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S u m m a r y .  - -  Assuming general covariance, we discuss the structure of 
gravi ta t ional  interactions between the proton and the electron. There 
arc 15 (3) different couplings between a massive spin-�89 particle (a two- 
component neutrino) and the gravi ta t ional  field, provided that  inter- 
actions involve no higher derivatives than those appearing in the free 
Dirac and gravi ta t ional  Lagrangians. In  the weak-field l imit  the inter- 
actions may be divided into 4 classes: (C, P ,  T ) =  ( + ,  + ,  + ) ,  ( + , - - , - - ) ,  
( -, §  and ( . - - ,  §  Any deviation from Einstein 's  theory entails 
an asymmetric  energy-momentum tensor, hence involving hypothet ical  
massless, spinless particles, represented by a skewsylnmctric tensor field 
whose source is the spin of the proton and the electron. We also discuss 
possible effects of this particle on the hyperfine structure of the hydrogen 
atom. 

1.  - I n t r o d u c t i o n  a n d  s u m m a r y .  

G r a v i t a t i o n  is, t o g e t h e r  w i t h  e l e c t r o m a g n e t i s m ,  one of t h e  f u n d a m e n t a l  

i n t e r a c t i o n s  of m a t t e r  a n d  has  t h e  c l a s s i ca l  l i m i t .  I n  p a r a l l e l  w i t h  M a x w e l l ' s  

e l e c t r o m a g n e t i c  t h e o r y ,  E i n s t e i n ' s  c l a ss ica l  t h e o r y  of g r a v i t a t i o n  has  a lso  a t -  

t a i n e d  r e m a r k a b l e  success  (1). H o w e v e r ,  in  c o n t r a s t  to  t h e  e n o r m o u s  de- 

(1) I. I. SIIAPIRO: Rapporteur ' s  talk at  the VI In.ternational Con]erence on Gravita- 
tion and General Relativity at Copenhagett (July 1971); I.  I. SHAPIRO, M. E. ASH, R. P.  
I~GALLS, W. B. SMITII, ]). B. CAMPBELL, R. B. DYCE, R. F. JURGENS and G. H. 
PET'rEXGILL: Phys. Rec. Lett., 26, 1132 (1971); K. S. Tno]~x and C. M. WtLL: .Astro- 
phys. Jot~rn.., 163, 595 (1971); C. M. WILL: Physics Today, October Issue, p. 23 (1972) 
and references cited therein. 

639 



6 4 0  ~ .  HAYASHI 

ve lopment  of quan tum electrodynamics,  it  is not  ye t  clear how e l emen ta ry  
part icles in terac t  with the gravi ta t iona l  field. For  example,  we do not  know 

if gravi ta t ion  conserves pa r i ty  (P), charge conjugat ion (C), and t ime reversal  (T) 
in e l emen ta ry  processes of part icle  physics (2). The purpose of the  present  paper  

is to  explore the s t ruc ture  of gravi ta t ional  in teract ions  between the  pro ton  
and  the  electron.  

The reason why we do not  s imply ex t rapola te  Eins te in ' s  theory  to  the 
realm of part icle  physics is t ha t  this naive extension is wi thout  much theoret ical  
and  exper imenta l  justification. F i rs t  of all, let  us postula te  t h a t  a n y  micro- 
scopic gravi ta t ional  theories must  rever t  to Einste in 's  by  means  of the classical 
macroscopic limit.  This  ((boundary condition)) is obviously not  enough to 
select one such theory ;  there  are ye t  m a n y  possibilities. Take,  for example,  
the  ma t r ix  e lement  of the symmetr ic  conserved ene rgy-momentum tensor,  
t aken  between spin-�89 single-particle states (e.g. the  proton  or the  electron) (3.4) 

(L]) (p~[TkAO) Jpl) = ~(p2){(i/2) y(~pj)Gl(q 2) + 

+ iq~a~(~p~G2(q") + (q~(~k~--qkqj)G3(q ~') + 

+ [iq2y(kpj) + 2m q(~pr ~'a(~4(q:) -F 

+ q~a,(kp~)~sGs(q 2) + i(q~(~kj- q~:q~)y56e(q2)}u(p~), 

where p = Pl + P2, q = P2- -P l ,  and parentheses  enclosing indices denote  sym- 
metr iza t ion .  Evident ly ,  the first te rm,  mult ipl ied by  (71(q2), m a y  be derived 
f rom the  pe r tu rba t ion  expansion (a quanta l  version) of Eins te in ' s  theory ;  
(~l(q 2) is hence reasonably  t e rmed  Einstein lorm lactor by  analogy with the  Dirac 

form factor  in quan tum electrodynamics.  However ,  the converse is not  t rue ;  
the  possible exis tence of other  Paul i - type  form factors would not  conflict a t  
all wi th  bu t  would ra the r  conform to the  success of Einste in 's  theory  in classical 
gravi ta t ional  physics, because, first, t h ey  appear  together  with the  spin of 
a part icle  involved, and  second, t hey  are accompanied with the  der ivat ives  
of the  gravi ta t ional  field, which vanish in the  long-range l imit  (q--> 0). Grav- 
i ta t ional  form factors,  GA(q 2) (A = 1, 2, ..., 6), have  not  ye t  been measured 
due to  the  ex t reme  weakness of gravi ta t ion.  I t  now follows f rom these con- 
s iderat ions tha t  the  beaut i fu l  achievements  of Einstein 's  theory  in classical 

physics cannot  be t aken  as clear evidence of P,  Cand  T conservat ion in quanta l  

gravi ta t iona l  processes. What theoretical grounds may we have in predicting the 
presence or absence o] the Pauli-type /orm 1actors? 

(2) J. L:EITNER and S. OKUBO: Phys. Rev., 136, B 1542 (1964). 
(3) K. HnDA and Y. YAMAGUCHI: Progr. Theor. Phys. Suppl., p. 261 (1965), Comme- 
moration Issue for the XXX Anniversary of the Meson Theory by Dr. YUKAWA. 
(4) H.  PAGELS: Phys. Rev., 144, 1250 (1966); B. RE~N~R: Phys. Lett., 33 B, 599 (1970). 
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There  seem to be two avai lable  methods  for a n s w e r i n g t h e  quest ion we have  
posed:  

A) the  s imple-minded  me thod  is to envisage,  wi th in  the  f r amework  of 
special  re la t iv i ty ,  g rav i t a t iona l  in teract ions  which migh t  cause violat ion of 
P,  C ~nd T;  

B) the  other  one is to consider the  s t ruc ture  of gruvi tu t iona l  in teract ions  

i nva r i an t  under  a general  co-ordinate  t r ans fo rma t ion ;  some of the  interact ions 

would viola te  some of these  discrete symmet r i e s  in the  pe r tu rba t ion  expans ion  

where  the  P, C and  T opera t ions  are well defined. 

Here  we make  an  i m p o r t a n t  r e m a r k  as to choice of the  g rav i t a t iona l  variable.  

I n  the  first line of t hough t  the  l a t t e r  m a y  be t aken  as a rank-2 symmet r i c  tensor  

field, subject  to app rop r i a t e  subsidiary  condit ions to choose a massless spin-2 
part icle ,  called g rav i ton  (3.5). I n  the  me thod  B), however,  i t  should be noticed 

t h a t  fermions  differ radical ly  in the i r  real izat ion f rom bosons b y  the  influence 

of gravi ta t ion .  As is well known,  the  tensor  represen ta t ion  of the  proper  Lo- 

ren tz  group J5r m~y be ex tended  to a represen ta t ion  of the  general  co-ordinate  

t r ans fo rma t ion  group (7, bu t  the  half- integer  spin represen ta t ion  of Lt+ cannot .  

Indeed ,  the  l a t t e r  is not  conta ined in a n y  f ini te-dimensional ,  l inear  represen-  

t a t ion  of G. I n  sharp  con t ras t  wi th  the  well-defined Loren tz  spinor being 

holomorphic  to Z~+, a (, R i e m a n n  spinor ~) holomorphic  to (7 does not  exist .  Since 
the re  is ~n a b u n d a n t  l i t e ra ture  on m a t h e m a t i c s  of spinors in a l~iemann space (8), 
we here refer  to previous papers  (v) which fit the  present  purpose;  the  gray- 
irrational fiehl was there in  in t roduced into the  Dirac  Lagrang ian  as the  Yang- 

Mills fiehl wi th  16 components  bk~(x) called translation gauge ]ield associated 

wi th  (7. ]n  par t ic le  physics  the  gauge field m a y  be t~ken as more  t u n d a m e n t a l  
t h a n  the  convent ional  metr ic  tensor  which plays  the  cent ra l  role in E ins te in ' s  
classical theory  of grav i ta t ion ,  in the  sense t h a t  the  fo rmer  can describe grav- 

i t a t iona l  in teract ions  of both  in tegra l  an(l hal f - in tegral  spin par t ic le  fields, 

while the  l a t t e r  can do those of only in tegra l  spin par t ic le  fields. 

We shall l imi t  our theore t ica l  f r amework  b y  pos tu la t ing  the  following. 

Fi rs t ,  we ~ssume t h a t  the  equat ions  of mot ion  for the  p ro ton  and  the  electron 
m a y b e  derived f rom a single Lagrang ian  b y  means  of Hami l t on ' s  principle. Ob- 

viously  the  p ro ton  is not  such a s imple  e n t i t y  as m a y  be described b y  the  equa- 

(5) S. WEINBERG: Phys. Rev., 138, B 988 (1965). 
(el See, for instance, reviews on mathematics of spinors by W. L. BADE and H. JEHLE: 
Rev. Mod. Phys., 25, 714 (1953); R. PENROSE: An~, o] Phys., 10, 171 (1960); F. CAP, 
W. MAJEROTTO, W. RAAB and P. U~TEREGGEa: Fort. d. Phys., 14, 205 (1966), and 
references quoted therein. For nonlinear realization of spinors, see V. I. OGIEVETSKII 
and I. V. POLVBAmNOV: Soy. Phys. JETP, 21, 1093 (1965). 
U) K. HAYASm and T. NAKANO: Progr. Theor. Phys., 38, 491 (1967); K. HAYASHI: 
Left. N'uovo Cimer~to, 5, 529 (1972). 
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t ion  of motion.  Never theless  the  la t te r  would be a good -~pproximation a t  
least  for a l o w e n e r g y  proton,  on the  one hand,  and  higher-order  rad ia t ive  
corrections would la ter  be incorpora ted  into the  form factors,  on the  o ther  

hand.  Second, we demand  tha t :  

a) the  act ion in tegral  be invar iant  under  a general  co-ordinate t rans-  

format ion;  

b) the  act ion integral  be invar ian t  under  a global Lorentz  t r ans format ion  

(see (2.38)-(2.41) for definit ion);  

c) in teract ion Lagrangians depend l inear ly  on a t  most  the  first der ivat ive  
of a spinor field and the  gravi ta t ional  field (in other  words no higher  der ivat ives  
are included in in teract ions  than  those involved in the  corresponding free 

Lagrangians)  ; 

d) a free gravi ta t ional  Lagrangian  be of bil inear form in the  the  first 

der ivat ive  of the  gravi ta t ional  field. 

Our gravi ta t ional  field exceeds the  metr ic  tensor  in number.  In  order to 
avoid unnecessary confusion we explici t ly s ta te  t h a t  our theore t ica l  f ramework  
differs in general f rom the  so-called tetrad version of Eins te in ' s  theory  which 

assumes, ins tead of b), t h a t  (s) 

b') the  act ion in tegra l  be invar ian t  under  a local Lorentz  t r ans format ion  

(see (2.38)-(2.41)with wij(x)=--~o~i(x)).  

The  t e t r a d  version thus  removes  (as nonphysical)  six addi t ional  degrees of 
f reedom of the  te t rads  by  the  assumed local Loren tz  invariance.  The te t rads  
t he n  have exac t ly  the  same number  of components  as the  metr ic  tensor.  In  
fact  the  t e t r a d  version is equivalent  to Eins te in ' s  theory,  being in perfect  
ha r mony  with Eins te in ' s  idea t ha t  30 components  of the  metr ic  tensor,  or 
equiva len t ly  of the  te t rads ,  are in principle de termined  by  the  stress tensor  
(with 10 components)  of macroscopic bodies through Einste in 's  equat ion  of 
gravi tat ion.  The  assumption b), on the  contrary ,  does not  e l iminate  f rom the  
outset  the  six addi t ional  degrees of f reedom of the  gauge field. Whether or not 

these are physical then depends on how the proton and the electron interact with 

the gravitational field. In  this respect  it is preferable to distinguish the  gauge 

field f rom the  te t rads .  For  a par t icu lar  in terac t ion  our theory  m ay  acquire 

the  local Loren tz  invariance.  
The reasons why we take  b) ra the r  t han  b') are tht~t i) the re  is no exper-  

imenta l  evidence against  the  assumption b), nor against  b'); if) a more 
general  theoret ical  f ramework t h a n  the  t e t r a d  version wi!l be set up, where 

(s) K. HAYASHI and A. BREGMAN: Ann. o/ Phys., 75, 562 (1973); K. HAYASHI: 
General Relativity and Gravitation (Berne), 4, 1 (1973). 
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the Pauli-type form factors may be derived; and finally iii) the dynamical 
assumption inherent in Einstein's theory and the physical significance of the 
local Lorentz invarianee will be made much clearer. We emphasize that  as 
postulated earlier our theory reverts to Einstein's by the macroscopic limit, 
and that  in parallel with this limit the global Lorentz invariance, assumed at 

quantal level, will be taken over by the local .gorentz invariance prevailing in 

Einstein's theory. Since the six additional degrees of freedom of the gauge 
field may be excited by the spin of the proton and electron, it is clear that  

classical experiments can neither prove nor disprove the assumption b). The 
present experimental status will be described later on. 

This paper begins in Sect. 2 with the enumeration of all the possible grav- 
itational interactions, which amount to fifteen types. The analysis of these 
interactions leads to the ]irst conclusion that  for only one particular com- 
bination of the interactions, called Einstein's interaction~ the energy-momentum 
tensor defined as a source of gravitation becomes symmetric, and for any other 
combinations of the interactions the energy-momentum tensor becomes asym- 

metric. Our theory acquires the local Lorentz invariance in the former case 
and has only global Lorentz invariance in the latter case. The one-to-one 
correspondence is thus established among them and schematically drawn 
as follows: 

Einstein's interaction ~-~ symmetric energy-momentum tensor 

r Lorentz invarianee, 

deviation from Einstein's interaction c-~asymmetric energy-momentum tensor 

+~global Lorentz invarianee. 

In view of the first conclusion a free gravitational Lagrangian is then given 
in Sect. 3 in its most general form with four arbi trary parameters. The field 
equation of gravitation is derived from it by Hamilton's principle and a 
retarded solution to the linearized field equation is obtained. The analysis 
of the solution restricts the free parameters to only one, denoted by ~t. The 
ensuing field equation splits in the weak-field limit into the symmetric and anti- 
symmetric parts: 

(1.e) 
[] Aki = - -  2TLkjj , 

where Sk~--S~k and A~j =--A~1r are linearized parts of the translation gauge 
field, subject to the divergence-free conditions, and 22= 8~G/c 4 (Einstein's 
gravitational constant). The second conclusion is tha t  if there is any departure 
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f rom Einstein 's  interact ion,  then  there  must  be u skewsymmetric  tensor  field 
A~,~(x), or, when quantized,  a massless scalar particle,  t e rmed  for short  

(~ de~iaton ~). 
The l inearized gravi ta t ional  in teract ions  are divided into 4 classes in Sect. 4 

according to the  degree of the  reflexion symmetr ies ;  (C, P, T ) =  (~-, +,  ~-)7 
(~-~ -- ,  --),  (--, + , - - )  and (--, -- ,  ~-). This resul t  leads to the  third conclusion 
t h a t  for  Einste in 's  in terac t ion  the  Eins te in  form factor  G~(q ~') m a y  be given a 
theore t ic  basis, while for a n y  other  in teract ions  the symmetr ic  p rope r ty  of 
the  ene rgy-momentum tensor  is incompat ible  with the  nonvanishing Pauli  
form f~ctors G2(0) and Gs(0). In  other  words the  possible existence of the 
la t te r  two must  involve at least one addi t iona l  form factor  D~(q 2) (all others,  
accompanied  with m o m e n t u m  transfer ,  wil sys temat ica l ly  be given in a 
separate  p~per), which should now be included in the  ma t r ix  e lement  of an 

~symmetr ic ,  conserved ene rgy-momentum tensor  in the  form of 

(~ .3) ft(p~){(i/2)7,kPj~D~(q~)}u(P~) , 

to which a devia ton may  couple with the  s t reng th  4. ~eedless  to say, a gravi ton 
couples with the  s t rength  g to  the  symmetr ic  pa r t  (1.1); in par t icular  the  first 
t e r m  G~(q 2) gives rise to ~ewton~s law in the  long-range l imit  (q->0)  with 

G~(0) = 1. 
The second quant iza t ion  of the  skewsymmetr ic  tensor  field A~j is carried 

out  in Sect. 5. The poten t ia l  act ing between a pro ton  and an electron,  genera ted  
by  exchange of a devia ton  according to  (1.3) with D~(0) = 1, is given b y  

(1.4) v ( , - )  = ( ~  c2 / s ) (~ /47c )  �9 

�9 { ( 8 g / 3 ) ( a  p. ~ , ) ($ (r )  - (1 /r  ~) [ ( ~ .  a ' )  - ( 3 / r2 ) (a  ~" r ) ( ~ ' ,  r ) ] } .  

As ment ioned  earlier,  whether or not the postulate b) holds at the quantal level 
depends on whether or not such a deviaton exists. The best  upper  bound  on 
the  coupling cons tant  of a devia ton  to the  pro ton  or e lect ron has been given 

f rom the precision measurements  in quan tu m  electrodyna.mics (9): 

(1.5) 22/4u < 10 -5 hcl(GeV) 2 . 

The final Sect ion is devoted  to a brief  discussion of neutr inos act ing as a 

source of gravi ta t ion .  

(~) S. MIYAMOTO and T. NAXANO: Progr. Theor. Phys., 45, 295 (1971). 
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2. - S tructure  o f  g r a v i t a t i o n a l  i n t e r a c t i o n s .  

Our ~im in this Sect ion is to find all the  possible g rav i t a t iona l  in te rac t ions  

of a spin -1 field under  the  assumpt ions  s ta ted  in the  In t roduc t ion .  We pos- 

t u l a t e  a t o t a l  Lagrangiun  composed of two pa r t s  ( tensor densi t ies  will be wr i t t en  

in boldface th roughou t  this  paper) :  

(2.1) L = L '  + L~ ,  

und we will in i t ia l ly  consider only  the  ma te r i a l  Lagrang ian  L '  involving the  

g rav i t a t i ona l  in te rac t ion ,  and  do not specify, for the  m o m e n t ,  the  fo rm of 

a free g rav i t a t iona l  Lagrang ian  L o. ]n  doing so, we shall  obta in  a condi t ion 
t h a t  L a m u s t  s~tisfy. 

We start, with the  well-known Dir~c La.gra.ngian 

(2.2) 

where pa r t i a l  der iva t ives  t aken  with  respect  to x~ are denoted  b y  ,k and  the  

g a m m a - m a t r i c e s  sat isfy the  :~nticommutat ion rela t ions 

{Y~, 7~} = 2(5k~ , 

wi th  La t in  indices runn ing  f rom 1 to 4; the  four th  componen t  of xk is pure  

imag inary ,  ,i.e. x4 = ict, and  we shall  use uni ts  e h = 1. Now we d e m a n d  
t h a t  its a~tion in tegra l  be inw~riant under  ~ general  co-ordinate  t rans format ion .  
The  s imples t  solution to this p rob lem was a l ready  given in detai l  in previous 

papers  (7). Hence  we here  present  a br ief  s u m m a r y  of the leading results  obta ined  

therein .  Two steps are required for mee t ing  our demand.  Firs t ,  the ordinary  

der iva t ive  appear ing  in L D should be replaced b y  the  invaria~t  derivati-ce 
as follows: 

(2.3a) V k-~  Dk~p = bl/'(x)~.~,, 

where a pa r t i a l  der iva t ive  t aken  with  respect  to the  R iemann-space  co-ordinate 

x" (# = 0, 1, 2, 3) is denoted  b y  ,/~. The t r a n s fo rma t ion  proper t ies  of our gauge 

field bk"(x) are s imilar  to the  convent ional  te t rads .  I t  t ransforms,  on the one 

hand ,  like a con t r ava r i an t  vector  wi th  respect  to a general  co-ordinate t rans-  

foi 'm~tion as the  posit ion of the Greek index implies:  

(2.4) 6~"(~) :-  (a~Vl~x ' )b , / (x) ,  
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and,  on the  other  hand,  like a Loren tz  vector  with respect  to a Loren tz  trans- 
fo rmat ion  act ing on the  La t in  index,  

(2.5a) bk"(x) = A~, bzV(x) , 

where the  constant matr ix  A obeys the  Lorentz- invar iance  condi t ion 

(2.5b) A r A  = I .  

The reason for this dual  p roper ty  character ized b y  Greek and La t in  indices 
is easily unders tood by  not ing t ha t  W., behaves like a covar iant  vector  under  
a general  co-ordinate t ransformat ion  since a spinor field is a scalar in a l~iemann 
space, and t h a t  the bil inear form ~y~W.~ has therefore  the  mixed t rans format ion  
propert ies ,  i.e. it  behaves in the  same way as v/., under  a general  co-ordinate  

t ransformat ion  and like a Lorentz  vector  under  a Loren tz  t ransformat ion  which 
defines the  spin of a spinor field and  has nothing to  do with a general  co-ordinate 
t ransformat ion  (see (2.38)-(2.41) for the  explici t  specification). For  fu r ther  
details we refer  the  readers to our previous papers.  Secondly, the  resul tant  
Lagrangian  should be mult ipl ied by  the  de t e rminan t  b, where 

b =  l det  

and the  inverse gauge field bk,(x) is defined by  

(2.6) 
b~(x)  bk~(x ) = r , 

b~(x)  b, ,(x) ~- ( ~ .  

Thus,  we obta in  the  modified Dirac Lagrangian  

(2.3b) L x = b{�89 Dkv~ "ykV) + mv~}.  

This is the  simplest form for L' ,  and we are now going to f ind  the  more  general  
form with the  help of (2.3b). This we do by  following the analogy with the  case 
of the e lectromagnet ic  interactions.  The equat ions of mot ion derived f rom L ,  are 

(2.7) 7kDkw + 1-V~YkV2 q- m V  = O, 

where 

(2.8) V~ = (bbJ').u. 

The quadrat ic  form of these equat ions is easily obta ined by  mult iplying the 

dual  operator  

1V y,~ D,~ q- ~ ,,,7m-- m 
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from the left: 

(2.9) {DkD~ + ig~rD~Dt - -  m ~ + VkD,~ + �89 V~) + 

+ ~ Vk Vk + (i/2)a,~t(D~.~V,)} tp : 0,  

where (DkVk) means the derivative acts on V~ only, not on a spinor field, and 

(~.10) ( ~  = ( Y W ' -  y~yD/2i. 

In the presence of the minimal electromagnetic interaction, the Dirac equation 
is well known to be expressed as 

(2.11) {yk(~k-- leAk) 4- m} y~ = 0 ,  

a, nd its quadratic form becomes 

(2.~2) {IN'-~- (e/2)ak,.F,~-- m ~ ~ = O, 

where Fkz = A z . , ~ - - A ~ ,  is the electromagnetic field strength, and U' denotes 

(~,k-- ieA~)h Very interesting is to observe the parallelism between (2.9) 
and (2.12); DkD~ corresponds to ~he d'Alembertian operator in special rela- 
t ivity,  and more significantly, 

~k~ D k D~ vd = al~l C~l,.iD,~ , 

where 

(2.13) Cmk,(x) = - -  C,,k(x) = b k" bt~(b,n,.~ - -  b,., s) . 

Wc shall cM1 this quant i ty  the gravitational ]ield strength. Our terminology 
may be justified by the above correspondence, and may be given a further 
basis by noting the fact tha t  the quanti ty (2]3) behaves like a scalar under 
,~ general co-ordin.lte transformation. Our gravitational-field strength is, how- 
ever, reducible under ~ Lorentz transformation, contrary to the electromag- 
netic field strength which belongs to a direct sum of the Lorentz-group repre- 

sentations (1, 0) § (0, 1) and hence irreducible under a space reflexion. 

To facilitate the ~rgument, we decompose ore' field strength into the irre- 
ducible components with respect to a Lorentz transformation plus a space 
reflexion. This can be done with the help of the standard technique of Young 
tableau; we obt~dn the following three irreducible tensors. 
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1) The tensor belonging to the (~, �89 + (1  ~) representations 

----- --  ~kl  Vm, (2.14) ~klm(X ) �89 - Clkm ) _[_l((~mk g .~_ (~ml Vk)  1 

with the following symmetry properties: 

(2.15a) 
T ~ ( x )  = T ~ . , ( x )  , 

T ~ , . ( x )  + T~,~(x)  + T . , ~ ( x )  = O. 

Further, its trace vanishes, and hence it has only 16 components: 

(2.15b) : t~ ,~(x)  = o = T,~,~(x)  . 

2) The vector of the (�89 �89 representation 

(2.16) V~(x) = Cm.~k(z) = (bbk") ~ .  

3) The axi,~l vector of the (�89 �89 representation 

(2.17) A~(x )  = (i/6) s.,,~. C, . , . (x) ,  

where sk~ is the 4-dimensional Levi-Civita tensor; s1~34: 1. 
Thus, the field strength is now expressed in terms of these irreducible 

components 

(2.1s) Ck~,~(x) 4- T ~ ~ V.~1 + iek~,~,A~, , = 3 k[lm] ~-- 3 k[1 

where square brackets enclosing indices indicate antisymmetrization. 
With the field strength which is Lorentz tensor and invariant under ~ gen- 

eral co-ordin.~te transformation, we are ready to construct ~ny kinds of the 
gr~vitation:~l interactions invariant under arbitrary co-ordinate transform.~tions. 
We enumerate ~ few examples. Any gravitational interaction of a spin -1 field 
takes the form of a product of the m~teri~l p~rt and the gravitatiom~l part. 
As for the lntter, derivatives of the field strength could be derived by applying 
the invariant derivative (2.3a) successively to the field strength, e.g. 

(2.19) 
D~ Ckz~ = bi ~ ~, Ck~,~ 

DiD~Ck~m , 

and so forth, where the former contains the second derivatives of the grav- 
itational field, while the latter the third derivatives. One mayenvisage a more 
complex form, e.g. 

(2.20) Ck~ D~ C~q~ 
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which involves the  first de r iva t ives  of the  gr~vi ta t iona l  field quadrat ical ly .  
:For the  ma te r i a l  pa r t ,  we can also cons t ruc t  a r b i t r a r y  kinds  of the  bi l inear  

fo rm in the  spinor field, which :~re inva r i an t  under  genera l  co-ordin~te tr~ms- 
format ions ,  b y  mak ing  use of the  inv:,.riant der ivat ives ,  e.g. 

(2.21a) 

(2.21b) 

~fFD i y - -  D i~o" F V , 

~FD~D~p - -  D ~ D ~ , . F V  , 

and  so on, where F denotes  a n y  set  of the  Dirac  mat r ices  1, iys, iy~, iFky5, lake, 

ak~;~5 with  Ys--yly2y3y4. 
Since there  are too m~my possibili tes in fo rming  the  inva r i an t  gravit '~t ional  

inter~et ions,  as seen above,  it is useful  to classify t h e m  into classes according 
to r~nk ~ of the  der iva t ives  appl ied  to the  g rav i t a t iona l  field. Each  such class 

m a y  fu r the r  be classified according to r ank  m of the  der iva t ives  ac t ing  on the  

spinor fiehi. ~ o w  the  th i rd  a s sumpt ion  specified in the  In t roduc t ion  enor- 

mous ly  res t r ic ts  the  possible forms of the  gravita.tion~l in teract ion.  I t  requires  

t h a t  the  r a n k  of the  der iva t ives  appear ing  in the  in teract ion Lagr~mgi:ms be not  

higher t h a n  theft appear ing  in the  free mate r i a l  a~nd grav i t~ t iona l  Lagrangians ,  

and  t h a t  the  der iva t ives  of the  spinor and  grav i ta t iong l  fields should appea r  

l inear ly  in the  inter~ct ion Lt~grangian, respect ively,  if they  are present  there .  

:For the  m~ter ia l  pa r t ,  i t  then  follows f rom the Dirac Lagrangian  t h a t  m can 
only  t ake  the  values 0 and  1. For  the  free g rav i t a t iona l  pa r t ,  q~ can also t ake  

the  s~me v:~lues as m, because we c:~n const ruct ,  as we shall do in the  following 

Section,  the  mos t  general  fo rm of the  free grt~vitational Lagra.ngian in t e r m s  

of our gravi tat ional-f ield s t rengths .  He re  we note  th;~t this  general  fo rm in- 
volves the  Eins te in ' s  free g rav i t a t iona l  L~lgrangian as a special case, and  t h a t  
the  a p p a r e n t  cont radic t ion  t h a t  the  l a t t e r  Lagrang ian  involves the  second de- 
r iva t ives  can be resolved b y  observing t h a t  these second der iva t ives  appea r  only  

in the  fo rm of a four-divergence when expressed in t e rms  of the  gauge fiehl 

b~J'(x). Thus we are  led to the  following classes of the  g rav i t a t iona l  interact ions : 

A) minima.1 in te rac t ion  (n --  0): 

only the  case with m = 1 is al lowed;  

B) nonmin ima l  in terac t ions  (n = 1): 

B1) m = 0 , 

B2) m = I .  

The class A) consists of only the  minim~d-coupling Lagrang ian  Lu given b y  

eq. (2.3b). No other  couplings are  allowed in A);  one could ye t  p resume 

~L M + ~L~i, where  
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:However, for the  choice ~2_  ~.~ = :1, the  resu l tan t  equat ions of mot ion reduce, 
in the  special-relativistic limit,  to  the  usual Dirac equat ion with a different  

representa t ion  of the  gamma-matr ices ;  otherwise these equat ions do not.  
Anyway,  such a Lagrangian  can be ruled out. Before wri t ing expl ic i t ly  the 

gravi ta t ional  in teract ions  of the  class B), it is convenient  to prepare  some 
nota t ion  for bi l inear forms of the  spinor field. Now we use the  following no- 
t a t ions  for the  Hermi t i an  bil inear forms coupled to the  field s t rength ,  or more 
precisely its irreducible components  which are of odd-rank Loren tz  tensors.  
All the  gamma-matr ices  are t aken  to  be Hermi t i an  th roughout  this paper.  
:For nonder iva t ive  type  

(2.22a) Jk(x)  = i~fyj: ~fl , 

(2.22b) j5 (x)  : i~y5y~ yJ , 

and  four der iva t lve  type  

(2.23a) 

(2.23b) 

(2.23c) 

J~.,(x) = (i/2)(f~a~ D~ ~ -  ~ , ~  . ~  ~) , 

5 X g~z.~( ) = �89  DmCf'(~k~s Y ~) , 

I~(x) -~ (i/2)(~Dky~--DkCfl 'yO, I f (x )  ~-- � 8 9  ~ f - - D k ~ ' y 5  YO. 

We note  again tha t  all these bil inear forms are Loren tz  tensors invar iant  under  
general  co-ordinate  t ransformat ion .  

Now, for the class B1) we have the  following four types:  

L1 = g l b V ~ J k ,  

L 2 ---- g2bV~J~ , 

(2.24) L3 ~- g3bAkJk , 

L4 ---- g4 bAnJO. 

For  the  class B2) we have two in terac t ions  for the  tensor  pa r t  

L~ ~- g5 b T ~ J k z . ~  , 

(2.25) L~ ---- g6 b T ~ J ~ m  

and eight  in teract ions  for the  vector  and  axial  vec tor  field s t rengths  

(2.26) 

L7 : g7 b Vk Jk,~m , 

L~ : g~ b V kJ~mm, 

L u  : gll b Vk [k, 

L12 ---- gl2 b Vk I f ,  

L9 : g9 bAkJ~mm , 

Llo ~-- glo bAkJ~r~m. 

L13 = gl2 bAk Ik , 

L14 = g14 bAk I f ,  
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All the  coupling constants  are real  numbers.  I t  should be noticed here tha t  
any  pe rmuta t ions  of Lat in  indices ill (2.25) do not  give rise to an y  new inter- 
act ions owing to the  symmetr ies  exhibi ted in (2A5a) and in the  defn i t ions  
of the  bi]inear forms (2.2:~a) and (2.23b). This is also the case for the interac- 
t ions (2.26). As for a two-component  massless neutr ino,  there  are only 3 La- 
gr~ngians, L~, L ~  L,.,, and L ~  L4, invar ian t  under  the  (( chiral project ion ~) 

y~--> {(1 • y5)/2)y~ ( ~ m e a n s  equivalence).  We can now write the  most  general  
~orm of the  gravi tat ionM-interact ion Lagrangian in the form L ' =  L M+ L ~ ,  
where the  index M means not  only the basic mater ia l  p a r t  but  also the 

minimM interac t ion  par t ,  and the indices N M  refer  to the nonminimal  
in terac t ions  defined above. 

We have so far  not touched upon the connect ion between the gravi ta t ional  
in te rac t ion  implied by  Eins te in ' s  theory  and ours listed above. Although his 
theory  cannot  d i rec t ly  be applied to a system involving a spin-�89 particle,  we 
sha l l t r ansc r ibe  it into our language. As is well known, Einste in 's  prescrip- 
t ion to introduce the gr~vitat ionM interac t ion  amounts  to  replacing the or- 
d inary  deriwtt ive appear ing in a mater ia l  Lagrangian for an integer-spin field 
by  the  eovar iant  der iva t ive  with respect  to the Christoffel symbol/~/'a~, which 

is denoted  by  u semicolon and usual ly referred to as the m i n i m a l  gravi ta t ional  
in terac t ion  in the l i tera ture .  However ,  it is not minimal  but  n o n m i n i m a l  in our 
f ramework,  as we shall see in the  following. Firs t ,  let r be an a rb i t r a ry  
con t ravar ian t  vector  fieM in a Riemann space, to which we apply  this 
eov~riant  der iva t ive :  

(2.27a) r  = r  + F ~ r  ~ . 

Secondly, as of ten adopted  in the l i tera ture ,  we use the  familiar  relat ion 
between the metr ic  tensor  g,,  and our gauge field 

(2.28) 
{ gt,,(x) -~ bk~,(x ) b~v(x), 

g'V(x) -~ bJ'(x) b~V(x) . 

I f  we rewrite the Christoffel symbol by  means of this relat ion,  and mul t ip ly  
bo th  sides of (2.27a) by  b~ab,,u, we find 

(2.27b) bkab r  : D~:r zkr 

where D~ Mready appeared  in (2.3a) and (2.19), and  

(2.29) 
era ~-- bm, r , 

Dmlk 1 ~-- ~(C,, , . , --  Cl.,,~ C~..) . 
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This formula  can fu r the r  be rewr i t ten ,  in te rms of the  spin m a t r i x  ~ for k l  

vector  field r its ma t r ix  e lements  are 

(2.30a) ( s l , ) ~ .  = - i(o~m ~ , ~ -  ~ , ~ ) .  

I t  is easy  to show tha t  this ma t r ix  is a represen ta t ion  of the  in te rna l  Loren tz  
group generators  and  hence satisfies the  Lorentz-group commuta t ion  relat ions 

(2.30b) 

Thus,  denot ing  the  le f t -hand side of (2.27b) by  ~kCm, we obta in  from (2.27b) 

(2.27c) ~kr = Dkr  (i/2)D,jk(S~j),..r , 

or equivalent ly ,  bu t  more concisely, 

(2.27d) 2kr = Dkr162 

where Cm is wr i t t en  as a column vector  r on which the  spin m a t r i x  acts. In  
passing we note  tha t  the  second t e rm  on the  r ight -hand side of (2.27d) vanishes 
for a par t icu lar  affine connexion,  FP~ : b,~bk~.z , used in (2.27a). lqow we are 
r eady  to apply  the  Eins te in ' s  gravi ta t ional  coupling to a spinor field by  using 
the  form (2.27d); the  l a t t e r  form can be algebraically cont inued to  the case of 
a spin -1 field by  modifying the  spin ma t r ix  only. Thus we have 

(2 .31)  
{ ~ k v / :  Dk~p-- (il2)DijkS~p , 

~k ~ = Dk ~ § (i/2)D,,o ~ S , ,  

where the  spin ma t r ix  for a spinor field is well known:  

(2.32) S ,  : �89 

I f  we inser t  Einstein's derivative (2.31) into the  free Dirac Lagrangian  (2.2), 

we obta in  

(2.33) L.-- �88 LM~- L,, with g 4 = - - ~ :  

We shall call this the Einstein gravitational interaction .Lagrangian. Here  we 
note  t h a t  the  extension f rom (2.27d) to  (2.31) is of course not  unique.  ~ever -  
theless,  we say t ha t  the  l a t t e r  corresponds to the  Eins te in  gravi ta t ional  coup- 
ling in view of the  following facts.  The ene rgy-momentum tensor  defined as 

the  source of gravi ta t ion  is defined by  

(2 .34)  T ~  = - (~L' /~b~, )  b~, , 
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where (8/8b~,) s tands for the variat ional  derivative with respect to b~. For  
L '  L~, it  follows immedia te ly  thal  the energy-momentum tensor is not 
symmetr ic  in this case: 

(2.35) T ~ = (b/2)(v~v~/)~. y~ --  Dk v~. ),t y~) --  (5~ Ln k l  

In the special rela.tivistic l imit  specified by b, ~'--> 6J', this energy-momentum 
tensor  reduces to the well-known canonical energy-momentum tensor which 
is obviously not  symmetr ic :  

(2.36a) T M ~ T C 1 - 

(2.36b) = ( ~ L , / ~ ) w . ,  + ~.,(aL~/@) - -  a , , L . .  

On the other hand,  when we choose the Lagrangian (2.33) as L',  we can obtain 
the symmetr ic  energy-momentum tensor in this case and observe the following 
tr~nsi t ion at  the special relativistic l imit:  

(2.37) 3 ( L ~ - -  (3b/4)A~J~)~ b~,--> = o:(Tk~ § ,~), 
1 

_ Tk ~ 1 c Tc 
J 

where T~z coincides with :Belinfante's symmetric  energy-momentum tensor 
for a spinor field. This calcul~tion is rather  lengthy,  but  was already given 
in detai l  in our previous p~pers (~), hence we here quoted only the result. We 
m a y  now bet ter  unders tand  the role pl~yed by the axial vector coupling A k J  ~ 
in Einstein 's  gravitatiomrl interi~ction; it is, -tmong others, just  to coun- 
teri~ct the i tnt isymmetric p~rt of T~, thus rendering the expression (2.37) 
symmetric .  The proof of such a, c~ncellation by calculating explicitly the 
energy-momentum tensor is, however, complicated, because the equations of 
motion for ~ spinor fiehl must  be used repeatedly to reduce the complic~ted 
expression for the energy-momentum tensor. 

We sh~ll now supply ~ more powerful un(l simpler method to prove the 
symmet ry  proper ty  of the energy-momentum tensor in the following. With  
this  method we shall obtain one of the most significant results derived in this 
paper.  First ,  our Lagrangian L'  is, by construction, invariant  under an internal 
Lorentz  tr~tnsformation, or equivalent ly its infinitesimal form specified by 

(2.38) xl'--> Y,  =_ x ~ , 

(2.39) bk"(x) ~ ~k"(x) = b~"(x) + (il2)o,.(,~j)~, b,"(x),  

(2.4O) W(x)->-~'(x)  = ~(x)  + ( i / 2 ) o ) i j S , ~ ( x ) ,  

(2.41) ~'~J =--~'~Ji (infinitesimal constant  parameters),  
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with the spin matrices S~ and S ,  as given by (2.30a) and (2.32), respectively; 
the transformation (2.39) was already mentioned in (2.5a). I~ we insert these 
transformations into the invariance conditions of L' (see (2.22) of reL (:)), we 
can derive the following relation, using the equations of motion for a spinor field: 

(2.42) T ~ -  T~ = (S'~ ~- ~:~S'~)., , 

where the energy-momentum tensor T~ is of course given by (2.34), and the 
spin angular-momentum tensor consists of two parts: 

(2.43a) 

(2.44a) 

S '~  = (~L'l~y~.,) i S k ~  , 

A simple calculation yields for L ' =  L~, 

(2.43b) 

where we have used the anticommutation relation 

{r~, a~} = ( 2 / i ) s k ~ m m .  

Clearly, this relation (2.42) may be regarded as a simple generalization of the  
Tetrode formula in special relativity (~o) 

Here T~, is the canonical energy-momentum tensor (2.36) and S ~  the canonical 
spin angular-momentumten sor 

(2.46) 

Now it is quite easy to show the expression inside parentheses on the right- 
hand side of (2.42) vanishes for the Einstein's gravitational interaction Lagran- 
gian. The fact that  the equation of motion for a spinor field is already taken 
into account in the relation (2.42) enormously simplifies the argument by  which 
it is decided whether the energy-momentum tensor defined by  (2.34) is sym- 
metric or not. The expression (2.44a) can further be simplified by  noting that  
L ~  is a functional of the gravitational field strength Ckz~: 

(2.44b) 
[ ~ L ~  ~ L ~  

(I0) H. TV.TROD~: Zeits. Phys., 48, 52 (1928); 49, 858 (1928). 
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I t  follows immediately from this formula that  (2.44b) does not vanish for 
L~v.~t~ L1, L2, Ls, L6, L7 and L8, and that  the totally a~ttisymmetric contri- 
butions arise ]rom L3, L4, Lg, and L~o, which contain only the axial vector part of 
the gravitational field strength; we here write them down, by suppressing indices 
N M for the convenience of typography: 

(2.47) 

S,~k~ = _ (2iglo/3) bekz,~,,J5z 

for L3, 

for L4, 

for L9, 

for L,o. 

After having investigated all the gravitational interactions, we are now led 

to the following conclusion: All the gravitational interactions enumerated in 
this Section, except ]or Einstein's gravitational interaction (2.33), give rise to 
an asymmetric energy-momentum tensor as the source o] gravitation. 

The above conclusion imposes a serious condition on a free gravitational 
Lagrangian La, namely L,  should be so chosen that  its variational derivative 
with respect to bk,(x), multiplied by b~#(x), is not symmetric when some gray- 

itatiomd interactions other than the Einstein gravitational interaction are 

present. Hence in this case L e cannot be the Riemann scalar (expressed in 
terms of bk,(x) by (2.28)). In other words, we would have to modify drastically 
Einstein's theory of gravitation at the very root. 

We close this Section by remarking that  any deviations from the Einstein 
gravitational interaction must inevitably lead us to a more general form for 
the free gravitational Lagrangian than the conventional Einstein one, i.e. 
the Riemann scalar. 

3. - Structure of the free gravitational Lagrangian. 

As was shown in the preceding Section, we have to construct a more general 
free gravitational Lagrangian than Einstein's when we consider those 
gravitational interactions other than Einstein's as given by (2.33). In this 
Section we shall construct the most general form for L ,  under the four as- 
sumptions specified in the Introduction. Particularly, in view of the third 
assumption demanding that  our L,  should consist of at most first derivatives 

of the gauge fiehl bk'(x), we shall further postulate that  L~ should depend upon 
derivatives of the gravitational field quadratically, if these are present. With 

these assumptions in mind, we are now led to the most general form for a free 
gr~vitational Lagrangian with six arbitrary coefficients 

(3.1) L:b(~T~z . , -~  flV~-~ yA~ ~-(~ § ~]VT~A,~ ~-i~sI~,~,,Tj~T~..,) , 
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where the field s t rength and its irreducible components were ~dl given in Sect. 2. 
We notice here tha t  this Lagrangian is obviously invariant  under  the internal  
Lorentz  t ransformat ion  defined by (2.38)-(2.41). The last member  in (3.1) can 
be absorbed into the fifth te rm by vir tue of ident i ty  

(a)(bbm~Am) ~ = b(V,r  (2i/9)ek~m~TmTj,,n), 

hence we shall drop it hereafter.  To permit  ready comparison with the cele- 
brated Einstein 's  theory  of gravi tat ion,  we put  our Lagrangian into the more 
convenient  form (see Appendix A for derivation) 

(3.2) L e : LE/2~ 2 + b{(~ + fl) V~-- (9/422)A~ + ~V~,Ak} - -  (bb~ ~' Vm).~,/~"-. 

Here we denote the Einstein 's  gravi ta t ional  Lagrangian by LE, i.e. L E = ~ / ~ g .  
�9 (R + 22), where R is of course the Riemann scalar now expressed in terms 
of our gravi ta t ional  variable b~t'(x) and  2 the cosmological constant  adjusted 
as 2 - -b /3~ .  (See Appendix A for the explicit form of R.) u is Einstein 's  
gravi ta t iomd constant ,  related to one of our parameters as 

{ 1/~:' = 3 ~ ,  

(3.3) ~ /4~  : 2G/c* : ] .34.10-3Shc/(GeV): , 

where G denotes 51ewton~s gravi ta t ional  constant ,  and 

(3.4) ]/2o. = a _ 4~/9. 

Variat ion of a to~al Lagrangian (2.1) with respect to b,~,(x) gives rise to the 
field equations,  upon mul t ip lying these by b,~,(x): 

(3 .5)  G~z - -  ~2Bk~ = - -  ~ T k t ,  

where the first member on the left  is the familiar Einstein 's  tensor now wri t ten  
in terms of our gravi ta t ional  field b~J'(x) 

(3.6) G~ = - - l ( ~ L E / ~ b k ~ ) b ~ =  b (Rk~- - l  t ~ R - - ( ~ 2 )  ---- G ~ .  

The explicit form for the contracted curvature  tensor R~,~ is given in Appendix A. 
The source of gravi ta t ion T~ was a l ready defined by (2.34), and  

(�89 C.,,,~F,,,,,,} + 6.~,L'~, (3.7) B~, = --  (bin" F~,m).v + - -  

where L'  a s tands for the second te rm of (3.2), enclosed by curly brackets,  and 

(3.8) F ~  = 4b{(~ + fl) ~kt~ V~ + (9/42 a) i s ~ , ~ A , / 6  + ( V / 2 ) ( t ~ t , A ~ - - ( i / 6 ) ~  V~)}. 
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As is clear from these fiehl equations, the energy-momentum tensor can become 
symmetric if and only if the free. parameters are subject to the following 

conditions: 

( 3 . 9 )  ~ + fl  = 0 , 

(3.10) ~- -  47/9 = 0,  

(3.11) ~/= 0. 

In  other words, when Tkz has ~ skewsymmetric part,  the free parameters cannot 
take these special wdues given by (3.9)-(3.11). As will be shown in the following 

Section, P, C and/or T violating gr~vitational interactions may be obtained, 
in the weak fiehl approximation, from the nonminimal gr~vitational interac- 
tions of the class B) defined in Sect. 2. Hence, one should add the second member 
in (3.2) to the Einstein's free gravitational Lao'rangian if one wishes to discuss 
the violation of any of P, C and T. 

-Now we are going to investigate to what extent  the arbitr~i'y p:~rameters 
can be chosen beyond the special values (3.9)-(3.11), by considering some 
physical (1boundary ~) conditions. This we do first by using the linear ap- 

proxim~tion 

(3.12a) b J ' ( x )  -+ 5/'~ + a~"(x), b~,,(x) -+ 6k, , + a~.,,(x), 

where the linearize(l fields ak"(x) and a~..,(x) are related to each other by (2.6), i .e .  

(3.12b) a~m(x) - -  - -  amk(x) . 

We note that  distinction between Greek and Latin indices is no longer neces- 
sary in the line~r approximation. We also note in passing that  the determinant 
b becomes 1 § a~m(x)  in the weak-field approxim:~tion. We then split the 
fieht equations into the symmetric and antisymmetric par~s 

(3.13) GI~., - -  ~2 B(I,.,~ = - -  ~2 T(kl) , 

( 3 . 1 4 a )  Btktj  = T~l, l j ,  

where 

(3.14b) B~.~j ~ - - ( b . / ' F ~ , , ~ ) ~ , ,  

because the second term of (3.7), enclosed by curly brackets, is a symmetric 
tensor. Applying the linear ;~pproximation to (3.13), we obtain 

(3.]5) E5 ~'~ + ~r + f l ) ( ? ~ ? ~ - - b ~ ) S  ..... + ( i /3 )~2•  = --~T(~z), 

4 3  - I I  N u o v o  C i m e M o  A .  
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where we suppressed the  cosmological  t e r m  mul t ip l ied  b y  ~, ~ n d  we used the  
following nota t ions  and  the  divergence-free condit ions:  [] is the  d ' A l e m b e r t i a n  

opera to r  and  

1 (3.16) ~Skz ---- a(kz)- ~(~kza~m, 

(3.17) ~lSk~ = 0 . 

Likewise,  we obta in  f rom (3.14) 

(3.18) [] A k z -  (r ~iAmn = - -  ~T[#:~] , 

where we adop ted  the  no ta t ion  

(3.19) ~Akl = aEk,l , 

and  nlso the  divergence-free condi t ion 

(3.20) ~Ak~ = 0 .  

At  this  point  we emphas ize  t h a t  the re  is no a priori reason to iden t i fy  2 wi th  

E ins te in ' s  g rav i t a t iona l  cons tant ,  hence we shall  leave it  as a free pa ra -  
mete r ,  a ssuming  it so small  t h a t  the  l inear  a p p r o x i m a t i o n  m a y  hohl for a skew- 

symmet r i c  field (this a s sumpt ion  will be verified in Sect. 5). The  pa r i ty -v io l a t ing  
t e r m  appears  in bo th  sets of field equat ions ,  (3.15) and  (3.18)~ thus  render ing  
t h e m  coupled equat ions,  while the  vec tor  p a r t  V~ and  the  ax ia l  vec tor  p a r t  A~ 

cont r ibutes  to the  symmet r i c  and  a n t i s y m m e t r i c  pa r t s  of the  field equat ions,  

respect ively.  I f  we t ake  the  t r ace  of (3.15), we get  

(3.21) D S ..... = u(~lf l)T ..... , 

which fu r the r  simplifies (3.15) as 

(3.22) [~Skt + z2(a + fl) ~l~ ~L Smm + i~s, , ,~j(k  ~,)~jA,~/3 = 

I t  is wor th  not ing tha t ,  for the  s ta t ic  g rav i t a t i ona l  source to which only the  k = 

= 1 = l components  can cont r ibu te ,  (3.22) becomes identical  with the  Poisson 

equat ions  except  for the  addi t iona l  fac tor  dependen t  on the  a r b i t r a r y  p a r a m e t e r s  

(3.23) ASoo(x) = - -  z - 3 f l -  Too(X), 

where Soo = - -  344 and  Too = - -  T~.  
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Apar t  f rom the  l inear approximat ion,  one can de te rmine  the a rb i t r a ry  
parameters  involved in Le by  comparing a solution of our field equat ions  with 

the  exact  solution to Eins te in ' s  equat ion of gravi ta t ion.  I t  was shown in 
our previous paper  (7) t ha t  one has to set the  par t icu lar  re la t ion (3.9) for the  
parameters  so as to reach the well-known Schwarzschild's solution of the static,  
spherically symmetr ic  gravi ta t ional  field. I t  was also pointed out there  t h a t  

it  is not  necessary to take  the special values (3.10) and (3.11) for t ha t  purpose,  
because all the  components  of the  axial  vector  field Ak(x) vanish in the case of 

the stat ic and spherically symmetr ic  gravi ta t ional  field. 
However ,  we can discuss the  physic~d meaning of ~ from ~ different theore t -  

ical side. Recen t ly  the  re ta rded  solutions to (3.18) and (3.22) have been given 
in thei r  most  general  form by SETO (~). Firs t ,  for ~] = 0 the  re ta rded  solution 
to (3.18) is well known;  it is given by  the formula (B.3) in Appendix B, where 
8k~, T(kz)and z are now replaced by  A~z, T,k~j and 2, respectively.  In this case 
the  re ta rded  solution to (3.22) was :drea(ly given in a previous le t ter  (~-") and 
hence we quote  the  resul t  obta ined there in :  For  ~ + f i t 0  the  Sk~-fiehl prop- 
agates  not  only on the  l ight-cone bu t  also inside the  light-cone, thus  in con- 
flict with Huygens '  principle.  Obviously, for a + fl = 0 the  solution is the stan- 
dard one given by  (B.3). Second, for ~ ~ 0, the re ta rded  solution to (3.18) 

takes the  form of 

(3.18a) Ak~(x) = 2-~ [1 + )]~ O(Y")b(Y2)d4Y" 
~t ' /  J 

�9 (T~kj~(x--y) § (~12/3)~tk~,(x - y)},  

where ~tk,~= 8k,~Ttm,~/2i. The divergence-free condit ion (3.20) imposes the  
condit ion on the  ene rgy-momentum tensor  

(3.18b) ~j(T,~j~-~ (~],~2/3)T[k~]} : 0 .  

The solution (3.18a), together  with the  condit ion (3.18b), is inser ted into (3.22) 
only to  give the  complete  r e t a rded  solution (~j = c~/~x~) 

(3.22a) S~(x) : ~ ~O(y ~ 6(y 2) T(~)(x - -  y)d4y -~ 

1" 0 o § ~ J (y)  5(y")O(z ~ 5(z ~) d,yd,z{  ~, ~,~ T~,,~,(x - -  y - -  z) § ~ ~,~ T~,,,,} + 

§ ~) 

if } + ~ O(y") ~(y~) 0(, ~ d(z ~) ~. ~ T,o ,~(x  - -  y - -  z)  d ~ y  d~z  . 

(11) The author is indebted to Dr. N. S):'ro for illuminating discussions of the solution 
in private communications when this work appeared in the form of preprint. 
(lz) K. HAYAS~II: Lett. Nuovo Cimento, 5, 739 (1972). 
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I f  the  ene rgy-momentum tensor  is conserved,  ~kTkj ~ 0, t hen  the  divergence- 
free condit ion (3.17) is satisfied. In  this case the  Sk/field propagates  inside the  
l ight-cone even for ~ + f l - - 0 ,  in conflict wi th  Huygens '  principle.  The  

t rouble  lies in the  second t e rm  of (3.22a), where a skewsymmetr ic  pa r t  of the 

ene rgy-momentum tensor  acts as a source of the  Ski-field. Ev iden t ly ,  this 

infamous t e r m  vanishes for U = 0, a l though U does not  appear  there in  ex- 

plicit ly.  
To sum up, we shall take ~] = 0 and  ~ + fl = 0 in order to re ta in  t tuygens '  

principle on the  one hand  and Schwarzschild's solution on the  other  hand.  
We ma.ke a short  rem~rk here.  I f  we take  free Dirac part icles (subject to  the  
Dirac Lagrangian (2.2)) as a source of gravi ta t ion,  then  the  ene rgy-momentum 
tensor  is given by  the  canonical  one (2.36), whose skewsymmetr ic  pa r t  is con- 
served, ~TE~r = 0, bu t  its dual  is not,  ~J ~tT.,~ =/:0. Thus,  (3.18b) requires  ~/= 0. 

Consequently,  we are lef t  with a single free pa ramete r  ~, which cannot  be 
zero when the  ene rgy -momen tum tensor  of m a t t e r  fields is not  symmetr ic .  
Final ly,  we obtain the  following two sets of the field equat ions  in the weak- 

field l imit:  

(3.24) [] Sk~ = - -  zT(kj), 

(3.25) E] A~-r = - -  )~Tr , 

where tile l inearized field variables are bo th  subject  to the  divergence-free 
condit ion,  (3.17) and  (3.20). Needless to  say, the  first set is the indispensable 
ingredient  of any  reasonable gravi ta t iona l  theory  which must  be able to ac- 

count  for Newton 's  law of gravi ta t ion .  
The  conclusion we draw is therefore  the  following. When  the  energy-  

m o m e n t u m  tensor  defined as ~ source of g rav i ta t ion  is not  symmetr ic ,  the  
field equat ions  for grav i ta t ion  must  inevi tab ly  be supplemented,  for consistency,  
by  (3.14) with the  condit ions (3.9) and (3.11). In  the  weak field l imit ,  the  
famil iar  field equat ions for the  l inearized gravi ta t iona l  field Ski, (3.24), mus t  
inevi tably,  for consistency, be accompanied b y  a new set of the  field equat ions 

(3.25) for a s k e w s y m m e t r i c  tensor  / ie ld  A k j ,  whose source is an  an t i symmet r i c  
pa r t  of the  ene rgy-momentum tensor,  re la ted  to  the  spin of the source part icles 

involved by  the  Te t rode  formula,  as seen b y  (2.45). Such n field, however,  has 

not  ye t  been observed.  

4. - Classification of  gravitational interactions by P, C and T. 

In  this  Sect ion we shall discuss the  discrete symmetr ies  such as pa r i ty  (P), 
charge conjugat ion (C) aml t ime reversal  (T) in the  weak-field l imit  where we 

can apply  the  usual  quan tum field theory .  
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First ,  with the  help of the weak-field approximat ion ,  we obtain the line- 

arized field s t rength  

(4.~) 

and the reby  its irreducible par ts  with the correct  choice of the l inearized field 

variables,  (3.16) and  (3.19) 

(4.2)  1 Vk(x)  = - -  z ~Smm.,~, 

(4.3) A~(x)  = ~(i/3) s ~ , , ~A ,  . . . .  

Inser t ing  these expressions into L~, ..., L4 and L: ,  ..., L~o, we get the  explici t  
forms for these gravi ta t ional  interact ions in the  l inear approximat ion.  For  
the  irreducible tensor  Tk~(x), on the  other  hand, it  has a ra ther  complicated 

expression, bu t  can be siml)lified when COUl)led to the  bil inear forms Jk ~  or 
J ~  which are an t i symmet r ic  with respect  to the first pair  of indices: 

(4.4) T m k t J k l m  ~ 3 ~ Smk.l J k l m -  ~A~.mJk(~m) - VkJk,~m 

(4.5)  S 5 A 5 V 5 . Tm~J~,, ~ = z~ , , ,~ .Jkl . , -  ~ k~,., Jk(z . , ) -  ~Jk,~m 

Thus, we now find the l inearized forms for all the  gravi ta t ional  interact ions 
enumera t ed  in Sect. 2, which will not  be wr i t ten  in boldface bu t  in usual capitM 
letters.  In part icular ,  the  minimal  gravi ta t ional  in terac t ion  becomes 

(4.6) L,, -> Z~ - -  akz T~,  

where T~z is the nonsymmetric  canonical energy-momentum tensor  defined 
by  (2.36), while the Einste in  gravi ta t ional  in teract ion is l inearized as 

(4.7) 6~ B L : , - -  ~ bAkJ  ~ -+ L~ - -  (~)Tk~ , 

where T~kt is Bel infante 's  symmetric ene rgy-momentum tensor  given by  the  

second line of (2.37) for "~ spinor fiehi. As has of ten been remarked  in previous 
Sections, ~ skewsymmetr ic  field would couple to a spinor field if the grav- 
i ta t ional  in terac t ion  deviates  f rom Einstein 's  (4.7). 

:Now we are going to decide whether  or not  these interact ions  conserve P,  
C and/or  T. For  this purpose,  we shall hencefor th  take  the  l inearized fields 

Skdx) and  Ak~(x) as quant ized  free He rmi t i an  fields represent ing  neutra l  
massless spin-2 and  -0 particles,  respectively.  Firs t ,  we m a y  fix the  charge- 
conjugat ion pqr i ty  of these fields as + ,  in view of the fac t  t h a t  the  gravi ta t ional  
coupling w~s int roduced in the symmetr ic  way for the  electron and its anti-  
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particle, as seen from the Dirac equation(2.7) and its adjoint: 

{ ~Sk~(x)~-l= + Sk~(x), 

(4.8) ~ A * * ( x ) ~ - '  = + Akt(x), 

where ~ is a uni tary operator for charge conjugation. Then, the gravitational 
interactions given by (4.6) and (4.7) obviously conserve C, because the canonical 
energy-momentum tensor (2.36) has the charge-conjugation parity + .  ~ext ,  
we postulate the time-reversal property under Wigner's time inversion as 

{ Sk,(x, t) -+ eke, Skz(x,--t),  

(4.9) Ak~( x ,  t) ~ eke~A~( x,  - - t )  , 

where sk = ( - - - - - -  § Finally, for the parity operation, we have 

{ Sk~(x, t) -+s~s~ S ~ ( - - x ,  t) ,  

(4.10) Ak~( x ,  t) ---> ~k s, Ak~(-- x ,  t ) ,  

which guarantee the invarianee of the commutation rules and the gravitational 
Lagrangians (4.6) and (4.7) under P. With these transformation properties in 
mind, we convince ourselves that  the linearized form of the minimal gravita- 
tional interaction and Einstein's gravitational interaction do conserve P, C 
and T, separately. In other words, this is trivial because we have required, 
in view of the field equations (3.24) and (3.25), ~hat S~(x )  and A ~ ( x )  trans- 
form like the canonical energy-momentum tensor under C, P and T. 

As for a spinor field, the transformation properties of the bilinear forms, 
I~, I ~ Jk ,  J~, Jkt,~ and J~ defined by (2.20)-(2.23) are easily derived by 

k ' k l ~  ' 

using the standard method appearing in the text-book; here we note that  the 
5 invuriant derivative /)k involved in the bilinear forms, Jk~ and Jk~, should 

henceforth be replaced by the usual partial derivative in special relativity, 
because the field strengths coupled to these bilinear forms carry n and ~. We 

summarize the results in Table 1. 

TABLE [. - The trans]ormation properties o/ the bilinear ]orms under C, P and T: 
~k= (------+). 

C P T 

Jk, Ik - -  sk ek 

J~ + - -  ek sk 

J k z m  -{- 6k Q ~m - -  sk  Q cm 



GRAVITATIONAL INTERACTIONS OF TI tE  PROTON AND THE E L E C T R O N :  ETC. ~ 3  

Now, it is easy  to classify all the  l inearized g rav i t a t iona l  in teract ions  ac- 

cording to the  degree of space- t ime reflection and  of p:~rticle-antiparticle con- 

jugat ion.  The final resul ts  are shown in T ' tble  I I .  

TABLE II.  - The status o/ the re]lexion symmetries C, P and T is tabulated with rank m 
o] derivative acting o,n a spiuor ]ield involved. The presence of the symmetric field Sk 
and antisymmetric one A~.~ is indicated. Both incans the presence of both fields. 

m Interaction C P T S~.~ Ak~ Both 

0 L ~ ,  L 4 ~- + -4- La LM 

1 L~, LT, L10 n t- -~ -~ L 7 Llo L~ 

0 L 3 - -  - -  + L a 

1 LI~ ,  L13 - -  - -~ Llu L13 

0 L 2 + - -  - -  L 2 

1 L G, L s ,  L 9 + - -  - -  L s L 9 L 6 

0 L 1 - -  ~- - -  L 1 

] Lll, L I t  - -  ~- - -  E l l  i 1 4  

5 .  - A m a s s l e s s  s c a l a r  p a r t i c l e .  

We have  so far  not  discussed the  physical  mean ing  of the  modified Dirac  

equa t ion  (2.7), bu t  impl ic i t ly  t a k e n  this  as the  equa t ion  for a spin -1 part icle ,  

e.g., the  e lect ron,  in the  presence  of g rav i ta t ion .  The reason for this  is p a r t l y  
because we have  a l r eady  shown in our previous  pape r  (7) t h a t  (2.7) indeed re- 

duces, in the  nonre la t iv i s t ic  l imit ,  to tile Schr6dinger  equa t ion  with  the  ~ew-  
toni~n potent ia l .  One couhl of course supply  a more  exac t  a r g u m e n t  to this 
p roblem,  b y  considering re la t iv is t ic  correct ions and  sp in-dependent  t e rms  pe- 

culiar  to  the  Dirac  equat ion,  for instance,  b y  employ ing  the  well-known Paul i  

app rox ima t ion  which has successfully been applied to the  Dirac equat ion (2.11) 

(to be more  precise,  its quadra t ic  fo rm (2.]2)) for :r single electron in a fixed 
Coulomb potent ia l .  

We here touch briefly this problem so as to convince the  readers  t ha t  (2.7) 

ac tua l ly  shows ~ paral le l ism with  the  corresponding e lec t romagnet ic  Dirac 

equat ion  (2.11). Fo r tuna t e ly ,  our quadra t ic  eqm~tion (2.9) can be enormous ly  
simplified b y  the  l inear  app rox ima t ion  (3.12). I n  fact ,  only the  first four  
t e r m s  survive in this c~se: 

(5.1) (D~Dk-~ i(r,,~Dl, D~--  m 2 + V,~DD~ = O. 

I n  the  case of ,~ prescr ibed ex te rna l  s ta t ic  g rav i t a t i ona l  field, i.e. the  Igewtonian 
po t en t i a l  due to a m:~eroscopic body  of mass  M 

( 5 . 2 )  r  = - C,M/r, 
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re la ted  to our field variable $44 as (see Appendix  B for der ivat ion)  

(5.3) Sad(r) = 2r 2 , 

(5.1) becomes 

h3 ( 2r 2r 
(5.4) E 4- 2m A - -  m~b 4- 1 - -  c--~] 2me 2 c" E 4- --~ 9-.m A + 

4- 2mc---- 2 ~ ( V r 1 6 2 2 1 5  ~ o = 0 ,  

where we expl ic i t ly  wri te  c, the  veloci ty  of light,  and h, Planck 's  cons tant  
divided by  2z;  we denote  the  to ta l  energy  b y  W = mc ~ 4- E and  use the  con- 
vent iona l  notat ions  for the Dirae spin matr ices  

(5.5) 

(a are the Paul i  spin matr ices) .  
Likewise, in the  case of a fixed Coulomb poten t ia l  

(5.6) of(r) =e / r ,  

the  quadra t ic  form (2.12) becomes 

h (E 4- eq~) 2 ieh } 
(5.7) E + ~ A 4- eq~ 4- ---~.mcV- - -2m~ (Vq~.a) ~p = O, 

where the vector  potent ia l  is neglected, and--V~v means  an electric field. These 
two equat ions  are similar in form in the first th ree  terms,  which are noth ing  
bu t  the  ordinary Schr6dinger equat ion.  The relat ivis t ic  correct ion due to the  

veloci ty  dependence of mass appears  in the four th  and fifth t e rms  in our eq. (5.4), 
while i t  appears  only in the  four th  t e rm in (5.7). The last  two members  in (5.4) 

along with the  last one in (5.7) are of course peculiar  to the  Dirac theory,  be- 
cause these terms involve the  Dirac spin matrices ct and  2~. F u r t h e r  discussion 
of (5.4) can be given s t ra ightforwardly;  for instance,  (5.4) will be represented  

in t e rms  of only the  large component  spinor, and the reby  given a physical  
meaning  more clearly. When  we take  into account  those nonmin imal  interac- 
t ions which violateC, P a n d / o r  T and involve the  symmet r ic  field (see Table ]I),  
there  appear  addi t ional  contr ibut ions to (5.4), which will be discussed in detai l  
elsewhere. There is a prel iminary bu t  interest ing a rgument  on this subject  (3); 

we note  the  equat ion therein discussed is different f rom (5.4) which is derived 

f rom the  generally covari~nt Dirac equat ion (2.7). 
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Now we shif t  our a t t e n t i o n  to a skewsymmet r i c  tensor  field Ak , ( x ) . '  This  

field cannot  be genera ted  by  unpolar ized macroscopic  bodies,  as is clet~r f rom 
the fiehl equat ions  (3.25) it satisfies and  f rom the Te t rode  formula  (2.45) which 

re la tes  its source, an  a n t i s y m m e t r i c  p a r t  of the  e n e r g y - m o m e n t u m  tensor,  to the  
spin of the  spinor field. Thus,  we have  to consider this  field as a quant ized  field 

in order to see its behaviour .  I f  we assume its coupling cons tan t  2 to be  fa i r ly  

small  as compared  to uni ty ,  we will be able to work in pe r tu rba t ion  theory,  

where  only a free quant ized  fiehl Ak~(x) appears .  Before proceeding to quant ize  

our skewsymmet r ic  field, we here de te rmine  the  number  of its independent  com- 

ponents .  I t  suffices for this  purpose  to consider the  field equat ions (3.25) wi thou t  

a source t e r m  and  the  supI) lenmntary  condi t ion (3.20) a t  the  classical level:  

(5.8a) []  A~,(x)  - -  o ,  

(5.8b) ~ A~,,(x) = 0 , 

(5.8c) A ,  , (x)  = - -  A ,~  ( x)  . 

The divergence-free condit ion (5.8b) lowers the  number  of independenl,  

var iab les  f rom 6 to 3. We can, however,  envisage  a gauge t r a n s f o r m a t i o n  

spec i f ed  b y  

(5.9) A , ~ ( x )  ~ _ 4 ~ , ( x )  + L ( x ) . ,  - -  /~(x).~ , 

under  which the  set  of equat ions (5.8) is required  to be invar ian t .  This condit ion 
is m e t  if ~ set  of the  gauge funct ions  ]k(x) s~tisfies the  re la t ions 

(5.10a) []  h ( x )  - o ,  

(5.10b) ~kjk(X) = 0 ,  

which are ~fiso subject  to a gauge t r ans fo rm~t ion  given b y  

(5.1]) ]k(x) --> ]k(x) § g(x).~: , 

with  

(5.12) [] g(x)  - -  O . 

Thus,  the  gauge funct ions  ]~(x) h~rve only 2 independen t  components .  Wi th  

a sui table  choice of the  l a t t e r  ones, the  n u m b e r  of independen t  componen t s  

of A k , ( x )  reduces fu r t he r  f rom 3 to 1. Thus,  we conclude t h a t  there  is only  
one p h y s i c a l  par t i c l e  associa ted wi th  ATcz, which is a neu t ra l  mass less  scalar  

par t ic le .  I n  fact ,  one c'~n easi ly  show t h a t  there  survives only one var iable ,  
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e.g. A~2(x) = - - A ~ ( x )  for  a p lane  wave p ropaga t ing  along the  z-axis; A~(x ' )  = 
= Ai~(x) for a ro ta t ion  about  the z-axis. I n  passing we note  t h a t  the  gauge 
t rans format ion  (5.9) is nothing bu t  an an t i symmet r i c  pa r t  of the  l inearized 
form of (2.4). :For an infinitesimal general  co-ordinate t rans format ion  

(5.13) x ~ --> x ~ - -  ~t/'(x), 

(2.4) becomes 

(5.14) bkU(x ) --> bk~'(x) - -  Zl"(x).~ b~:~(x) . 

I f  we apply  the  l inear approx imat ion  (3.12) to this, we obta in  the desired re- 
sult  (5.9). 

Now, we express our skewsymmetr ic  field in t e rms  of the  creat ion and  
annihi la t ion operators a(p; h) and at(p; h) of a neut ra l  massless scalar part icle  

with helici ty h = O ,  and a fictitious neutr~l  massless spin-1 par t ic le  with 
helici ty h = ~ 1, including ano the r  set of part icles which have the  sa.me 

na tu re  as the  former :  

(5.~5) 
, , J (2po) ~ 

+ 
" ~  {eke(p; h)a(p;  h) exp [ipx] + e~(p; h)a*(p; h) exp [--ipx]} , 

l* 

where helici ty sum over h takes • 1 and  0 for one set of massless spin-1 and -0 
particles,  and  also @:1 and 0 for ano ther  set ofmassless spin-1 a n d - 0  p~rticles, 
and  the  symbol t means complex conjugation for c-number quanti t ies  and t ter-  
mi t ian  adjoint  for operators.  The various conditions imposed on A~t(x) are 
now shif ted to the ((polarization tensors ~ e~.~(p; h): 

(5.16a) 

(5.16b) 

e~(p;  h) = --e,l:(p; h) , 

ptek~(p; h) = 0 

and for the  gauge t r ans fo rmat ion  (5.9) 

(5.16c) e~(p; h) --+ eke(p; h) + ip~ek(p; h) - - ipke~(p;  h) ,  

where ek(p; h) are the (~polarization vectors~ involved in u free quant ized  
field ]k(x) sat isfying (5.10). We could of course take  a different  representa t ion  

of a free-field operator ,  for instance,  in t e rms  of only a single physical  scalar 
par t ic le  involved in Akt(x), as deduced from a previous a rgument  on the  number  
of independent  field variables.  Then we would have to  worry  about  the  Loren tz  
invar iance  of the  S-matr ix.  We have~ however,  learned from the Gupta-Bleuler  
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fo rmal i sm of q u a n t u m  elec t rodynamics  t ha t  this  p rob lem can be c i rcumvented  

b y  in t roducing some unphys ica l  par t ic les  with indefinite met r ic  (t imelike vs. 
longi tudinal  pho tons )wi th  the  modified version of the  Loren tz  condi t ion appl ied 

to  H i lbe r t  space so as to a d m i t  only the  l)hysieal part icles  in the  a sympto t i c  
s ta tes .  Wi th  this in mind,  we have  expressed our field opera tor  A~..t(x) as in 
(5.15). We would have  to cons t ruc t  the  polar iza t ion  tensor  expl ici t ly  when 

the  par t ic les  associated with Ak~(x) appea r  as ex te rna l  part icles  in a F e y n m a n  

diagn~m. On the cont ra ry ,  it is here not necessary because we are only in teres ted  

in the  sc~t ter ing problem between spin-�89 particles,  more specifically, between 

the  p ro ton  :~ml the  electron,  where A~ is exchanged  in the  lowest-order per tur -  

ba t ion .  We need ins tead  the  p ropaga tor  funct ion for our skewsymmet r i c  field; 
for this purpose,  it is no longer necessary to specify the  polar izat ion tensor,  

as we will show below. W h a t  we need la te r  in some calculat ions is the  t ime-  

ordered product  of Ak~ with itself t aken  be tween  vacuum sta tes :  

(5.17) 

where  

(5.18) 

- - i  ( d~p 
( T { A k d x )  A, , , (y)})o  - (,T~)4.] p . . ,_  iO P'~'"~(P) exp [ ip (x  - -  Y)I, 

Pk~,,,.(P) = ~_. e~,.~(p; h)e~,m(p; h) = P . , . k t (P ) .  
h 

In  a previous  p a p e r  (13) w e  discussed the  me thod  of project ion opera tors  for 

high-spin propaga tors .  Here  we a p p l y  this me thod  m uta t i s  m u tand i s .  Firs t ,  
the  n u m e r a t o r  of the  p ropaga to r  funct ion  in m o m e n t u m  space mus t  be ant i -  

s y m m e t r i c  wi th  respect  to k and  1 as well as m and  n in (5.18) because of (5.16a). 
Secondly,  (5.16b) now requires  t h a t  cont rac t ion  of f o u r - m o m e n t u m  with a n y  
of the  indices in P~.~ .... vanish ,  for ins tance  

(5.19) P,~PI~,,,~(P) = 0 . 

Final ly ,  Pkz .... ought  to  be gauge inwtr iant  in the  sense of (5.16c). Nevertheless ,  
we t ranscr ibe  this  condit ion into the  gauge invar ianee  of the  sca t te r ing  am-  

pl i tudes  under  (5.16c), hence the  n u m e r a t o r  of the  p ropaga to r  is not  necessari ly 

gauge inva r i an t  by  itself. I n  other  words, gauge-va r i an t  t e rms  therein are  

expec ted  to  be counte rac ted  when coupled to the  ma te r i a l  pa r t  (bilinear forms 

of a spinor fiehl, in the  presen t  case). I t  will be shown t h a t  this cancellat ion 

indeed occurs a t  least  in the  sca t te r ing  ampl i tudes  to be considered below. 

Wi th  these  proper t ies  men t ioned  ~bove,  let  us cons t ruc t  the  numera to r ;  

us ing  an unspecified s y m m e t r i c  tensor  d~,.t, we wri te  

(5.20) Pkl~n = d~.,d~n - -  d , . d . , ,  , 

(18) K. ]][AYAStII: Progr. Theor. Phys. ,  41, 214 (1969). 
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which is so chosen t h a t  it is a n t i s y m m e t r i c  under  in te rchange  of k and  l as 
well  ~s of m u n d  n. :Next, le t  us de t e rmine  the  explicit  fo rm for dk,. Owing 

to  Loren tz  invar iance ,  th is  can be wr i t t en  as 

(5.21) dk, = a6k~ + bpkp t /p  ~ , 

with two a r b i t r a r y  coefficients, which mus t  sa t is fy  the  following re la t ion:  

(5.22) a ~- b : 1 

in view of the  condi t ion (5.19). As was shown in ref. (~3), the  n u m e r a t o r  of the  

p r o p a g a t o r  is the  project ion opera to r  in the  case of a mass ive  part icle .  We here  
pos tu l a t e  t h a t  this  is ~lso the  case for our p resen t  problem,  l~egarding P~z~ ns 
the  (km)- ( ln )  e lement  of m a t r i x  P ,  we find t h a t  the  condit ion for the  project ion 

oper.~tor t akes  the  fo rm 

(5.23) Pkiz~Pimj~ : a4Pk,.z.  : -  Pkm~. �9 

Thus ,  a can t a k e  the  values ,  -}-1 a n d  =]= i. On the  o ther  hand ,  t r ace  of the  

project ion opera to r  is i ts  mul t ip l ic i ty ,  the  n u m b e r  of all  the  degrees of f reedom 

involved in Akz, i.e. 6 = ull the  hel ic i ty  s ta tes  of two massless  spin-1 par t ic les  

a n d  of two massless  spin-0 par t ic les ,  hence we have  

(5.24) P~tk, = 63 : ~  6 . 

Hence  a is e i ther  ~ 1 or - - 1 ,  bu t  the  physica l  resul ts  der ived b y t h e  use of the  
p ropaga to r  wi th  (5.20) do not  depend on the  sign of a. :For s implici ty ,  we shall  

t ake  a as ~ :l hereaf te r .  Thus ,  we conclude t h a t  (5.17) is the  p r o p a g a t o r  

for a massless  scalar  par t ic le  associated with  the  A~-field,  :Needless to say, 
the  bui ld ing block d~, of our p r o p a g a t o r  is, wi th  t he  above  choice of the  coei- 

ficients, the  projec t ion  opera tor  for a spin-1 par t ic le  in the  sense t h a t  dkz selects 

only  the  pure  P -wave  component ,  i.e. 

(5.25) 
{ dkmd,~z = dkz , 

dram : 3 ,  

where 

(5.26) dkz = (~kz - -  P~P~/P~ " 

:Before closing the  a r g u m e n t  on the  p ropaga to r ,  we no te  t h a t  i ts  n u m e r a t o r  (5.20) 

can fu r the r  be s impl i f ed  in the  ac tua l  calculat ions of the  sca t te r ing  ampl i tudes  

in the  following form,  as can readi ly  be verified in an  explici t  example :  

(5.27) P~z..  = (~m(~z. - -  (~.5lm �9 
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We conclude this  Section with a br ief  discussion of the  possibi l i ty t h a t  

g rav i t a t iona l  in te rac t ions  v io la t ing  some of P, C and T migh t  cause the  energy- 

level  shif t  of the  hypel f ine  s t ruc ture  of the  hydrogen  a tom,  one of the  s implest  
qmmtum-mech~n ica l  systems.  As for the usual  l inearized grav i ta t iona l  field 
deno ted  b y  Skz(x) in this  paper ,  i t  follows imme(l ia te ly  f rom the ex t r eme  small- 

ness of E ins te in ' s  g rav i t a t iona l  cons tan t  (3.3) t h a t  it is a lmos t  hopeless 

to discuss the  physical  effects due to the  possible violat ion of these discrete 

symmet r i e s ,  a l though  the  l a t t e r  cannot  be ruled out f rom the present  accuracy  

of the  :~vailable da ta  (~). We then  tm'n  our a t t en t i on  to a skewsymmet r ic  field 

deno ted  by  Ak/x)  in this  p~q)er, which would h~tve to exis t  in the  case of vio- 

la t ion  of C, P ~nd/or  T. I t  is wor th  uot ing t h a t  this new field reI)resents a 
deviation f rom Eins te in ' s  theory  of gravit:~tion, i r respect ive  of P,  C and  T 

conservat ion.  Accordingly,  its qu,antum, a m'issless scah~r part icle ,  will be 

eMled for shor t  a <(deviaton. )> We have  so fa r  assumed t h a t  a dep~r ture ,  if 
any,  f rom Eins te in ' s  theory  might  occur via the violat ion of the  discrete sym- 
metr ies .  MIYAMOTO and  NKKA~O took  the  a l t e rna t ive  way, viz. to depa r t  

f rom Eins te in ' s  t heo ry  b y  re ta in ing  the  separa te  conservat ion of C, P and T (9). 

T h e y  s tudied the  s implest  quan ta l  sys tem of the  hydrogen  a t o m  in order to see 

if a devit~ton affects its hyperf ine s t ructure .  The me thod  of der iving a potent ia l  

f rom a relew~nt sca t t e r ing  ampl i tude  has been well known (~4.15), and  hence 

we quote only the  result :  The elastic sc:~ttering ampl i tude  via one-deviaton 

exchange  be tween  a p ro ton  and an electron,  where dS~ cont r ibutes  to bo th  

proton and  electron vert ices,  is g iven a t  the  nonre la t iv is t ic  l imit  b y  

(5.28) T(q;  L,~, L M) = (;t"-/64~)(q • a~)(q y< a')/q-", 

f rom which the  po ten t i a l  is derived:  

(5.29) V(r) = (22/32u){(8~/a)(cv'-o") 6(r) - -  (1/r:')[(o,'-o") - -  (3/rO')(a".r)(a'.,-)]}. 

The presen t  accuracy  of the  precision m e a s u r e m e n t s  in q u a n t u m  electrody- 

namics  gives the  uppe r  bound on the  unknown coupling (9) 

(5.30) ,~:/47i < 10 -5 lw/(GeV) 2 . 

:It is not  ye t  clear a t  the  m o m e n t  if such a (leviaton exis ts  with the  coup- 

ling s t rength  obeying this condition.  However ,  one th ing  is clear: Whether  

or not the  g rav i t a t iona l  in terac t ion  between the  p ro ton  and  the  electron 

conserves  P,  C :tnd T is also an  open quest ion a t  the  moment .  There  are 

no theore t ica l ly  reasonable  grounds to put  G.d0) = 0 = G~(0), which appeared  
in Eq. (1.1). 

(14) S. S. SCHWEBER: An. Introd.ttction to Relativistic Quantum Field Theory (New 
York. 1960), p. 580. 
(15) N. HOSIIIZAKI and S. MACnIDA: Progr. Theor. Phys., 24, 1325 (1960). 
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6 .  - D i s c u s s i o n .  

Most par t ic le  physicists know tha t  the  weaker  the  in terac t ion  s t reng th  
gets the  grea te r  the  reflection symmetr ies  such as par i ty ,  charge conjugation,  

and  t ime reversal  are violated.  Motivated b y  this empirical rule, we 
a t t e m p t e d  to  answer the  inquiry,  whether  or not  gravi ta t ion,  the  weakest  of 
all the  forces we know, does also enjoy  the  violat ion of these discrete symmetries .  
There  is no a priori basis whatsoever  for applying it  to gravi ta t ion,  which 
indeed differs s ignif icant lyfrom the  former  interact ions  in its great  universal i ty  
and  its infinite range of force (the classical limit), subject  to a macroscopic 
inverse-square law. 

The ex t reme  weakness of gravi ta t ion prevents  us f rom having a clear answer 

to  the  quest ion posed. F r o m  the  exper imenta l  side almost  nothing can be 
said about  it  for the  moment .  We had therefore  to approach the  quest ion 
main ly  f rom the  theoret ica l  side. Wi th  general  covariance as the guiding prin- 

ciple we find an  unexpec ted  s i tuat ion t ha t  there  must  be a massless scalar 
particle, t e rmed  for short  a ~ devia ton ~ if 2~ature prefers  a deviat ion from 
Eins te in ' s  theory  of gravi tat ion.  Obviously, the  gravi ta t ional  interact ions 
violat ing any  of C, _P and  T do devia te  f rom the  theory.  Unfor tuna te ly ,  we 
have to express our inabi l i ty  to  present  any  means of detect ing such a devia ton 
- - n e u t r a l ,  massless and spinless. Cont ra ry  to the ~ common sense ~ t h a t  the  
masslessness of a par t ic le  exchanged between,  say, the  nucleons implies an infinite 
range of force, this new deviaton,  if ye t  unobserved,  does not  give rise to  a long- 
range force, nor any  macroscopic force, instead exhibi t ing ra ther  peeuli'~r pro- 
perties.  Firs t ,  its force, when in te rpre ted  in terms of potential ,  depends on the  
spin of the  pro ton  and electron which generates  it. Second, the devia ton couples 
to m a t t e r  with a singular coupling involving the  der ivat ive  of its own field 
(a skewsymmetr ic  tensor  field) when the gravi ta t ional  in terac t ion  violates any  
of C, P and  T. This means  t ha t  a result ing potent ia l  between spin-�89 particles 
would become highly singular, for instance,  involving the  del ta-funct ion -rod/or 
its der ivat ive,  t he r eby  affecting the mater ia l  wave funct ion only at  the origin. 

We have so far  not  touched upon the  neut r ino  as a source of gravi ta t ion.  
As far  as we know the  neut r ino  (ant ineutr ino)  appears  with left  (right) helicity 
alone in the  weak interact ions.  I f  this is also the  case for the gravit.~tional 

in teract ion,  t hey  obviously violate  pa r i ty  (P) and charge conjugation (C), 

nevertheless conserving CP. Fur the rmore ,  if these neutr inos are a unique 
agency th rough  which the  violat ion of P and C can occur, then  we will be able 
to discuss, for instance,  P-viola t ion wi thout  any  need of deviatons and hence 
we would have to wi thdraw most  of our conclusions dr~wn in this paper.  How- 
ever,  as is well known,  s trong P-  and C-violation effects are observed in the 
nonleptonic  weak decay processes such as A - + p ~ - ,  hence the  neutr inos are 
not  the  unique cause of the  violat ion of P and  C. Al ternat ively ,  we can even 
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speculate t ha t  owing to its great  universaliCy the  gravi ta t ional  field would 
presumably  couple to the  neutr ino with r ight  hel ici ty and the an t ineut r ino  

with lef t  heliei ty which do not  par t ic ipa te  in the weak interact ions,  thus con- 

serving P and C. 
We close this  paper  with our hope t ha t  a more definite answer will be given 

as to the  presence or absence of a deviaton,  t he reby  ver i fying or denying a 
deviat ion from Einste in 's  gravi ta t ional  theory  in the  realm of part icle physics. 

I would like to  express my  gra t i tude  to Profs.  :E. C. G. STUECKELBERG, 
J . M.  JAtrCH and C. P. ENz, and  Dr. J. CHEVALIE~ for the i r  kind hospi ta l i ty  
at  D(~partement de Physique Th~orique, Universit(. de G6nbve, where an ear ly  
pa r t  of this work was completed.  ] am very  grateful  for valuable discussions 
with Prof.  H. P. D/2RR ~nd with Dr. R. L. S~ULLER who also careful ly  read the  
manuscr ip t  to improve the English. I also wish to t h a n k  Dr. W. DRECHSLER and  
Prof.  K. ON0 for the i r  interest  and encouragement .  Final ly,  I wouhl like to  
acknowledge s t imulat ing discussions by  priw~te eommunie~tions with Prof. T. 
NAKA~0, ])r. N. SETO and Dr. T. SHIRAFUJI at  the stage of p repr in t  of this paper.  

A P P E N I ) I X  A 

The R i e m a n n  tensor  and its contracted tensors  in t e r m s  o f  the tetrads.  

We shall obt ,dn the Riemann tensor  in terms of the te t rads  by  applying 
the commuta to r  of the covariant  derivat ive with respect to the Christoffel 
symbol to an a rb i t ra ry  eont ravar ian t  vector  field A": 

(A.1) (A';/,);~ - (A';~);t, : R~t,~A ~ , 

where the Riemann tensor  is defined by  

Subst i tu t ing b~Y(x) for A ~' and t ransforming Greek indices to Lat in  ones, we 
obtain the desired tensor  as follows: 

(A.3) h i l l  t~ " " _ _  

= - -  ( D , , D ~ , , , , - - D , , ,  DA.,,, + D ~ k , , D j , , , - - D ; t , , D j ~ , ,  + D~,j(D,,,,,-- D,, , ,)) ,  

where 

(A.4) Dk = b , Y ( x ) ~ , ,  

(A.5) ~ , , , ,  = ~ (c~.,~- cz~,,~- c,,,~,) 
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and Ckz,,~ is defined by (2.13). Now it is easy to derive the contracted R iemann  
tensor  Rk~ corresponding to R ~  = R~: 

(A.6) bRkz ~- bR,,~m~ ~- b ~ " b / ( - - g ) ~ R ~  = 

= (bb~ I' C(kt~,~)., + bb(k t' V~).t, + bC~nk C(,~,~)~- 1 Ck~,~ Cz,,,~ 

( V~ = C,~m~) , 

where the de te rminan t  b is given above (2.6) and g is the de te rminan t  det  (g,~); 
small parentheses  enclosing La t in  indices indicate symmetr iza t ion.  Final ly,  we 
obta in  the  tCiemann scalar R = - R  ...... = g"~R~:  

(A.7) bE = b{�88 C~m Ck~m-- ~ ~ Cktr~ C,~k~ + V~ Vm} + (2bbm" Vm),,,. 

A P P E N D I X  B 

Relation between the Newton potential and the linearlzed gravitational field 
variable. 

In  Einste in 's  theory  of gravitat ion,  the scalar potent ia l  of a gravi ta t ional  
field is defined by  the metr ic  tensor  

(3.1) goo(X) = - -  (1 + 2r 2) . 

I f  we use the relat ion between the metr ic  tensor  and the te t rads  (2.28) with 
the  linear approximat ion {3.12), and also take the nonrelat ivist ic l imit  where 
only a ~ ( x ) = - - a o o ( x )  can contr ibute ,  we obtain 

(B.2) goo(X) = -  1 + 2aoo(X). 

On the  o ther  hand,  the correct gravi ta t ional  field variable is not  akt(x) but  Sk,(x) 
in the  sense tha t  the la t ter  satisfies the wave equat ion (3.24) subject  to the 
divergence condition (3.17). A re tarded  solution to this set of the field equa- 
t ions is well known:  

(B.3) S~(x ,  t) = -~z dx '  T(~)(x', t - - r / c )  
tx-x'l 

I f  we employ (3.16) in (B.1) and (B.2) in view of the Poisson equat ion 

(B.4) Ar = 47~GM53(x), 

and our equat ion derived from (3.24) with (B.3) 

(B.5) ASo0 = - -  ~:Me~63(x), 
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we o b t a i n  the  des i red  resu l t  

( n . 6 )  s 0 0 ( x )  = ' - ' a 0 0 ( x )  - - -  2r 

a n d  reproduce  the  we l l -known re]u t ion  

(B.7) u~c ~' - -  8~G.  
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�9 R I A S S U N T 0  (*) 

Nell'ipotesi della eovarianza generale si discute 1~ strut tura delle interazioni gravi- 
tazionali fra protone ed elettrone. Vi sono 15 (3) diversi accoppiamenti frn una par- 
ticella di spin �89 con massa (un neutrino a due componenti) ed il c~mpo gravitazionale, 
pureh4 queste inter~zioni non eoinvolg~no derivate superiori a quelle ehe compaiono 
nei lagrangiani di Dirac e gravitazionale liberi. Nel limite del campo debole si possono 
suddividere le interazioni in 4 classi: (C, P, T) = ( + ,  + .  + ,  ), ( + , - - , - - ) ,  (--, + ,  --) 
e ( - - , - - ,  +) .  0gni  deviazione della teoria di Einstein comporta un tensore energia- 
impulso asimmetrico, quindi coinvolgendo ipotetiche partieelle senza massa  e senza sp in ,  
rappresentate da un campo tensoriale a simmetria obliqua la cui sorgente 6 lo spin del 
protone e dell'elettrone. Si diseutono anche i possibili effetti di questa particella sulla 
s t rut tura iperfine dell'atomo d'idrogeno. 

(*) Traduzione  a eura della Redazione.  

FpaBHTaHHOHH~e B3aHMo~e~CTBHH HpOTOHa H 3~egTpOHa. BO3MO~HOe s 

cga~pHOfi qaCTHHbl C Hy~eBOfi MaCCofi. 

PeamMe (*). - -  Flpe~nonaran o6myio roBapHaHTHOCTb, MbI o6cy~aeM cTpyKTypy rpa- 
BnTa~nOHH~rX B3anMo~e~CTBHfi Merely npOTOUOM n 3neKrpo~tOM. CymecxBymT 15 (3) 
pa3nn~HI,~x cBn3e~ Merely MaccaB~hIMn ~acxHuaMH CO CnHUOM �89 (~ayx-~oMnoneaTRbtM 
He~TpHHo) H rpaBnTaUHoHm, IM noneM, npn yc~oann, ~iTO aXn B3a~Monel~CTBlr He co~epz<ax 
6onee ab~cornx rlpOH3BO~riblX, HeM Te,  KOTOpbIe IIO$1B.rI~IIOTC~I B CBO60~HOM )IHpaKoBCKOM 

/4 FpaBHTaHHOHHOM J~arpaH~Har~ax. B npe~ene cJ~a6oro n o r m  paccMaTpnBaeMb~e B3aH- 

Mo~e~CTBn~ MOryT 6blT~ pa3~enen~,~ na neTb~pe Knacca: (C, P, T ) = (  ~, ~, +),  ( §  --, --), 
(--, + , - - )  n ( - - , - - ,  +).  Ylm6oe or~nOHeHne OT xeopnu 3 ~ n m r e ~ a  npnBo~nT r acnM- 
MeYpliqHOMy TeH3opy 3HeprHH-~MnyJ~bca, cYle~IOBaTeYlbHO, aKnroqaeT rHnoTernqecKne 
6e3ntaccoebte, ~ecCllllHOable qaCTHtlbI, KoYopble OIIHCblBalOTC~I KOCOCHMMeTpHqeCKHM TeH- 

30pHblM noneM,  /4CTOqHHK KoTopoYo npehcTaBn~eT c n n a  npoYoHa ~I 3YleKTpOHa. MbI  

T a ~ e  o 6 c y ~ a e M  BO3MO~KHOe BJ//,I~tHHe TaKo!~ qaCTHllbI Ha cBep• cTpyKxypy 

aTOMa 8o~lopo~a .  

(*) IIepeeec)eno pec)a~'ttue& 
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