 
element, and a principle stress. The vertical stress q 
is also assumed to be a principal stress. The stress s 
is the pressure normal to the roll surface and the 
shear stress transmitted between roll and slab is "r. 

The starting point of all methods under this head- 
ing is to develop the equation representing the hor- 
izontal equilibrium of forces in the roll gap. The 
forces on an elemental slab of material in the arc of 
contact are shown enlarged in the inset diagram of 
Figure 4. The horizontal stress, p, is assumed to be 
distributed uniformly over the vertical section, so 
that the horizontal force per unit width, f ,  is equal 
to p �9 h. Consideration of the equilibrium of the el- 
emental slab or slice of material leads to the basic 
first order differential equation first put forward by 
von Karman in 1925. With minor changes in the no- 
tation used by von Karman, his equation may be 
conveniently written for the current purpose as fol- 
lows: 

df/dqb = 2R(s sin+ -+ -r cos+) (9) 

where the negative sign refers to conditions on the 
entry side of the neutral point, and the positive sign 
refers to conditions on the exit side. The neutral 
point occurs anywhere in the arc of contact, de- 
pending on the boundary conditions of the problem. 

Many methods to solve Eq. (9) for both hot and 

cold rolling have been put forward in the last 65 
years, beginning with the pioneering works of Siebel 
and von Karman in 1924 and 1925, as discussed in 
the review by Ford (1957) [7]. The most compre- 
hensive of these was developed by Orowan (1943) 
[8], in which he accounted for all the various factors 
involved in arriving at an accurate solution. The com- 
plexity of his method undoubtedly caused later re- 
search workers, notably Bland and Ford (1948, 1952) 
[9] and Sims (1954) [10], to develop solutions based 
on simplifying assumptions. The assumptions al- 
lowed analytical expressions to be developed, thus 
avoiding most of the numerical integration involved 
in Orowan's method. Unfortunately, this inevitably 
led to a sacrifice in accuracy. 

In order to produce greater precision in the anal- 
ysis, Hitchcock (1935) [13] developed'the equations 
to take into account the roll flattening due to local 
elastic deformation. In another attempt to produce 
greater precision in the analysis, Ford and his co- 
workers (1951, 1956) [11] and Bland and Sims (1953) 
[12] made modifications in the Bland and Ford's 
method for cold rolling by taking into account the 
entry and exit elastic arc of contact. 

With the advent of the digital computer, the com- 
plexity of the basic differential equation describing 
strip rolling is no longer a barrier to its solution. 
Alexander (1972) [14] solved the equation using Oro- 
wan's approach. Lahoti,  et al. (1978) [15] used a 
similar approach that took into account the inho- 
mogeneity of deformation (suggested by Orowan) 
and allowed the variation of flow stresses as a func- 
tion of strain, strain rate, and temperature. It cou- 
pled a heat transfer analysis module with the me- 
chanics module. Venter, et al. (1980) [16] considered 
inhomogeneity of deformation and used a function 
developed by Orowan [8]. Wanheim, et al. (1986) 

I 

Fig. 4. Stress acting in the arc of contact 
during rolling, reprinted with permission 
from Manufacturing Technology, Vol. 2, by 
J. M. Alexander, R. C. Brewer, and G. W. 
Rowe, published in 1987 by Ellis Horwood 
Ltd., Chichester [2]. 
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[17] used an approach similar to Alexander's with 
their own general friction model. Alexander, et al. 
(1987) [18] again used a similar approach with the 
friction model of Wanheim and Bay, and provided 
a suitable treatment for the neutral zone as suggested 
by Tselikove (as mentioned in [18]). 

The main considerations of the methods proposed 
by Orowan, Bland and Ford, Sims, and Alexander 
are discussed below. 

Orowan's method. Orowan's method could be used 
for both hot and cold rolling. He made the following 
assumptions. 

1. The frictional stress at the interface between roll 
and the material being deformed should be, -r = 
~s or "~ = k, whichever is minimum. 

2. He recognized the fact that the yield stress of the 
material would vary during its passage through 
the arc of contact due to work hardening, tem- 
perature, and strain rate variation, and consid- 
ered how these variations might be included in a 
comprehensive method. 

3. With minimum mathematical assumptions, he de- 
veloped his classical homogeneous graphical 
method for the numerical computation of the so- 
lution to Eq. (9), 

4. He discussed the inhomogeneity of the defor- 
mation which would lead to a departure from the 
simple situation often assumed (plane sections re- 
maining plane) and introduced a complicated ad- 
justing factor by which the inhomogeneity could 
be taken into account. In fact, as discussed in [3], 
his method for accounting the inhomogeneity of 
the deformation is based on an analysis which is 
not strictly applicable to the complicated situa- 
tions that exist in the roll gap. 

Bland and Ford's method. This method is specifi- 
cally designed for cold rolling. To get the analytical 
solution of Eq. (9), the following major assumptions 
are made. 

1. The frictional stress at the interface between the 
roll and the material being deformed is always T 
= i~s. 

2. The yield strength of the strip in the roll gap is 
considered to be a constant, which is equal to the 
mean or average yield strength of the strip before 
and after rolling. 

3. The radial pressure s at any point along the arc 
of contact is equal to its vertical component q at 
that point. 

4. Mathematical approximations cos+ = 1 - +2/2 
and sin+ = + are used in the calculations. 

Sims' method. This method is specifically designed 
for hot rolling. To get the analytical solution of Eq. 
(9), the following major assumptions are made. 

1. The frictional stress at the interface between the 
roll and the material being deformed is always 
equal to the shear flow stress. 

2. The yield strength of strip in the roll gap is con- 
sidered to be a constant, which is equal to the 
mean or average yield strength of the strip before 
and after rolling. 

3. In solving the differential equation, a previously 
developed equation is used, which is based on the 
assumption that the rolling process can be com- 
pared with the deformation between rough in- 
clined plates. 

4. Mathematical approximations 1 - cos+ = +2/2, 
cos+ = 1, and tan+ = sin+ = + are used in the 
calculations. 

5. In calculating the roll force, the normal roll pres- 
sure s is equal to the vertical component q. 

Alexander's method. To get solutions for both hot 
and cold rolling problems, Alexander developed the 
numerical solutions to Eq. (9) following the first three 
assumptions of Orowan's method and using the ap- 
proach suggested by Orowan. He used the fourth 
order Runga-Kutta method for the integration of the 
differential equations. He developed equations for 
the roll force and torque calculations and numerically 
solved the integrals using trapezoidal rule and Simp- 
son's rule. 

Finite Elemental Methods 

In the last several years, with the development of 
computers, the well-known finite element methods 
[6] have been developed. The finite element methods 
are a series of numerical techniques that solve bound- 
ary value problems, initial value problems, and ei- 
genvalue problems. Currently, these methods offer 
one of the most flexible and comprehensive theo- 
retical tools for the analyses of metal forming proc- 
esses. 

The finite element methods for metal forming 
processes can be divided into two groups which are 
rigid-plastic [5, 19, 20, 22, 24] and elastic-plastic [5, 
23, 25, 26]. In both of the methods, solutions can be 
obtained for both isothermal and nonisothermal de- 
formations. The starting point is to develop a func- 
tional, considering the calculus of variation, the prin- 
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ciple of virtual work, and the convexity of yield 
surfaces. Apart from the basic assumptions made in 
the yield criteria, no other assumptions are made. 
The only approximations are in the numerical meth- 
ods, which cannot be avoided. Derivations and de- 
scriptions of these functionals can be found in the 
references mentioned above. A review of finite ele- 
ment methods for metal forming is given in [28]. 
After developing the functional, the method can be 
subdivided into six basic steps as follows: 

1. Discretize and select element type. This involves 
dividing the body into an equivalent system of 
finite elements with associated nodes and choos- 
ing the most appropriate element type. 

2. Specify the approximation equation. This in- 
volves choosing a velocity (temperature) function 
within each element. 

3. Develop the system of equations. The variational 
functional derived from the virtual work principle 
for the system is written in terms of nodal veloc- 
ities (temperatures) and is minimized. This gen- 
erates one equation for each unknown nodal value 
(velocity, temperature). 

4. Assemble the element equation using the method 
of superposition. The individual element equa- 
tions generated in step 3 are added together using 
a method of superposition, whose base is nodal 
force or energy equilibrium. The result is global 
equations for the whole body or structure. Im- 
plicit in this method is the concept of continuity 
or compatibility, which requires that the body re- 
mains together and that no tearing occurs any- 
where in the body. 

5. Solve for generalized velocities (temperatures). 
The global stiffness equations, modified to ac- 
count for the boundary conditions, are a set of 
simultaneous algebraic equations. There are dif- 
ferent methods available to solve the equations 
such as the elimination method (Gauss method) 
or an iterative method (such as Gauss-Siedel 
method). 

6. Calculate quantities of interest. These quantities 
are usually related to the derivative of the param- 
eter. In the current case, these are stresses, strains, 
strain rates, temperatures, force, and torque. 

The finite element analysis for the plastic defor- 
mation of metals is much more complicated than that 
for elastic deformation. The functionals, to solve any 
metal forming problem using finite element methods, 
considering rigid-plastic or elastic-plastic material 
behavior, generate a highly nonlinear set of equa- 

tions. Therefore, iterative methods are needed to 
solve the equations. Apart from this, more compli- 
cations come in the formulation to deal with the 
changing boundary conditions and the yield surface 
changes at every point as a function of work hard- 
ening, strain rate, and temperature. To take these 
variables into account, it is necessary to deform the 
object (strip in the case of rolling) step by step and 
the finite element mesh gets distorted. After a certain 
amount of distortion, it becomes necessary to remesh 
the object, and interpolate the strains and te nper- 
ature history to the new nodal points. Consideration 
of such factors makes the formulation complicated 
and necessitates a great deal of computer time. 

The rigid-plastic formulations are simpler than 
elastic-plastic formulations because there is no need 
to treat the elements separately for elastic and plastic 
deformations. Consideration of this factor saves a 
great deal of computer time. The main advantage of 
elastic-plastic formulations over rigid-plastic formu- 
lations is the prediction of residual stresses in the 
object after deformation. With the prediction of re- 
sidual stresses, it becomes possible to treat the object 
for spring-back action. 

Concluding Comparison 

The major disadvantage of the slip line methods and 
upper bound methods is the assumption of rigid-per- 
fectly plastic material behavior. Other limitations are 
mentioned under the description of these methods. 
The assumptions in these two methods may oversim- 
plify the actual solutions and limit their value in prac- 
tical applications. 

The major assumption of the slab method is that 
the slab cutting surfaces will be planes during rolling, 
that is, homogeneous deformation of the slabs. But, 
this assumption is not as drastic as the assumptions 
used in the slip line method and upper bound method. 
This method has been used most to solve strip rolling 
problems. Also in this method, heat transfer analysis 
can be coupled with the mechanics analysis to sim- 
ulate the true behavior. It seems that the enhanced 
slab method (slab method with recent developments) 
is suitable for industrial use. 

So far, finite element methods have not been used 
much in the area of rolling. But, the successful ap- 
plication of these methods in solving the other metal 
forming problems (forging and extrusion) shows bright 
prospects in this area. In finite element methods, no 
assumptions are made apart from the basic assump- 
tions in defining the yield criterion and neglecting 
the elastic deformations while assuming the rigid- 
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plastic material  behavior.  A comparison of elastic- 
plastic and rigid-plastic methods  is given under  the 
description of finite e lement  methods.  The advan- 
tages of finite e lement  methods are as follows: (a) a 
minimum number  of assumptions are made for ma- 
terial and deformat ion behaviors,  and therefore it 
can be expected that these methods  will give bet ter  
results; and 2) they give detailed distributions of stress, 
strain, strain rate,  and tempera ture ;  these variables 
affect the microstructure of  strip. Finite e lement  
methods have disadvantages as they need a large 
computer  memory ,  CPU time, and personnel  time. 

Based on the above facts, it is r ecommended  that 
a particular method  should be selected considering 
the following factors: (a) application of the results, 
(b) accuracy of the results, and (c) requirements  of 
computer  and personnel  time. The following types 
of results can be obtained: (a) forces required for 
rollling, (b) torques required for rolling, (c) entry 
and exit speed of the strip, (d) stress, strain, strain 
rate, and temperature distribution within the roll gap, 
and (e) residual stresses in the strip after rolling. In 
general,  an enhanced slab method  for preliminary 
analysis and a finite e lement  method for detailed 
analysis are recommended .  
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