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Plasticity Theory for Working of 
Porous Metals 

J.  D u s z c z y k  

Abstract. The consideration of different shapes of the yield surface during the 
compaction of porous materials indicates that an ellipsoid should be recommended 
due to its simple mathematical form and close description of the actual behaviour 
of powdered metal (PM) materials during forming processes. Such a yield surface 
described by a new yield function is discussed for the 7XXX series PM rapidly 
solidified aluminum alloy. The function is applied to derivation of upper bound 
theory for porous metals. This paper emphasizes the experimental approach to the 
determination of the coefficients for this function, relating them to the properties 
of porous materials (density) and forming conditions (pressure, temperature, strain 
rate). The yield function and flow rules are verified by cold isostatic pressing and 
simple hot uniaxial compaction with a satisfactory level of correlation between the 
experimental and estimated results. The assumption in the upper bound approach 
that the porous body may be characterized by the existence of displacement rate 
discontinuities is judged by microstructures, hardness, and density throughout the 
deformation zone during extrusion. 

Introduction 

It is important for the optimization of consolidation 
processes of components produced by the powder 
technology route to consider a wider application of 
computer modelling techniques. This goal can be 
achieved if the reasonably general plasticity theory 
for porous materials will be developed. Unfortu- 
nately this goal has not been reached so far due to 
very complicated mechanical, rheological and met- 
allurgical aspects involved in the description of the 
behaviour of powders during cold or hot forming 
processes. The modelling of the consolidation of po- 
rous billets requires a new yield function, which dif- 
fers from the Huber-Mises function due to a change 
in volume of the porous body during compaction. 

Therefore the flow of porous material depends on 
the hydrostatic stress o,~ (or the first invariant of the 
stress tensor Jl: J1 = 3o,~ = o! + 0" 2 "[- O3). In 
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general the yield function for porous materials should 
include J1 and the second invariant of the deviatoric 
stress tensorJ~ = (1/6)[(01 - 0-2) 2 + (02 - 03) 2 + 
(o3 - ol)21. 

Therefore: 

F = f(J~,  J1) (1) 

The assumption of a shape of the yield surface is 
very important because it influences the description 
of a plastic potential g and flow rules. The yield 
surface for porous materials must be smooth, convex, 
and close. Moreover it has to fulfil the following 
condition: as a relative density of porous body p (the 
ratio between density of the porous body and the- 
oretical density of a solid nonporous material) in- 
creases, the yield surface of PM material must ap- 
proach the Huber-Mises cylinder, taking this shape 
a tp  = 1. 

Considering geometrical representation of the yield 
function in (3d~)l/2/os - JJoycoordinates (o r = the 
yield stress of any material) (Fig. 1), one has to rec- 
ognize that the yield locus determines not only the 
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Fig. 1. Geometrical representation of different forms of 
yield function during compaction. 

stress conditions for which a flow occurs but also the 
direction of the plastic strain rate vector + during the 
flow. 

It should be remembered that the J~/o-I coordinate 
is connected with the hydrostatic stress which does 
not influence the flow of nonporous materials (the 
Huber-Mises function). The (J~)l/2/o- s is related to 
the maximum shear stress at a given plane. Let  us 
identify the direction of the axes J1/o-f and (3J~)1/2/ 
o-I with the direction of ~c and ~s, the compressive 
and the shearing strain rates, respectively. By the 
principle of normality, for any limiting stress con- 
ditions determined by the yield surface, the direction 
of the strain rate + is normal to the yield locus at the 
point of tangency. The direction of vector ~ is mea- 
sured by the angle qb which this vector forms with 
+s (or (3J~)X/2/o-f axis). For the positive value of 
the strain rate vector + has a negative compressive 
strain rate component  +c. This condition implies the 
compaction process of a porous body to be charac- 
terized by the increase in density (decrease in vol- 
ume). This behaviour of the porous body is consist- 
ent with the actual one during compaction. In contrast 
the negative value of the angle ~ implies the expan- 
sion of the PM material, because the strain rate vec- 
tor ~ has a positive strain rate component  +c which 
in this case should be rather named as the tensile 
strain rate component  ~t(+~ = ~, for �9 -< 0). There- 
fore the negative value of qb results in the decrease 
of the density of the porous body (increase in vol- 
ume-dilatancy). From the point of view of an as- 
sumed shape of the yield surface for a porous body, 
two important cases should be discussed: 

�9 for ~ = 0 the strain rate vector + is parallel to the 
(3J-~)1/z/o-f axis; it means that no change in volume 
occurs (go = 0) and the flow is one of pure shear 

(~ = ~ s )  

�9 for �9 = rr/2 the strain rate vector + is perpendicular 
to the (3J~)l/z/o-f  axis: it means that the shearing 
component  of the strain rate vector is equal to zero 
(+s = 0) and the flow is one of pure hydrostatic 
(~ = ~c ) .  

Therefore  the shape of the yield surface which 
describes the deformation of porous material during 
compaction should also fulfil the following condi- 
tions: 

/~c -"~ 0 
dO ---~ 0 

~s ---~ 0 
~ "rr/2 

(2) 

Moreover  one also has to recognize that due to 
further calculations of the incremental s t rain-stress  
relations, the mathematical representation of the yield 
surface should be reasonably simple. 

There are three geometrical representations of the 
yield function for PM materials described in the lit- 
erature (in o-1, o-2, o-3 coordinates): cap [1], cone [2], 
and ellipsoid [3-8] .  The cap model consists of two 
parts (Fig. 1): the failure envelope and the cap. The 
failure surface and the cap are given by Eqs. (3) and 
(4), respectively. 

F1 : (j,),2 _ [A - C exp(BJ,)] (3) 

F2 : (j,),/2 _ 1 / R [ ( X -  L) 2 - (Jl - -  L)~] ~/2 (4) 

where: 

X = L - R [ A  - C exp(BL)] (5) 

The coefficients A, B, C, and R are materials 
parameters which include a relative density of a po- 
rous body. With the function described by Eq. (5) 
the cap is elliptically shaped and the parameter  R is 
the ratio between the major and minor ellipse axes; 
X and L define the J1 range of one semiaxis. One 
has to recognize that the cap -enve lope  model  admits 
(depending on where the state of stress is on the 
yield surface) that the porous body may undergo an 
increase (qb < 0) or decrease in volume (~  > 0) 
during compaction. The increase in the volume of 
the metal porous body during compaction is incon- 
sistent with the reality and therefore  should be ex- 
cluded from our consideration. 
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The cone shape of the yield surface is described 
by the following function: 

F : ( I / A  1/2)[(3J')'/2 - BJ,] (6) 

The yield function [Eq. (6)] is represented in O"1, 

0"2, 0-3 coordinates by the cone which height increases 
with increasing p. The cone model assumes a con- 
stant ratio between the shear G and compressive ~c 
component of the plastic strain rate, irrespective of 
the hydrostatic (0-m = J1/3)  and the shear stress (re- 
lated to J~). 

The inconsistency of the cap and cone model with 
the real behavior of PM materials during compaction 
excludes these models from further consideration. 
The third model discussed in this work is represented 
in 0-~, 0-2, 0-3 coordinates by an ellipsoid and therefore 
the yield function is of the following form: 

F : (1/A' /2)(3J~ + B J2) '/2 (7) 

Considering previous requirements, the ellipsoid 
describes the yield condition for PM materials closest 
to the actual behavior of the porous body during 
compaction. First of all, the function [Eq. (7)] fulfils 
the basic condition of the compaction that any hy- 
drostatic stress is responsible for the volume decrease 
of the porous material. Moreover, the response of 
the porous body to the consolidation (compressibil- 
ity) depends on the ratio between the hydrostatic 
and shear stresses involved in the process. The coef- 
ficients A, B of Eq. (7) are the function of the relative 
density of PM material. Most of the expressions of 
A, B variables are based on the experimental results 
of the simple uniaxial compaction. Only Green 4 ap- 
plied an analytical approach which considered a uni- 
form cubic array of spherical voids in a solid matrix 
under states of stress related to pure shear and hy- 
drostatic compaction. The present work also consid- 
ers the experimental approach to the derivation of 
A, B variables. This is due to very complicated re- 
lationship between the mechanical, rheological and 
metallurgical factors involved in the forming proc- 
esses of PM materials. The complexity of compac- 
tion, forging, and extrusion of PM materials justifies 
the experimental approach in order to get the most 
reliable data for a particular material. I have found 
such a necessity to derive the new yield function 
dealing with the optimization of the processing of the 
7XXX series PM rapidly solidified aluminum alloys 
during cold and hot working. 

Y i e l d  C r i t e r i o n  

The yield criterion for porous materials is proposed 
of the form: 

( ~  = C(Co = (1 /A) (3J~  + BJ~)  (8) 

0-p and 0-o are the yield stresses of porous and solid 
matrix material, respectively. A, B, and C are the 
functions of the relative density. If 0-p is replaced by 
6p, that is, equivalent stress applied to the porous 
material, then Eq. (8) may be applicable to the work 
hardening porous body. Using the concept of plastic 
potential g, the incremental strain-stress relation is 
to be derived. The plastic potential g is given with 
regard to the principal stresses. 

g = ( 1 / A ' / 2 ) { ( 1 / 2 ) [ ( f f ,  - 0-2) 2 + (0" 2 - 0-3) 2 

-~ (0" 3 - 0"1) 2] q- B(fJ" 1 q- 0" 2 q- 0"3)2} 1/2 - O'p ( 9 )  

Partially differentiating Eq. (9) with respect to 0-1, 
0-2, and 0-3, incremental strain-stress relations can 
be written as: 

de,  = dh'Sg/5(r ,  = dX[(r, - (1 - 2B)(r..] 

ds2 = dh'Sg/5(r2 = dh[(r2 - (1 - 2B)(rm] 

de 3 = d k ' ~ g / S a  3 = dh[o" 3 - (1 - 2B)crm] 

(10) 

dh is a proportional factor which is determined after 
the rearrangement and substitution of Eq. (10) into 
the expression of plastic work done per unit volume 
of porous body. 

d W  = crlde 1 + o ' 2 d e  2 + o ' 3 d e  3 = 6"pd~ (11) 

d~p is defined as the equivalent strain increment re- 
ferring to the porous material. Finally the propor- 
tional factor dk is described: 

d x  : ( 3 /2A )(  dG/drp ) (12) 

Substituting Eq. (12) into Eq. (10), rearranging 
expression (10) to the form: the principal stress- 
incremental strain and subsequently substituting into 
Eq. (11) with the rearrangement: 

d~p = {A{(2/9)[(dex - de2) z + (dez - de3) 2 

+ (de3 - de,) 21 + (1 /9B)(de~)}}  vz (13) 

dev is volumetric strain increment: 

de~ = de1 + de2 + de3 = - d p / p  (14) 
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One has to recognize that as in the plasticity the- 
ory of solid materials, the concept of equivalent stress 
and strain is used to correlate the results obtained 
under different loading conditions by means of a sin- 
gle curve of ~ -  ~ taken from the simple uniaxial test. 
In this work (rp and ~p refer to the porous body (suf- 
fix p). 

This concept introduces the hardening factor of 
the solid matrix of the porous body and the volu- 
metric hardening due to decrease in the porosity of 
the PM material during deformation. It is worth men- 
tioning that except for Kuhn's and Downey's theory 
[3], all the concepts of plasticity theory for porous 
materials refer to the deformation of the solid matrix 
material of the porous body, hereby excluding the 
volumetric work hardening factor. Referring the 
present theory to the solid matrix material (suffix o) 
of the porous body one has to introduce: 

% = (C)":eo 

d~p = pd~o 
(15) 

In this case the relationship ~o - ~o is provided 
by the simple uniaxial test of fully dense materials. 

T h e  U p p e r  B o u n d  T h e o r y  

The derivation of the upper bound theory for porous 
metals presented in this paper is based on a general 
solution for solid materials [9[ (Fig. 2). On the body 
of volume U and total surface area S, let surface 
stresses or tractions Pi be specified over part of the 
surface, say SP. Suppose the actual velocity field is 
denoted V[, any other different or assumed field by 
Vi, such that V~ = Vi on SV, that is, Vi is prescribed 
over the part of the boundary SV. 

A kinematically admissible velocity field may have 
discontinuities in the tangential component along a 
certain surface SD. In the upper bound for solid 
incompressible metals normal components must be 
the same on the other side of such surfaces in order 
that there be no plastic volume change. 

Denote as ~j, the assumed plastic strain rate as 
derivable from V7 and ~g, any stress field which does 
not violate the yield criterion and is derivable by way 
of the concept of the plastic potential g. 

In Figure 2, V,* denotes the tangential component 
of velocity discontinuity on a surface SD for the ki- 
nematically admissible velocity field and q is the 
shearing stress component of the actual stress field 
~/ in the direction of the displacement increment 
discontinuity. 

~ P. P i  

S = SP+SV 

Vi=Vi  prescribe 
Fig. 2. Terms used in the up- 
per bound theory. 

The theory states that among all kinematically ad- 
missible velocity fields, the actual one minimize the 
expression: 

IV* <-- ~ + ~ o 'r V* ] dSD 

- fse PiV~dSP (16) 

where -r is the maximum remstance to shear. 
The actual externally supplied power W* is never 

higher than that computed by Eq. (16). 
The first term expresses the total power for de- 

forming the body (W,). 
The second term indicates the internal shear stress 

along the surface of velocity discontinuity (Wso), the 
boundary between the tool and material (friction WSF 
must be specified). 

The last term covers power supplied by predeter- 
mined body traction SP (Wsp) such as back and front 
tension in extrusion, drawing, rolling etc. The mod- 
ification of upper bound for porous materials con- 
cerns two first terms [10]. The second term of the 
right hand side of Eq. (16) must be determined con- 
sidering the kinematically admissible displacement 
increment field which has discontinuities not only in 
the tangential component but also in normal com- 
ponents. 

The latter one is responsible for a change in den- 
sity when the material passes the discontinuity. 

In order to simplify the solution, let us assume 
that the porous body possesses an identical yield sur- 
face (between the discontinuity surface) during a de- 
formation process. This identical yield surface im- 
plies the constant average relative density of porous 
material during deformation between two disconti- 
nuity surfaces. 

It also implies that for the deformation between 
the discontinuity surfaces de, = 0. Therefore the 
volume change occurs only as the material passes the 
discontinuity surface. This assumption is somewhat 
artificial in character but facilitates simple solutions 
and reduces the volume of calculations. Otherwise 
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the exact distribution of density should be known in 
the body as a continuous function of coordinates, 
which generally is very difficult or even impossible 
for working processes such as extrusion, rolling, or 
forging. 

Power for Internal Deformation Over the 
Volume of  the Deforming Body IV, 

Applying Eq. (11) to the first term (W,) of the right 
hand side of Eq. (16), the expression of the power 
for internal deformation over the volume of the de- 
forming porous body is given: 

IV. = ~vee~dU (17) 

* is equivalent strain rate. where e, 
However, following the assumption that for the 

deformation between the discontinuity surfaces eu" * 
= 0 the relative density of the material will be only 
included into the calculation by coefficient A. 

Power Dissipated on the Discontinuity 
Surfaces Wso 

Geometrical representation of the velocity discon- 
tinuity with all the parameters involved is shown in 
Figure 3. 

The surface of velocity discontinuity SD is the 
central surface of the shaded volume where the ve- 
locity changes abruptly. The porous body would 
undergo discontinuity in velocity in tangential AV* 
and normal AV* to the surface of discontinuity. Let 
x, y, z coordinates be so chosen that the z axis is 
normal to the surface SD at point 0. According to 
Figure 3 and the coordinates chosen, velocity com- 
ponents  are denoted :  AV* = V*~, AV*~, AV,~. 
Crossing SD the material is distorted owing to the 

i Z 

/ . / / /  A 

gaY= 0.5 (gl+g 2 ) 

Fig. 3. Surface of velocity discontinuity SD. 

velocity discontinuity and this is subjected to strains 
�9 , �9 . . ,  - *  . *  . *  
G,  ~ ,  e~, "/x>,, %,~, ~/zx per unit time: 

~* = a V * , l ~  = G 

~* = AV*/Ay '* ----- E O, 

~*_ = AV*_/Az = ~* 

�9 ~.,.*\, = AV,* . /Ay  + A V * , / A x  (18) 

41": = AV~*,/Az + AV*./Ay = AV,*Ja + AV*=/Ay 

4t* ̀ = AV,,*/Ax + AV*/Az = AV*=IAx + AV*Ia 

The surface of velocity discontinuity SD may be 
defined as the narrow shaded volume whose width 
tends to zero. 
�9 The energy dissipated per unit volume time across 

an area dSD is given by: 

dWs.o = lim ~ a%G*dSD (19) 

However the principle of maximum plastic work 
imposes: 

lim a%~dSD <- lim acrT ~*dSD (20) 

but following Eq. (11) 

�9 .. = G ~  
(3F i i  E q 

Therefore: 

(21) 

dW~ o <- lim a6p~*dSD (22) 

Employing Eq. (13) for equivalent strain rate of 
7. in arbitrary Cartesian coordinates deformation 8p 

~* = (A)U2{(2/9)[(~:* ~,)2 + (~.  _ ~:*)2 + (~* ER 

_ + . ) 2 1  + ( 1 / 9 B ) ~ , 2 v  -4- 1/3(41x*y 2 -~- '~yz'*2 -4- 41z~x2)} 1/2 ( 2 3 )  

with data from Eq. (18), Eq. (22) after rearrange- 
ment and integration is given by: 

Wso <- fso 6p{A[(1/9)(4 + 1/B)AV*~ 

+ (1/3)( AV*2 + AVgZ)]l'/2dSO (24) 

J. Materials Shaping Technology, Vol. 9, No. 2, 1991 ~ 107 



J. Duszczyk ~ Porous Metals Plasticity Theory 

Power Dissipated on Shear Over Tool-  
Workpiece Interface WsF 

Friction is encountered in forming due to the relative 
motion between the tool and the material. This fric- 
tion resistance "r is measured in force units per unit 
surface area of contact. The surface area of contact 
is a boundary of the deformed metal. Therefore it is 
also the shear stress in the material at its boundary. 
Of the several mathematical descriptions of friction 
let us employ the description using a constant friction 
factor m. When a constant friction factor is assumed 
to exist, the shear stress over a surface is assumed 
to obey the rule: 

% = m~o/(3) '/2 (25) 

This expression concerns solid material. The 
resistance to sliding To is proportional to the flow 
strength of the material cro. The shear factor m may 
have any value between zero and one depending on 
severity of friction. For frictionless conditions m = 
0, for sticking friction m = 1. For porous materials 
the expression is modified. Applying the conditions 
of pure shear (~rl = -0% = %) to Eq. (8) and sub- 
stituting into Eq. (25) 

% = (A/3)~/2mCrp (26) 

Frictional power losses are computed by inte- 
grating the shear stress multiplied by the relative 
sliding speed. This integration being taken over the 
area of contact. Therefore for porous material 

Wse = fse m~ (27) 

All calculations of power dissipated over the tool -  
workpiece interface are derived from the rule that 
power is force multiplied by velocity. In Eq. (27) 
AV} is a velocity discontinuity tangential to the tool 
surface. 

D e t e r m i n a t i o n  o f  B ,  A ,  C V a r i a b l e s  

The experimental determination of the coefficients 
A, B, and C concerns the 7XXX series aluminum 
alloy (AI, Zn 6.0-6.2,  Mg 1.9-2.0, Cu 1.7-1.9, Cr 
0.2) produced by rapid solidification technology. The 
extended description of these materials (size distri- 
bution, shape, oxidation, microstructures) has been 
published [11]. 

The experiment concerns one action compaction 
of the PM material in a rigid die (Fig. 4). A research 
set-up equipped with high temperature resistant (up 
to 873 K) strain gauge transducers provides infor- 
mation about all the stresses involved in the com- 
paction process: compaction pressure c h, radial pres- 
sure (~r 2 = 0"3), and the pressure transmitted to the 
lower punch ~r,. 

Knowing ~rl and o',, one can estimate the friction 
between the porous body to be compacted and the 
surface of the die and punches PF 

P~ = (~, - r (29) 

where D is a die diameter. 
The experiment was carried out at room and el- 

evated temperatures (473-723 K). The surface of 
the billet and the tools were extensively lubricated 

A Final  U p p e r  B o u n d  So lu t ion  

Combining all the power during the working, the 
upper bound solution for porous metals is expressed 
by: 

W <- L (rp~,dU + fs drp{A[(1/9)(4 + 1/B)AV*2z 
D 

+ (1/3)(AV*x 2 + AV•Z)]}'/2dSD 

+ f~mG(A/3 )"~aV;dSF-  ~sP,  V*dSP (28) 
Fig. 4. Die with lower punch. 
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by graphite in spray in order to reduce the friction 
during the tests. The billets (dia 30 • 30 ram) were 
preconsolidated according to the density-pressure 
relationship (Fig. 5) at room (p = 0.70, 0.80, 0.85) 
and elevated temperatures (p = 0.80, 0.85, 0.90, 
0.95). 

The consolidation of PM materials to higher den- 
sities was impossible at room temperature due to a 
pressure limitation of the press. After preconsoli- 
dation the samples were subjected to tests with the 
research set-up (Fig. 4) at the temperature which 
assured no change in the sample density. 

From the data presented in Figure 5 it is apparent 
that the density of the porous material depends on 
the compaction pressure and the temperature within 
the range up to 473 K. Above this temperature the 
density depends only on the compaction pressure 
irrespective of the changes in the temperature of the 
process. 

The microstructures of hot consolidated materials 
(Fig. 6) reveal the dependence of the porosity level, 
porosity shape, level of material deformation on the 
particles morphology, and the compaction pressure. 
One has to emphasize the importance of the influ- 
ence of metallurgical properties of PM materials on 
the flow of porous body during the deformation. 
Usually this very important factor is not considered 
by scientists working on the modelling of PM con- 
solidation processes. 

Coefficient B 

Coefficient B is derived substituting 

de~ = de3 = 0 (30) 

0 - ~  = 0 -  3 

o_to r - - -  - -  

' - f  I I / 
;0., / ,/T 

100 200 300 /,00 500 
compaction pressure-(51 (MPa) 

Fig. 5. Relationship: relative density-compaction pressure 
for cold and hot compaction. 

Fig. 6. Microstructures of hot compacted (673 K) billets 
(powders, flakes) with densities: A, B = 0.9: C, D = 0.99. 
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into Eq. (10) and rearranging 

B = [1 - (tr2/ty~)]/2[1 + 2(or,,/~L)] = f(p) (31) 

0-2/0-~ is defined as the coefficient of radial pressure 
~, which is a function of the relative density 13. From 
the compaction tests in the rigid die at room and 
elevated temperatures (Fig. 7) the average relation- 
ship between the coefficient of radial pressure and 
the relative density of the body is found in the form: 

�9 for cold compaction (CC) within the range of rel- 
ative density 0.7 -< p --- 0.85 

= 0 .2  p + 0.4 ( 32 )  

�9 for hot compaction (HT, temperatures 473-723 K) 
within the range of relative density 0.8 -< p -< 1 

= 2.5 p - 1.5 (33) 

Separately substituting Eqs. (32) and (33) into Eq. 
(31): 

B = (0.3 - 0.10)/(1.8 + 0.4p) (34) 

B = 1.25(1 - 0)/(-2 + 5p) (35) 

for cold compaction within the density range 0.7 -< 
p -< 0.85 [Eq. (34)] and for hot compaction with 
density 0.80 -< p -< 1.0 [Eq. (35)]. 

It is apparent that Eq. (32) for cold compaction 
when substituted into Eq. (31) with p = 1 does not 
fulfil the preliminary condition B = 0 (the Huber- 
Mises form of the yield function). For the compac- 

x~7 n 1.00 

0.90 
& 

~ & 8 0  

i &60 

0.50 

OAO 020 

- 

,h0? oZa0,, o, / _.';' I ,73-7 3K \ / / / / .  ', 
I \ t / / /  

~ comp~ct~oo~ ~  I 

, ~  o ~ . 7  ~-- - -  com~2&on ~ -I 
hot �9 �9 

compaction I 

o.80 ~o 1.6o 
�9 . retative dens i t y -p  

Fig. 7. Relationship coefficient of radial pressure-relative 
density for cold and hot compaction. 

tion of the green body it is consistent with reality 
because this process involves not only the effect of 
plastic deformation of particles but also the inter- 
particle sliding. Therefore in this particular case the 
yield stress 0"p defined by Eq. (8) appears to be a 
material constant Y which refers to the resistance of 
powder to compaction, including both plastic defor- 
mation and interparticle sliding. Applying this ap- 
proach, the 0"p = Y value for cold compaction of 
green compacts is to be determined from the rigid 
die compaction tests substituting the relations [Eq. 
(34)] 0"2 = 0-3 = ~0-1 and A = 1 + B (from the simple 
uniaxial compaction) into Eq. (8). This procedure 
should give Y data with regard to the density in- 
cluding the work hardening due to decrease in the 
porosity during compaction. For the 7XXX series 
PM rapidly solidified aluminum alloy considered in 
this work, the value of the Y variable estimated with 
the data from the rigid die compaction is listed in 
Table 1. 

Tackling the experimental data presented in Fig- 
ure 7 , one has to recognize the different behavior 
of flakes and powders during cold and hot compac- 
tion. In general, the flake material due to lower ox- 
idation, finer microstructure, and better flow prop- 
erties [11], more homogeneously distributes applied 
stresses during the consolidation giving a much higher 
value of the coefficient of radial pressure than the 
powder particles. Moreover, it is also apparent that 
hot compaction improves the homogenity of stress 
distribution compared to that of cold compaction. 
However, one has to emphasize that the value for 
the given density is not dependent on the tempera- 
ture within the range 473-723 K. 

Coefficient A 

The coefficient A is derived by the adjustment of Eq. 
(8) to the conditoin of simple uniaxial compaction 
(0-p = 0-1; 0"2 = 0"3 "~- 0 ) .  Therefore: 

A = 1 + B (36) 

Substituting Eq. (34) or (35) into Eq. (36) one ob- 
tains the A value for cold and hot forming processes 
respectively, with regard to the prescribed density 
range. 

Table 1. Parameter Y Characterized Resistance of 
Powders to Cold Compaction 

~,MPa 150 250 400 500 
density, p 0.70 0.75 0.80 0.85 
Y, MPa 119 195 309 383 

110 ~ J. Materials Shaping Technology, Vol. 9, No. 2, 1991 



J.  Duszczyk �9 Porous Metals Plast ic i ty  Theory  

Coefficient C 

The coefficient C relates the yield stress of the porous 
body with the yield stress of the nonporous fully 
dense matrix material. Tackling the problem of the 
yield stress of the porous body it is apparent that 
total strain of deformation,  strain rate, temperature,  
relative density and microstructure of the material 
should be considered. Due to the very complex re- 
lationship among the above-mentioned factors, the 
present study considers only some of them through- 
out the experimental tests with simple uniaxial com- 
paction conducted on a standard tensile machine and 
hydraulic press according to the standard procedure.  
The tests have been carried out with different tem- 
peratures,  strain rates, and relative densities of the 
billets. Prior to the simple uniaxial compaction the 
billets have been consolidated in the rigid die at the 
temperature of the uniaxial test. A hot working tem- 
perature of 673 K has been selected for subsequent 
verification tests (Fig. 8). The experiment (Fig. 8) 
provides for this particular temperature  the following 
relations between coefficient C and the density for 
the prescribed strain rates ~ of hot forming: 

(~ = 1 sec -~) 

(~ = 0.1 sec ~) 

(~ = 0.01 sec ' )  

C = 2.78 (p - 0.4) 2 

C = 4(p  - 0.5) 2 

C = 6.25 (p - 0.6) 2 

( 3 7 )  

Therefore the relationship between the yield stress 
of porous body ~p and fully dense material ~o is of 
the form: 

% = 1.67 (p - 0.4)% 

,r~ = 2.0 (p - 0.5)~o (38) 

% = 2.5 (p - 0.6)% 

for k = 1 sec -~, 0.1 sec -a,  0.01 sec -~, respectively. 
The relations (38) should be applied with regard 

to the value of strain rate of the deformation,  typical 
for the particular kind of forming process. Hence a 
strain rate of ~ = 1 sec  -1 ,  0.1 sec -~, 0.01 sec - t  
should be considered for the extrusion, compaction 
with hydraulic press, and isostatic pressing, respec- 
tively. 

In Figure 9 the yield function is represented at 
various density levels in (3J;)~/:/tr I versus JJtr/spaces 
with regard to yield stress of a porous body (try -- 
tru) or solid matrix of a porous material (trl = tro) 
at a strain rate of deformation g = 1 sec-  ~ and tem- 
perature 673 K. The yield criterion both for % and 
% follows the pattern described in the literature [6] 
approaching the Huber-Mises criterion when p = 1. 

However,  Figure 9 reveals one interesting feature of 
the criterion dealing with the porous body (trp). At 
low values of the first invariant of stress tensor J1, 
the yielding ellipsoid provides (3J;)l/2/trp higher than 
1 for p < 1. The lower the density, the higher the 
discrepancy between the yon Mises cylinder and the 
ellipsoid at J~/% = 0. This behavior of the yield 
surface for a porous body at the low values of J~ may 
result from the discrepancy between the idealized 
theoretical model which concerns conditions of pure 
plastic deformation and the actual experiment which 
provided t h e  coefficient B. The actual experiment 
also includes a certain level of interparticle sliding. 
The lower the density, the more likely is interparticle 
sliding to occur as a predeformation step. One should 
also be aware that below a threshold stress level it 
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Fig. 8. Relationship: yield stress (porous body %, solid 
matrix %)-density p at different strain rate ~ of hot form- 
ing (T = 673 K). 
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Fig. 9. Yield surface for the yield criterion related to the 
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Fig. 10. Yield surface for the yield criterion related to the 
deformation of solid matrix of porous body % at different 
strain rate ~. 

is difficult to proceed with the deformation of a po- 
rous body at all. This behavior of the yield surface, 
although only reported in the literature for Kuhn's 
theory [12] is common for all the yield criteria after 
their arrangement with regard to the deformation of 
the whole porous body [6]. When the yield criterion 
is presented with regard to a deformation of a solid 
matrix of a porous body, the (3J~)a/2/Cro is always 
lower than 1 for the p < 1. This behavior is also 
presented in Figure 10 for a different strain rate of 
deformation ~ at 673 K. 

Experimental Verification 

Cold lsostatic Compaction 

If the pressure during cold isostatic compaction of 
the 7XXX PM rapidly solidified aluminum powder 
is denoted by p, that is 

~, = ~2 = ~3 = P (39) 

then Eq. (8) is of the following form: 

% = Y = 3 ( B / A ) m p  (40) 

Substituting Y (Table 1), B [Eq. (34)] and A = 
1 + B, the relationship between the density (0.70 -< 
p - 0.85) and the pressure can be estimated. Figure 
7 shows the experimental and the estimated rela- 
tionship: relative density-pressure in cold isostatic 
compaction of the 7XXX series PM rapidly solidified 
aluminum alloy material. The points indicate the es- 
timated data using the functions which have been 

determined by means of rigid die compaction tests. 
The experimental results agree well with the theo- 
retical ones confirming validity of the presented ap- 
proach provided the density range 0.70 - p --- 0.85. 

This comparison proves that the functions derived 
using rigid die compaction tests can be applicable to 
other cold consolidation processes of the 7XXX se- 
ries PM aluminum alloys within the density range 
0.70 <- p <-- 0.85. 

Tackling the density-pressure relationship in the 
cold rigid die compaction (Fig. 5) and cold isostatic 
pressing (Fig. 11) it is apparent that the pressure 
required for full densification of the porous body 
increases beyond that obtainable by commercial 
presses. Moreover, for the high compacting pressure 
(oft, p >- 300 MPa) both cold rigid die and cold iso- 
static compaction produce similar green densities. It 
is due to the increase of the coefficient of radial 
pressure with the increase of the relative density dur- 
ing cold compaction in the rigid die. Merely the pres- 
sure distribution becomes more homogeneous and 
therefore closer to that observed during cold isostatic 
pressing. Moreover, a certain amount of shearing 
stresses consistent with the rigid die compaction helps 
to densify powders [13]. 

Hot Uniaxial Compaction (Simple Uniaxial 
Compression) 

The verification of the presented theory has also been 
carried out for hot deformation processes. In this 
work the comparison between estimated and exper- 
imental values of Poisson's ratio v from standard 
simple hot uniaxial frictionless compaction (T = 673 
K, ~ = 0.01 sec-l)  is presented. Poisson's ratio is 
determined experimentally from the relationship 

v = - d e 2 / d ~  I (41) 

The value of ~1, applied during hot uniaxial corn- 

o .&9  
i 

Ln 

g 
~ 0.8 

l ~  

0.6 

o exper imen t  
x e s t i m a t i o n  

[ 
100 200 300 l, O0 500 

- compact ion  p ressu re -p  (MPa)  

Fig. 11. Experimental  and estimated relationship: relative 
dens i ty -compact ion  pressure during cold isostatic press- 
ing. 
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paction, coincides with 0-~ used during hot precon- 
solidation of the test samples in the rigid die. The 
estimation of Poisson's ratio has been carried out 
applying the functions from the rigid die tests with 
conditons d e  2 = de3 and 0-2 = 0"3 ~--- 0 substituted 
into Eq. (10). 

After the rearrangement: 

v = (1 - 2B)/2(1 + B) (42) 

where B is the function of initial density of a porous 
body described by Eq. (35). 

It is apparent from Figure 12 that calculated data 
fit very well to the experimental ones. 

The relationship between Poisson's ratio and the 
density can be described by: 

v = 0.5 p" (43) 

where a = 1.6 and 1.7 for the estimated and exper- 
imental results, respectively. A similar relationship 
(v = 0.5 p2) has been found by Kuhn [12] for hot 
deformation (644 K) of the 601 AB (A1, 0.25 Cu, 
0.6 Si, 1.0 Mg) PM aluminum porus body. 

Extrusion 

Application of the proposed upper bound theory for 
an extended calculation of extrusion pressures is pre- 
sented elsewhere [14]; however, in this work the basic 
assumption concerning the relationship between ve- 
locity discontinuities and densification will be dis- 
cussed for the extrusion of PM rapidly solidified 7XXX 
series aluminum flakes, 

The flakes were first compacted to 0.80 theoretical 
density. The billets were subsequently extruded till 
the beginning of the steady state extrusion when ma- 
terial just starts to exit from the die. The extrusion 
was performed at 673 K through a fiat die with a 

>O5 
i 

.9  

a 
(3_ 

0.2 

Vx = 0,5 d1'6 I ~ x  / 
(estimation) x 

j Vo= 0.5 d 1.7 
( experiment } 

T=f73K 
=10-2s -1 

I 
o.8 o85 0.9 o95 1.o 

= relative density- P 

Fig. 12. Experimental and estimated relationship: Pois- 
son's ratio-relative density during simple uniaxial com- 
paction. 

reduction ratio R = 20. The microstructures, hard- 
ness, and density were investigated providing data 
which are presented in Figures 13 and 14. 

Considering these properties throughout the lon- 
gitudinal plane of the discard one can distinguish five 
regions: 

1. The compaction zone of a spherical shape with 
the very low intensity of shearing stresses resulting 
in the lowest microhardness and low density. 

2. The intermediate zone where one can observe a 
rearrangement of flakes due to an increase of the 
intensity of shearing stresses which, however, re- 
sults only in insignificant increase in density. 

3. The hardening zone where the intensity of shear- 
ing stresses is high and this results in the highest 
value of microhardness and significant increase in 
density. 

4. The tensile zone with the low intensity of shearing 
stresses and a very high intensity of tensile stresses. 
The influence of tensile stresses is observed through 
an occurrence of large cracks propagated from a 
corner between the liner and the die. This zone 
is related with the dead metal zone. The density 
is the lowest due to macrodefects. 

5. The softening zone created close to the exit and 
to the wall of the due. This zone is consistent with 
an elevated temperature of the process and a sig- 

Densi ty  
Softening Zone ~ 1,0 

Tensile Zone ~ 0.80 

Fig. 13. Microhardness distribution in the discard. 
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Fig. 14. Microstructure of the billet to be extruded (20X): (A) tensile zone-dead metal zone, (B) vicinity of the liner 
and ram, (C) end of intermediate zone, (D) compaction zone. 

nificant rise in temperature  due to the high in- 
tensity of shearing stresses. The density of this 
zone approaches the theoretical one. 

The microstructures reveal the effect of shear forces 
arising from the friction at the tool-bi l le t  interface 

and its significant influence on the displacement of 
flakes and the densification of the billet. One can 
recognize that there is relationship between the level 
of shearing and the level of densification. The higher 
the shearing stresses the higher the local density of 
the billet. Moreover  the shape of the zones with sig- 
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nificant differences in density could be approximated 
to simple geometrical  ones (i.e., spherical). It indi- 
cates that the assumption that the porous body may 
be characterized by the existence of displacement 
rate discontinuities can be acceptable.  

Financial support of the Programme for Innovative Re- 
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R e f e r e n c e s  

C o n c l u s i o n s  

The satisfactory level of correlation between the ex- 
perimental and calculated data indicates that the yield 
criterion with the material constants determined from 
the rigid die compaction tests at room and elevated 
temperatures  can be used to analyze various com- 
paction processes of porous materials.  

The application of the yield criterion to the upper  
bound solution seems to be also satisfactory. 

The microstructures,  density, and hardness data 
throughout the deformation zone during the hot ex- 
trusion indicate that the porous body may be char- 
acterized by the existence of displacement disconti- 
nuities. The experiment  shows different behavior  of 
PM material during hot and cold compaction.  The 
main difference concerns the fact that during cold 
pressing of the green billet, except in the plastic de- 
formation of powders,  interparticle sliding is addi- 
tionally involved in the process. 

The experimental  approach to the derivation of 
the yield function for PM materials and the upper  
bound solution is justified due to complex mechan- 
ical, rheological, and metallurgical characteristics of 
PM materials involved in the different forming proc- 
esses. 
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