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Summary. — Assuming general covariance, we discuss the structure of
gravitational interactions between the proton and the electron. There
are 15 (3) different couplings hetween a massive spin-} particle (a two-
component neutrino) and the gravitational field, provided that inter-
actions involve no higher derivatives than those appearing in the free
Dirac and gravitational Lagrangians. In the weak-field limit the inter-
actions may be divided into 4 classes: ((, P, T')= (+, +, +), (+,—,—),
(—, +.—) and (—.—, +). Any deviation from Einstein’s theory entails
an asymmetric energy-momentum tensor, hence involving hypothetical
massless, spinless particles, represented by a skewsymmetric tensor field
whose souree is the spin of the proton and the electron. We also discuss
possible effects of this particle on the hyperfine structure of the hydrogen
atom,

1. — Introduction and summary.

Gravitation is, together with electromagnetism, one of the fundamental
interactions of matter and has the classical limit. In parallel with Maxwell’s
electromagnetic theory, Einstein’s classical theory of gravitation has also at-
tained remarkahble success (). However, in contrast to the enormous de-

(*} I. I. Suapiro: Rapporteur’s talk at the VI International Conference on Gravita-
tion and General Relativity at Copenhagen (July 1971); 1. 1. Suapriro, M. E. Asu, R. P.
INncaLLs, W. B. Smiriz, D. B. CampBeLL, R. B. Dyce, R. ¥. JurceNs and G. H.
PETTENGILL: Phys. Rer. Lett., 26, 1132 (1971); K. S. Tunor~N and C. M. WiLL: Astro-
phys. Jowrn., 163, 595 (1971); C. M. WiLL: Physics Today, October Issue, p. 23 (1972)
and references cited therein.

639



640 K. HAYASHI

velopment of quantum electrodynamics, it is not yet clear how elementary
particles interact with the gravitational field. For example, we do not know
if gravitation conserves parity (P), charge conjugation (C}), and time reversal (7)
in elementary processes of particle physies (?). The purpose of the present paper
is to explore the structure of gravitational interactions between the proton
and the electron.

The reason why we do not simply extrapolate Einstein’s theory to the
realm of particle physics is that this naive extension is without much theoretical
and experimental justification. First of all, let us postulate that any micro-
scopic gravitational theories must revert to Einstein’s by means of the classical
macroscopic limit. This « boundary condition» is obviously not enough to
select one such theory; there are yet many possibilities. Take, for example,
the matrix element of the symmetric conserved energy-momentum tensor,
taken between spin-1 single-particle states (e.g. the proton or the electron)(*4)

(1.1 (pa|Twi(0)|p1) = W) {([2) yu P Gu(€?) +
+ 1420022 GFa(q*) + (€7 0k — 1 03) Gu(@®) +
+ [ig* vaps + 2m qup sl s Gol @) +
+ 4n0aa DY Os(@) + 947 015 — 4 ) Y5 G} u(p1)

where p = p, + P, 4 = p.— Py, and parentheses enclosing indices denote sym-
metrization. Evidently, the first term, multiplied by G4(¢*), may be derived
from the perturbation expansion (a quantal version) of Einstein’s theory;
@.(q?) is hence reasonably termed Einstein form factor by analogy with the Dirac
form factor in quantum electrodynamics. However, the converse is not true;
the possible existence of other Pauli-type form factors would not conflict at
all with but would rather conform to the success of Einstein’s theory in classical
gravitational physics, because, first, they appear together with the spin of
a particle involved, and second, they are accompanied with the derivatives
of the gravitational field, which vanish in the long-range limit (¢ —0). Grav-
itational form factors, G,(¢*) (4=1,2,...,6), have not yet been measured
due to the extreme weakness of gravitation. It now follows from these con-
siderations that the beautiful achievements of Einstein’s theory in classical
physics cannot be taken as clear evidence of P, Cand T conservation in quantal
gravitational processes. What theoretical grounds may we have in predicting the
presence or absence of the Pauli-type form factors?

(3) J. Lerrver and S. OkuBo: Phys. Rev., 136, B 1542 (1964).

(®) K. Hupa and Y. Yamacucsi: Progr. Theor. Phys. Suppl., p. 261 (1965), Comme-
moration Issue for the XXX Anniversary of the Meson Theory by Dr. Yukawa.

(4) H.PacgLs: Phys. Rev., 144, 1250 (1966); B. RENNER: Phys. Leit., 33 B, 599 (1970).
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There seem to be two available methods for answering the question we have
posed:

A) the simple-minded method is to envisage, within the framework of
special relativity, gravitational interactions which might cause violation of
P, Cand T;

B) the other one is to consider the structure of gravitational interactions
invariant under a general co-ordinate transformation; some of the interactions
would violate some of these discrete symmetries in the perturbation expansion
where the P, ¢! and T operations are well defined.

Here we make an important remark as to choice of the gravitational variable.
In the first line of thought the latter may be taken as a rank-2 symmetric tensor
field, subject to appropriate subsidiary conditions to choose a massless spin-2
particle, called graviton (*3). In the method B), however, it should be noticed
that fermions differ radically in their realization from bosons by the influence
of gravitation. As is well known, the tensor representation of the proper Lo-
rentz group L} may be extended to a representation of the general co-ordinate
transformation group &, but the half-integer spin representation of L! eannot.
Indeed, the latter is not contained in any finite-dimensional, linear represen-
tation of G. In sharp contrast with the well-defined Lorentz spinor being
holomorphic to L}, a « Riemann spinor » holomorphic to @ does not exist. Since
there is an abundant literature on mathematics of spinorsin a Riemann space (¢),
we here refer to previous papers (?) which fit the present purpose; the grav-
itational field was therein introduced into the Dirac Lagrangian as the Yang-
Mills field with 16 components b,/(x) called translation gauge field associated
with @. In particle physics the gauge field may be taken as more fundamental
than the conventional metric tensor which plays the central role in Einstein’s
classical theory of gravitation, in the sense that the former can describe grav-
itational interactions of both integral and half-integral spin particle fields,
while the latter can do those of only integral spin particle fields.

We shall limit our theoretical framework by postulating the following.
First, we assume that the equations of motion for the proton and the electron
may be derived from a single Lagrangian by means of Hamilton’s principle. Ob-
viously the proton is not such a simple entity as may be described by the equa-

(®) 8. WEINBERG: Phys. Rev., 138, B 988 (1965).

(5) See, for instance, reviews on mathematics of spinors by W. L. BADE and H. JEHLE:
Rev. Mod. Phys., 25, 714 (1953); R. PENROSE: Ann. of Phys., 10, 171 (1960); F. Cap,
W. Majierorro, W. Raas and P. UNTEREGGER: Forf. d. Phys., 14, 205 (1966), and
references quoted therein. For nonlinear realization of spinors, see V. I. OGIEVETSKII
and I. V. PoruBarINOV: Sov. Phys. JETP, 21, 1093 (1965).

(") K. Havasur and T. NakaNo: Progr. Theor. Phys., 38, 491 (1967); K. Havasur:
Lett. Nuovo Cimenio, 5, 529 (1972).
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tion of motion. Nevertheless the latter would be a good approximation at
least for a low energy proton, on the one hand, and higher-order radiative
corrections would later be incorporated into the form factors, on the other
hand. Second, we demand that:

a) the action integral be invariant under a general co-ordinate trans-
formation;

b) the action integral be invariant under a global Lorentz transformation
{see (2.38)-(2.41) for definition);

¢) interaction Lagrangians depend linearly on at most the first derivative
of a spinor field and the gravitational field (in other words no higher derivatives
are included in interactions than those involved in the corresponding free
Lagrangians);

d) a free gravitational Lagrangian be of bilinear form in the the first
derivative of the gravitational field.

Our gravitational field exceeds the metric tensor in number. In order to
avoid unnecessary confusion we explicitly state that our theoretical framework
differs in genmeral from the so-called tetrad version of Einstein’s theory which
assumes, instead of &), that (%)

b') the action integral be invariant under a local Lorentz transformation
(see (2.38)-(2.41) with w,(2) = — w;(®)).

The tetrad version thus removes (as nonphysical) six additional degrees of
freedom of the tetrads by the assumed local Lorentz invariance. The tetrads
then have exactly the same number of components as the metric tensor. In
fact the tetrad version is equivalent to Einstein’s theory, being in perfect
harmony with Einstein’s idea that 10 components of the metric tensor, or
equivalently of the tetrads, are in principle determined by the stress tensor
(with 10 components) of macroscopic bodies through Einstein’s equation of
gravitation. The assumption b), on the contrary, does not eliminate from the
outset the six additional degrees of freedom of the gange field. Whether or not
these are physical then depends on how the proton and the electron interact with
the gravitational field. In this respect it is preferable to distinguish the gauge
field from the tetrads. For a particular interaction our theory may acquire
the local Lorentz invariance.

The reasons why we take b) rather than b’) are that i) there is no exper-
imental evidence against the assumption b), nor against b'); ii) a more
general theoretical framework than the tetrad version will be set up, where

(&) K. Havasni and A. BREGMAN: Ann. of Phys., 75, 562 (1973); K. HAYASHI:
General Relativity and Gravitation (Berne), 4, 1 (1973).
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the Pauli-type form factors may be derived; and finally iii) the dynamical
assumption inherent in Einstein’s theory and the physical significance of the
local Lorentz invariance will be made much clearer. We emphasize that as
postulated earlier our theory reverts to Einstein’s by the macroscopic limit,
and that in parallel with this limit the global Loremtz invariance, assumed at
quantal level, will be taken over by the local Lorentz invariance prevailing in
Finstein’s theory. Since the six additional degrees of freedom of the gauge
field may be excited by the spin of the proton and electron, it is clear that
classical experiments can neither prove nor disprove the assumption b). The
present experimental status will be described later on.

This paper begins in Sect. 2 with the enumeration of all the possible grav-
itational interactions, which amount to fifteen types. The analysis of these
interactions leads to the first conclusion that for only one particular com-
bination of the interactions, called Einstein’s interaction, the energy-momentum
tensor defined as a source of gravitation becomes symmetric, and for any other
combinations of the interactions the energy-momentum tensor becomes asym-
metric. Our theory acquires the local Lorentz invariance in the former case
and has only global Lorentz invariance in the latter case. The one-to-one
correspondence is thus established among them and schematically drawn
as follows:

Einstein’s interaction <» symmetric energy-momentum tensor

«>local Lorentz invariance,

deviation from Einstein’s interaction <> asymmetric energy-momentum tensor

<> global Lorentz invariance.

In view of the first conclusion a free gravitational Lagrangian is then given
in Sect. 3 in its most general form with four arbitrary parameters. The field
equation of gravitation is derived from it by Hamilton’s principle and a
retarded solution to the linearized field equation is obtained. The analysis
of the solution restricts the free parameters to only one, denoted by A. The
ensuing field equation splits in the weak-field limit into the symmetric and anti-
symmetric parts:

Ll Si; = — #T ey ’
(1.2)
O Alci = — My ’
where 8,;= 8; and A,;=— A4, are linearized parts of the translation gauge

field, subject to the divergence-free conditions, and x?= 8aG/c* (Einstein’s
gravitational constant). The second conclusion is that if there is any departure
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from Einstein’s interaction, then there must be a skewsymmetric tensor field
A,;(x), or, when quantized, a massless scalar particle, termed for short
« deviaton ».

The linearized gravitational interactions are divided into 4 classes in Sect. 4
according to the degree of the reflexion symmetries; (C, P, T') = (+, +, -+),
(+,—,—), (—,+,—) and (—,—, +). This result leads to the third conclusion
that for Einstein’s interaction the Einstein form factor &,(4) may be given a
theoretic basis, while for any other interactions the symmetric property of
the energy-momentum tensor is incompatible with the nonvanishing Pauli
form factors G,(0) and G4(0). In other words the possible existence of the
latter two must involve at least one additional form factor Dy(¢*) (all others,
accompanied with momentum transfer, wil systematically be given in a
separate paper), which should now be included in the matrix element of an
agymmetric, conserved energy-momentum tensor in the form of

{1.3) ﬁ(Pz){(éﬂ)VanDl(Q?)}’“(Pl)y

to which a deviaton may couple with the strength 4. Needless to say, a graviton
couples with the strength x to the symmetric part (1.1); in particular the first
term G,(¢%) gives rise to Newton’s law in the long-range limit (¢ —0) with
G,(0) =1.

The second quantization of the skewsymmetric tensor field A,; is carried
out in Sect. 5. The potential acting between a proton and an electron, generated
by exchange of a deviaton according to (1.3) with D,(0) =1, is given by

(1.4) V(r) = (h*¢*[8)(A%/dm) -

{(87/3)(67-06°)8(r) — (1/r*) [(67-6°) — (3[r*)(a?-T)(a* 1)1} .
As mentioned earlier, whether or not the postulate b) holds at the quantal level
depends on whether or not such a deviaton exists. The best upper bound on

the coupling constant of a deviaton to the proton or electron has been given
from the precision measurements in quantum electrodynamies (%):

(1.5) A [4r <10-3he/(GeV )2 .

The final Section is devoted to a brief discussion of neutrinos acting as a
source of gravitation.

(® 8. Mivamoro and T. Nakaxo: Progr. Theor. Phys., 45, 295 (1971).
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2. — Structure of gravitational interactions.

Our aim in this Section is to find all the possible gravitational interactions
of a spin-} field under the assumptions stated in the Introduction. We pos-
tulate a total Lagrangian composed of two parts (tensor densities will be written
in boldface throughout this paper):

(2.1) L=L+1L,,

and we will initially consider only the material Lagrangian L’ involving the
gravitational interaction, and do not specify, for the moment, the form of
a free gravitational Lagrangian L,. In doing so, we shall obtain a condition
that L, must satisfy.

We start with the well-known Dirac Lagrangian

(2.2) L,= gy — Poyap) + mpy,

where partial derivatives taken with respect to z, are denoted by ,k and the
gamma-matrices satisfy the anticommutation relations

{Vey Yib = 2010,

with Latin indices running from 1 to 4; the fourth component of z,is pure
imaginary, 4.e. x, = tct, and we shall use units ¢=%=1. Now we demand
that its action integral be invariant under a general co-ordinate transformation.
The simplest solution to this problem was already given in detail in previous
papers (7). Hence we here present a brief summary of the leading results obtained
therein. Two steps are required for meeting our demand. First, the ordinary
derivative appearing in L, should be replaced by the invariant derivative
as follows:

(2.3a) v,> Dy =ba)y,,
where a partial derivative taken with respect to the Riemann-space co-ordinate
¢ (u=0,1,2,3) is denoted by ,u. The transformation properties of our gauge
field b,*(x) are similar to the conventional tetrads. It transforms, on the one

hand, like & contravariant vector with respect to a general co-ordinate trans-
formation as the position of the Greek index implies:

(2.4) b () = (0T [Qa®) by ()
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and, on the other hand, like a Lorentz vector with respect to a Lorentz trans-
formation acting on the Latin index,

(2.5a) Ek”(m) = Aud (x),
where the constant matrix A obeys the Lorentz-invariance condition
(2.5b) ATA=1.

The reason for this dual property characterized by Greek and Latin indices
is easily understood by noting that y , behaves like a covariant vector under
a general co-ordinate transformation since a spinor field is a scalar in a Riemann
space, and that the bilinear form ¢y, , has therefore the mixed transformation
properties, i.e. it behaves in the same way as ¥ , under a general co-ordinate
transformation and like a Lorentz vector under a Lorentz transformation which
defines the spin of a spinor field and has nothing to do with a general co-ordinate
transformation (see (2.38)-(2.41) for the explicit specification). For further
details we refer the readers to our previous papers. Secondly, the resultant
Lagrangian should be multiplied by the determinant b, where

b=det (bky(x))l ,
and the inverse gauge field b, (») is defined by

b (x) b, (x) =&,
(2.6)
b (x)b, () =0y, .

Thus, we obtain the modified Dirac Lagrangian

(2.3b) L, = b{3(@y: Dy — Di§ o) + mipy} .

This is the simplest form for L', and we are now going tofind the more general
form with the help of (2.3b). This we do by following the analogy with the case
of the electromagnetic interactions. The equations of motion derived from L, are

(2.7 viDp + Viyip +mp =0,
where
(2.8) V= (bb),, .

The quadratic form of these equations is easily obtained by multiplying the
dual operator

'}’mDm+ %‘Vm)/m_m
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from the left:

(2.9) {Dka‘|"iO'kszDz”‘m2‘|‘ VD, + %(Dkvk) +
+ 2 VeVt (@2)0u (D V)}w=0,

where (D, V) means the derivative acts on ¥V, only, not on a spinor field, and
(2.10) O = (Yiyi— vy [20.

In the presence of the minimal electromagnetic interaction, the Dirac equation
is well known to be expressed as

(2.11) {yi(0r—iedy) + mly =0,
and its quadratic form becomes
(2.12) {0+ (el2)on, Fiy—m*yp =0,

where F,, = A,,— A, , is the electromagnetic field strength, and [J’ denotes
(x—te A,)%. Very interesting is to observe the parallelism between (2.9)
and (2.12); D, D, corresponds to the d’Alembertian operator in special rela-
tivity, and more significantly,

(0 —1ed)(0, '—/ieAl)w = (9/2)01:1F/.~z y

oD, D, Y = oy, ka/me,
where

(2.13) Crii(@) = — Cprpl@) = b, btv(bm/l.v - mwt) :

We shall call this quantity the gravitational field strength. Our terminology
may be justified by the above correspondence, and may be given a further
basis by noting the fact that the quantity (2.13) behaves like a scalar under
a general co-ordinate transformation. Our gravitational-field strength is, how-
ever, reducible under a Lorentz transformation, contrary to the electromag-
netic field strength which belongs to a direct sum of the Lorentz-group repre-
sentations (1, 0) 4 (0, 1) and hence irreducible under a space reflexion.

To facilitate the argument, we decompose our field strength into the irre-
ducible components with respect to a Lorentz transformation plus a space
reflexion. This can be done with the help of the standard technique of Young
tableau; we obtain the following three irreducible tensors.
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1) The tensor belonging to the (2, 1) + (1, 3) representations

(2.14) Tim(@) = 2 Crim+ Coim) + §0m Vit 0mi Vi) =301 Vi,

with the following symmetry properties:

Tyim®@) = T yeml)

{2.15a)
Ty1n(®) + Tims(@) + Tra(®) = 0.

Further, its trace vanishes, and hence it has only 16 components:
(2.15b) Timm(@) = 0 = Tppil) .
2) The vector of the (}, }) representation
(2.16) V(@) = Crmi(®) = (00,)) , .
3) The axial vector of the (1, 1) representation
(2.17) Ar(@) = (4/8) ertmn Crmnn(@)

where &, is the 4-dimensional Levi-Civita tensor; g = 1.
Thus, the field strength is now expressed in terms of these irreducible
components

(2.18) Crin(®) = %Tk[lm] + %5“1 Vs F 9€5imn A y

where square brackets enclosing indices indicate antisymmetrization.

With the field strength which is Lorentz tensor and invariant under a gen-
eral co-ordinate transformation, we are ready to construct any kinds of the
gravitational interactions invariant under arbitrary co-ordinate transformations.
We enumerate a few examples. Any gravitational interaction of a spin-} field
takes the form of a product of the material part and the gravitational part.
As for the latter, derivatives of the field strength could bederived by applying
the invariant derivative (2.3a) successively to the field strength, e.g.

-Di Oklm = bi” ay Cklm ’
-Dz'D.’iCklm ’

and so forth, where the former contains the second derivatives of the grav-
itational field, while the latter the third derivatives. One mayenvisage a more
complex form, e.g.

(2.20) Crin D, Cpq,
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which involves the first derivatives of the gravitational field quadratically.
For the material part, we can also construct arbitrary kinds of the bilinear
form in the spinor field, which are invariant under general co-ordinate trans-
formations, by making use of the invariant derivatives, e.g.

(2.21a) pI'Dy—Dp- Ty,
(2.21b) #I'D.D;y— D, D;p-I'y,

and so on, where I' denotes any set of the Dirac matrices 1, 4y, iyy, 9ys, 105,
Ouys With y5 = y172¥sYs.

Since there dare too many possibilites in forming theinvariant gravitational
interactions, as seen above, it is useful to classify them into classes according
to rank n of the derivatives applied to the gravitational field. Euach such class
may further be classified according to vank m of the derivatives acting on the
spinor field. Now the third assumption specified in the Introduction enor-
mously restriets the possible forms of the gravitational interaction. It requires
that the rank of the derivatives appearing in the interaction Lagrangians be not
higher than that appearing in the free material and gravitational Lagrangians,
and that the derivatives of the spinor and gravitational fields should appear
linearly in the interaction Lagrangian, respectively, if they are present there.
For the material part, it then follows from the Dirac Lagrangian that m can
only take the values 0 and 1. For the free gravitational part, # can also tuke
the same values as m, because we can construct, as we shall do in the following
Section, the most general form of the free gravitational Lagrangian in terms
of our gravitational-field strengths. Here we note that this general form in-
volves the Einstein’s free gravitational Lagrangian as a special case, and that
the apparent contradiction thatl the latter Lagrangian involves the second de-
rivatives can be resolved by observing that these second derivatives appear only
in the form of a four-divergence when expressed in terms of the gauge field
b"(r). Thus we are led tothe following classes of the gravitational interactions:

A) minimal interaction (n = 0):
only the case with m =1 is allowed;
B) nonminimal interactions (n = 1):
Bl) m =0,
B2y m=1.
The class A) eonsists of only the minimal-coupling Lagrangian L, given by

eq. (2.3b). No other couplings are allowed in A); one could yet presume
&L, + CL,,, where

Lju = b3(Pysyi Dy — Dy§-ysypyp) + mipy.
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However, for the choice £2— %=1, the resultant equations of motion reduce,
in the special-relativistic limit, to the usual Dirac equation with a different
representation of the gamma-matrices; otherwise these equations do not.
Anyway, such a Lagrangian can be ruled out. Before writing explicitly the
gravitational interactions of the class B), it is eonvenient to prepare some
notation for bilinear forms of the spinor field. Now we use the following no-
tations for the Hermitian bilinear forms coupled to the field strength, or more
precisely its irreducible components which are of odd-rank ILorentz tensors.
All the gamma-matrices are taken to be Hermitian throughout this paper.
For nonderivative type

(2.22a) Ji(w) = gy,
(2.22b) Ji@) = ipysyey,
and four derivative type

(2.23a) Jum(@) = (@20(P0 D — Dnp-0uY),

(2.23b)  Jy,(2) = 3P0,y D, 9 — D, P 0uy:¥),

(2.23¢) Ix) = (i[2)FDp—Dip-y), L) =3Fy: Dy —DiP-ys9).

We note again that all these bilinear forms are Lorentz tensors invariant under

a general co-ordinate transformation.
Now, for the class Bl) we have the following four types:

L ,=g¢bV,J.,
L,=g,bV.J;,
L,=g¢,b4,J,,
L,=g,bA.J:.

(2.24)

For the class B2) we have two interactions for the tensor part
Ly=g;bT iad xim

2.25
(2:25) L¢=¢:bT .. J°5

mkl~ kim

and eight interactions for the vector and axial vector field strengths

L, =g, bV v smm L, = gy bAJ mm s

Ls = gs kaJ?cmm ? L10 = glo bAleimm *
{2.26)
Ly, = g, bV, I, Li; = g2 bA I,

L12:gl2bvk11i’ L,= gubAkI;i,
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All the coupling constants are real numbers. It should be noticed here that
any permutations of Latin indices in (2.25) do not give rise to any new inter-
actions owing to the symmetries exhibited in (2.15a¢) and in the definitions
of the bilinear forms (2.23a) and (2.23b). This is also the case for the interac-
tions (2.26). As for a two-component massless neutrino, there are only 3 La-
grangians, L,, L ~ L,, and L,~ L,, invariant under the «chiral projection »
v— {(1 £ y5)/2}p (~means equivalence). We can now write the most general
form of the gravitational-interaction Lagrangian in the form L'=L,+ L,,,
where the index M means not only the basic material part but also the
minimal interaction part, and the indices NM refer to the nonminimal
interactions defined above.

We have so far not touched upon the connection between the gravitational
interaction implied by Einstein's theory and ours listed above. Although his
theory cannot directly be applied to a system involving a spin-1 particle, we
shall transcribe it into our language. As is well known, Einstein’s prescrip-
tion to introduce the gravitational interaction amounts to replacing the or-
dinary derivative appearing in a material Lagrangian for an integer-spin field
by the covariant derivative with respect to the Christoftel symbol I, , which
is denoted by a semicolon and usually referred to as the minimal gravitational
interaction in the literature. However, it is not minimal but nonminimal in our
framework, as we shall see in the following. First, let ¢“(x) be an arbitrary
contravariant vector field in a Riemann space, to which we apply this
covariant derivative:

(2.27a) =0+ 1", .

Secondly, as often adopted in the literature, we use the familiar relation
between the metric tensor g,, and our gauge field

{ 9,,(@) = b, ()b, (@),
(2.28)

g*"(@) = b*(x) by’ (2) .

If we rewrite the Christoffel symbol by means of this relation, and multiply
both sides of (2.27a) by b b, , we find

(2.27h) bklbmﬂﬁéy;l =D ¢, —D,,.$,,

where D, already appeared in (2.3a) and (2.19), and

I
el

Py

P
(2.29)
Dmlk = %(Omtk - Clmk - Ckml) .
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This formula can further be rewritten, in terms of the spin matrix §;, for a
vector field ¢,,; its matrix elements are

(2300/) (S,ld)m” = _i(ékméln_‘éknalm) .

It is easy to show that this matrix is a representation of the internal Lorentz
group generators and hence satisfies the Lorentz-group commutation relations

(230b) [Skla Smn] = i(ékmSZn + 6lnSk'm_6an£m_6lmSkn) N

Thus, denoting the left-hand side of (2.27b) by Z:¢.., we obtain from (2.27b)

(2-270) ‘@k¢m: 'Dk¢’m 7//"' uk ¢ﬂ’
or equivalently, but more concisely,
(2.27d) D¢ = D, —(i[2)D,, 8,8,

where ¢,, is written as a eolumn vector ¢, on which the spin matrix acts. In
passing we note that the second term on the right-hand side of (2.27d) vanishes
for a particular affine connexion, I, = b/b,, ,, used in (2.27a). Now we are
ready to apply the Einstein’s gravitational coupling to a spinor field by using
the form (2.27d); the latter form can be algebraically continued to the case of
a spin-} field by modifying the spin matrix only. Thus we have

Dy = Dy —(i/2) DSy

D =D+ (i[2)D ;. P85,
where the spin matrix for a spinor field is well known:
(2.32) S;=10,.

1f we insert Einstein's derivative (2.31) into the free Dirac Lagrangian (2.2),
we obtain

(2.33) L,—%bA,J;=L,+ L,, with g, =—

We shall call this the Einstein gravitational interaction Lagrangian. Here we
note that the extension from (2.27d) to {2.31) is of course not unique. Never-
theless, we say that the latter corresponds to the Einstein gravitational coup-
ling in view of the following faets. The energy-momentum tensor defined as
the source of gravitation is defined by

(2.34) T, =—(3L'[3b, )b

u?



GRAVITATIONAL INTERACTIONS OF THE PROTON AND THE ELECTRON: ETC. 653

where (3/8b,,) stands for the variational derivative with respect to b,,. For
L'=L,, it follows immediately that the energy-momentum tensor is not
symmetric in this case:

(2.35) T = 02y Dy — D, py,p) ~ 6, L, .

In the special relativistic limit specified by b,/ — 6,/, this energy-momentum
tensor reduces to the well-known canonical energy-momentum tensor which
is obviously not symmetric:

(2.360) TIZ_) T:l = %(7/_)7}1 Y “T/—’.kyz"/)) - 6leD ’

(2.36b) = (3L, [39)y . + §,(0L,[6p) — 6, L, .

On the other hand, when we choose the Lagrangian (2.33) as L’, we can obtain
the symmetric energy-momentum tensor in this case and observe the following
transition at the special relativistic limit:

(2-37) ch = {82 (LM_ (3b/4)Asz)} bl,u g Tfl - %‘(Tzz + Tgc) ’
e

where T7, coincides with Belinfante’s symmetric energy-momentum tensor
for a spinor field. This calculation is rather lengthy, but was already given
in detail in our previous papers (), hence we here quoted only the result. We
may now better understand the role played by the axial vector coupling 4,J°
in Einstein’s gravitational interaction; it is, among others, just to coun-
teract the antisymmetric part of Ty, thus rendering the expression (2.37)
symmetric. The proof of such a cancellation by calculating explicitly the
energy-momentum tensor is, however, complicated, because the equations of
motion for a spinor field must be used repeatedly to reduce the complicated
expression for the energy-momentum tensor.

We shall now supply a more powerful and simpler method to prove the
symmetry property of the energy-momentum tensor in the following. With
this method we shall obtain one of the most significant results derived in this
paper. First, our Lagrangian L' is, by construction, invariant under an internal
Lorentz transformation, or equivalently its infinitesimal form specified by

(2.38) ot =Tt =¥,
(2.39) bt (@) = b (@) = b(@) + (i[2) w,,(8L),, b ()
(2.40) (@) > p'(x) = p(x) + ({[2)w,;8,;y9(x) ,

(2.41) m,;;=—wm;; (infinitesimal constant parameters),



654 K. HAYASHI

with the spin matrices 8}, and §,; as given by (2.30a) and (2.32), respectively;
the transformation (2.39) was already mentioned in (2.5¢). If we insert these
transformations into the invariance conditions of L’ (see (2.22) of ref. (%)), we
can derive the following relation, using the equations of motion for a spinor field:

(242) TI:L_ le = (S”kz -+ NMS”kz),lu ’

where the energy-momentum tensor T}, is of course given by (2.34), and the
spin angular-momentum tensor consists of two parts:

(2.43a) Stq = (0L'[oy )iS,v,
(2.44a) S = (0L, [0b,,, MiS;,)

mn biw *

A simple calculation yields for L'=L,,

(2'43b) Smkl - bmusﬂkl = (b/g)smkln "/-)75 ))nw’
where we have used the anticommutation relation

{Vk, Glm} = (2/?’) sklmn?s‘}’n .

Clearly, this relation (2.42) may be regarded as a simple generalization of the
Tetrode formula in special relativity (1°)
(2.45) Tlfl — I = Stim -

Here T? is the canonical energy-momentum tensor (2.36) and S, the canonical
spin angular-momentumtensor

(2.46) 8. = (©L [0 ,)iS, v

Now it is quite easy to show the expression inside parentheses on the right-
hand side of (2.42) vanishes for the Finstein’s gravitational interaction Lagran-
gian. The fact that the equation of motion for a spinor field is already taken
into account in the relation (2.42) enormously simplifies the argument by which
it is decided whether the energy-momentum tensor defined by (2.34) is sym-
metric or not. The expression (2.44a) can further be simplified by noting that
L,, is a functional of the gravitational field strength Crim:

(2.44b) FHG it = Dy S = 2 (%: — ggl’—i) .

() H. TETRODE: Zeits. Phys., 48, 52 (1928); 49, 858 (1928).
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It follows immediately from this formula that (2.44b) does not vanish for
L,,=1L,, L, Ly, Ly, L, and Ly, and that the totally antisymmetric contri-
butions arise from L,, L,, L,, and L, which contain only the axial vector part of
the gravitational field strength; we here write them down, by suppressing indices
NM for the convenience of typography:

St = (295/3) bexrnn Py Y for L,,
(2‘47) Smkl = (2g4/3) baklmn 1/)—')/57"1/) fOI‘ L4,
S’lﬂkl = (2’599/3) bglilmﬂ']nj)‘ fOI' L9,
Smkl = —(244,,/3) bskzmn’]ijj for Ly,.

After having investigated all the gravitational interactions, we are now led
to the following conclusion: All the gravitational interactions enumerated in
this Section, except for Binstein's gravitational interaction (2.33), give rise to
an asymmetric energy-momentum tensor as the source of gravitation.

The above conclusion imposes a serious condition on a free gravitational
Lagrangian L;, namely L, should be so chosen that its variational derivative
with respect to b, (#), multiplied by b, ,(z), is not symmetric when some grav-
itational interactions other than the Einstein gravitational interaction are
present. Hence in this case L, cannot be the Riemann scalar (expressed in
terms of b, (2) by (2.28)). In other words, we would have to modify drastically
Einstein’s theory of gravitation at the very root.

We close this Section by remarking that any deviations from the Einstein
gravitational interaction must inevitably lead us to a more general form for
the free gravitational Lagrangian than the conventional Einstein one, i.e.
the Riemann scalar.

3. — Structure of the free gravitational Lagrangian.

As was shown in the preceding Section, we have to construct a more general
free gravitational Lagrangian than Einstein’s when we consider those
gravitational interactions other than Einstein’s as given by (2.33). In this
Section we shall construct the most general form for L, under the four as-
sumptions specified in the Introduction. Particularly, in view of the third
assumption demanding that our L, should consist of at most first derivatives
of the gauge field b,*(x), we shall further postulate that L, should depend upon
derivatives of the gravitational field quadratically, if these are present. With
these assumptions in mind, we are now led to the most general form for a free
gravitational Lagrangian with six arbitrary coefficients

(3.1) L= b(OCT,zdm -+ ﬂV: + ‘)/A;i + 0+ UVJ;A/; + 188kimn T T:‘m‘n) )
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where the field strength and ifs irreducible components were all given in Sect. 2.
We notice here that this Lagrangian is obviously invariant under the internal
Lorentz transformation defined by (2.38)-(2.41). The last member in (3.1) can
be absorbed into the fifth term by virtue of identity

(%)(bbm#Am),” = b(VkAk - (2’5'/9) Exmn L jr Timn) y

hence we shall drop it hereafter. To permit ready comparison with the cele-
brated Einstein’s theory of gravitation, we put our Lagrangian into the more
convenient form (see Appendix A for derivation)

(3.2) Lo= Ly/2x* + b{(xx + f) VE— (9423 A2+ iV A — (b, * V) [

Here we denote the Einstein’s gravitational Lagrangian by Ly, 4.e. Ly,=1—¢g

(R4 “l), where R is of course the Riemann scalar now expressed in terms
of our gravitational variable b,*(x) and 1 the cosmological constant adjusted
as 2= 6/3x. (See Appendix A for the explicit form of R.) x is Einstein’s
gravitational constant, related to one of our parameters as

1/%* = 3e,
(3.3)
i dm = 2G ¢! = 1.34 102 fic[(GeV)?,

where G denotes Newton’s gravitational constant, and
(3.4) 12 =o—4y/9.

Variation of a total Lagrangian (2.1) with respect to b,m(w) gives rise to the
field equations, upon multiplying these by b, ():

(3.5) Gu—xBy =—x*T,,

where the first member on the left is the familiar Einstein’s tensor now written
in terms of our gravitational field b,(x)

(3-6) le = %(SLE/Sbk,‘) bl” = b(Rkl_ %51:11‘3_ 6“ z) - Clk .

The explicit form for the contracted curvature tensor E,,;is given in Appendix A.
The souree of gravitation T, was already defined by (2.34), and
3.7) Bkl =—(b," klm + {2 tmn kmn Omnkanl} -+ 61:11‘:;7

where L; stands for the second term of (3.2), enclosed by curly brackets, and

(3-8) klm-4b{a+ﬁ 61[1 m]+( /412)13L1mn n/6+( / )(6k[l-A-m] (/ )aklmnvn)}'
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As is clear from these field equations, the energy-momentum tensor can become
symmetric if and only if the free parameters are subject to the following
conditions:

(3.9) x+f=0,
(3.10) x—4p[9 =0,
(3.11) n=0.

In other words, when T, hasa skewsymmetric part, the free parameters cannot
take these special values given by (3.9)-(3.11). As will beshown in the following
Section, P, C andfor T violating gravitational interactions may be obtained,
in the weak field approximation, from the nonminimal gravitational interac-
tions of the class B) defined in Sect. 2. Hence, one should add the second member
in (3.2) to the Einstein’s free gravitational Lagrangian if one wishes to discuss
the violation of any of P, ¢ and T.

Now we are going to investigate to what extent the arbitrary parameters
can be chosen beyond the special values (3.9)-(3.11), by considering some
physical «boundary » conditions. This we do first by using the linear ap-
Pproximation

(3.12a) bl (x) = 6, + a,"(x), b, (x) — O + @, (),

where the linearized fields a,”(x) and a;,(x) are related toeach otherby (2.6), i.e.
(3.12b) a,"(7) = — dp() .

‘We note that distinction between Greek and Latin indices is no longer neces-
sary in the linear approximation. We 21so note in passingthat the determinant

b becomes 1 + a,,(*) in the weak-field approximation. We then split the
field equations into the symmetric and antisymmetric parts

(3.]3) G, — %2B(m> = —ux T(kl) ’
(3.14a) By = Tua,

where

(3.14b) By =— (bm”F[li'm)./t ’

because the second term of (3.7), enclosed by curly brackets, is a symmetric
tensor. Applying the linear approximation to (3.13), we obtain

(315) D Skl + 7{2(06 + ﬂ)(ekpl - ()Icl D) Smm + (’5/3)773187"";(/;81)?,' Amn - %T(kl)y

48 — Il Nuovo Cimento A.
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where we suppressed the cosmological term multiplied by 4, and we used the
following notations and the divergence-free conditions: [1 is the d’Alembertian
operator and

(316) #S = Qe — %6klamm 1]

(3.17) ¢8u=0.

Likewise, we obtain from (3.14)

(3.18) 0l Ay — (4/3) A emnitn €1y 03 A pin = — ATty
where we adopted the notation

(3.19) My = a,

and also the divergence-free condition

(3.20) 0,4, =0.

At this point we emphasize that there is no a priori reason to identify 4 with
Einstein’s gravitational constant, hence we shall leave it as a free para-
meter, assuming it o small that the linear approximation may hold for a skew-
symmetric field (this assumption will be verified in Sect. 5). The parity-violating
term appears in both sets of field equations, (3.15) and (3.18), thus rendering
them coupled equations, while the vector part VZ and the axial vector part A;
contributes 1o the symmetric and antisymmetric parts of the field equations,
respectively. If we take the trace of (3.15), we get

(3.21) D Smm = %(OC/‘B) Tmm b
which further simplifies (3.15) as

(3.22) Dskz + %2 + ﬂ) 01 8 S in%lsmm‘(k 9y ajAmn/3 =

:_”(T(kz)_akzo“’?:%ﬁTmm) .

1t is worth noting that, for the static gravitational source to which only the &k =
= | = 4 components can contribute, (3.22) becomes identical with the Poisson
equations except for the additional factor dependent on the arbitrary parameters

(3.23) ASyo(x) = — % ’213% Too() ,

where Sy, =—=8,, and Tyy=—T,,.
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Apart from the linear approximation, one can determine the arbitrary
parameters involved in L, by comparing a solution of our field equations with
the exact solution to Einstein's equation of gravitation. It was shown in
our previous paper () that one has to set the particular relation (3.9) for the
parameters so as to reach the well-known Schwarzschild’s solution of the statie,
spherically symmetric gravitational field. It was also pointed out there that
it is not neeessary to take the special values (3.10) and (3.11) for that purpose,
because all the components of the axial vector field 4,(x) vanish in the case of
the static and spherically symmetric gravitational field.

However, we can discuss the physical meaning of 7 from a different theoret-
ical side. Recently the retarded solutions to (3.18) and (3.22) have been given
in their most general form by SeTo (*!). First, for # = 0 the retarded solution
to (3.18) is well known; it is given by the formula (B.3) in Appendix B, where
81, Top and » are now replaced by 4,,, T\, and 4, respectively. In this case
the retarded solution to (3.22) was already givenin a previous letter (*) and
hence we quote the result obtained therein: For a 4 0 the 8, ,-field prop-
agates not only on the light-cone but also inside the light-cone, thus in con-
flict with Huygens’ principle. Obviously, for « + § =0 the solution is the stan-
dard one given by (B.3). Second, for 5 == 0, the retarded solution to (3.18)
takes the form of

_ A1
2 [1+ (22f3)P

(3.18a)  Ay(x) f@(y") o(y*)d*y-
ATnple—y) + (7712/3)77[1“'1(-”‘—?/)} ’

where 7' = €ximn Timm/2%. The divergence-free condition (3.20) imposes the
condition on the energy-momentum tensor

(3.18b) aj{TijJ + (7722/3) T[ki]} =0.

The solution (3.18a), together with the condition (3.18b), is inserted into (3.22)
only to give the complete retarded solution (0, = ¢/cx;)

X

(3.22a) Shsla) = o 6(y*) (y2) Tz — y) diy +
+ 4;;2.{0(?/0) 5(_7/2)8(;0) (5(32)(14"1/(142{8}, ?’m T[mkl(x_‘ ./l/ —3) + ak am T[m}']} +
*® ”2(a+ﬂ),,, o s o )
+ 5;7; 1— 3;{2(“ + ﬂ) {6k1f0(?/ )b(y )Tmm(-l y) d Yy +

1
+ 5 f@(y") oy 0(z°)0(2%) 18, T (@ — Y — 2) d“yd“ﬁ} .

(1) The author is indebted to Dr. N. Sero for illuminating discussions of the solution
in private communications when this work appeared in the form of preprint.
(%) K. HavasHi: Lett. Nuovo Cimento, 3, 739 (1972).
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If the energy-momentum tensor is conserved, 0,7T,;= 0, then the divergence-
free condition (3.17) is satisfied. In this case the S,,-field propagates inside the
light-cone even for o+ f =0, in conflict with Huygens’ principle. The
trouble lies in the second term of (3.22a), where a skewsymmetric part of the
energy-momentum tensor acts as a source of the §,-field. Evidently, this
infamous term vanishes for 5 =0, although # does not appear therein ex-
plicitly.

To sum up, we shall take # =0 and « + =0 in order to retain Huygens’
principle on the one hand and Schwarzschild’s solution on the other hand.
We make a short remark here. If we take free Dirac particles (subject to the
Dirac Lagrangian (2.2)) as a source of gravitation, then the energy-momentum
tensor is given by the canonical one (2.36), whose skewsymmetric part is con-
served, ¢;T ;= 0, but its dualis not, 0; T 0. Thus, (3.18b) requires 4 = 0.

Consequently, we are left with a single free parameter A, which cannot be
zero when the energy-momentum tensor of matter fields is not symmetric.
Finally, we obtain the following two sets of the field equations in the weak-
field limit:

(3.24‘) D Skj = — MT(k)') ’
(3.25) UAy,=—21T4y,

where the linearized field variables are both subject to the divergence-free
condition, (3.17) and (3.20). Needless to say, the first set is the indispensable
ingredient of any reasonable gravitational theory which must be able to ac-
count for Newton’s law of gravitation.

The conclusion we draw is therefore the following. When the energy-
momentum tensor defined as a source of gravitation is not symmetric, the
field equations for gravitation must inevitably be supplemented, for consistency,
by (3.14) with the conditions (3.9) and (3.11). In the weak field limit, the
familiar field equations for the linearized gravitational field S;;, (3.24), must
inevitably, for consistency, be accompanied by a new set of the field equations
(3.25) for a skewsymmetric tensor field A,;, whose source is an antisymmetric
part of the energy-momentum tensor, related to the spin of the source particles
involved by the Tetrode formula, as seen by (2.45). Such a field, however, has
not yet been observed.

4. — Classification of gravitational interactions by P, C and T.

In this Section we shall discuss the discrete symmetries such as parity (P),
charge conjugation (C) and time reversal (T) in the weak-field limit where we
can apply the usual quantum field theory.
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First, with the help of the weak-field approximation, we obtain the line-
arized field strength

(4'1) Cklm('l‘) = Qpr,m — Apm, 1y

and thereby its irreducible parts with the correct choice of the linearized field
variables, (3.16) and (3.19)

(4.2) Vilw) = —2 3 Smmi

(4.3) Aylx) = l(i/3)8klmnAlm,n .

Inserting these expressions into L,, ..., L, and L, ..., Ly, we get the explicit
forms for these gravitational interactions in the linear approximation. For
the irreducible tensor T.,(»), on the other hand, it has a rather complicated
expression, but can be simplified when coupled to the bilinear forms J,,, or

J3,,, Which are antisymmetric with respect to the first pair of indices:
(4.4) Toiid iim = 7‘% Smk.lelm - lAkl.ka(Im) — Vkamm y
(4‘5) kalJ:lm = %% Smk,l' ;lm - 2"A‘kl,m Ji‘(lm) - VkJ?cmm °

Thus, we now find the linearized forms for all the gravitational interactions
enumerated in Sect. 2, which will not be written in boldface but in usual capital
letters. In particular, the minimal gravitational interaction becomes

(4'6) Llll—._)‘LDialelcc‘L7

where T, is the nonsymmetric canonical energy-momentum tensor defined
by (2.36), while the Einstein gravitational interaction is linearized as
4.7) L,—$bA,J;—L,—a,,T,,
where T}, is Belinfante’s symmetric energy-momentum tensor given by the
second line of (2.37) for a spinor field. As has often been remarked in previous
Sections, a skewsymmetric field would couple to a spinor field if the grav-
itational interaction deviates from Einstein’s (4.7).

Now we are going to decide whether or not these interactions conserve P,
C and/or T. For this purpose, we shall henceforth take the linearized fields
Swul(z) and A, (x) as quantized free Hermitian fields representing neutral
massless spin-2 and -0 particles, respectively. First, we may fix the charge-
conjugation parity of these fields as -, in view of the fact that the gravitational
coupling was intreduced in the symmetric way for the electron and its anti-
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particle, as seen from the Dirac equation(2.7) and its adjoint:

%Skl(fv)g—l = + Su(x) y
(4.8)

CAp(x)E = + Ay(x),

where € is a unitary operator for charge conjugation. Then, the gravitational
interactions given by (4.6) and (4.7) obviously conserve U, because the canonical
energy-momentum tensor (2.36) has the charge-conjugation parity . Next,
we postulate the time-reversal property under Wigner’s time inversion as

Sz, t) - &8, 8u(x, —1),
(4.9)
Ap(x, 1) = er8, As(x, —1),
where g, = (——-—+). Finally, for the parity operation, we have
Skz(x, t) > & Sul—x,1),
(4.10)
A=, t)— & d{—x, 1),

which guarantee the invariance of the commutation rules and the gravitational
Lagrangians (4.6) and (4.7) under P. With these transformation properties in
mind, we convince ourselves that the linearized form of the minimal gravita-
tional interaction and Einstein’s gravitational interaction do conserve P, C
and 7T, separately. In other words, this is trivial because we have required,
in view of the field equations (3.24) and (3.25), that S,(z) and A (x) trans-
form like the canonical energy-momentum tensor under C, P and T.

As for a spinor field, the transformation properties of the bilinear forms,
I,I% J,, J3%, J,, and J% , defined by (2.20)-(2.23) are easily derived by
using the standard method appearing in the text-book; here we note that the
invariant derivative D, involved in the bilinear forms, J,,, and J,,, should
henceforth be replaced by the usual partial derivative in special relativity,
because the field strengths coupled to these bilinear forms carry » and 4. We

summarize the results in Table 1.

TasLe [. — The transformation properties of the bilinear forms under C,P and T:
g={(———+).

c P T
Je, I - & &
J ,SC - — & &
T3, + £ €y &x &y
Jim -+ €L €1 Em — &, & Em
Jizm + — &€ m ExE1Em

5
Ik — — &g — &
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Now, it is easy to classify all the linearized gravitational interactions ac-
cording to the degree of space-time reflection and of particle-antiparticle con-
jugation. The final results are shown in Table II.

TaBLE II. — The status of the rveflexion symmetries C, P and T is tabulated with rank m
of derivative acting on a spinor field involved. The presence of the symmetric field S,
and antisymmetric one 4,, is indicated. Both means the presence of both fields.

m Interaction C P T 8, A, Both
0 Ly, L, - + + L, Ly

1 Ls, Ly, Ly, + + + I, Ly Ly

0 L — — + I

1 Ly Ly — — + Ly, Ly,

0 L, +- — — L,

1 Ly, Ly, Ly + — — Lg L, L

0 I — + — I

1 Ly, Ly — + — Ly, Ly,

5. — A massless scalar particle.

We have so far not discussed the physical meaning of the modified Dirac
equation (2.7), but implicitly taken this as the equation for a spin-} particle,
e.g., the electron, in the presence of gravitation. The reason for this is partly
because we have already shown in our previous paper (7) that (2.7) indeed re-
duces, in the nonrelativistie limit, to the Schrodinger equation with the New-
tonian potential. One could of course supply a more exact argument to this
problem, by considering relativistic corrections and spin-dependent terms pe-
culiar to the Dirac equation, for instance, by employing the well-known Pauli
approximation which has successfully been applied to the Dirac equation (2.11)
(to be more precise, its quadratic form (2.12)) for a single electron in a fixed
Coulomb potential.

We here touch briefly this problem so as to convince the readers that (2.7)
actually shows a parallelism with the corresponding electromagnetic Dirac
equation (2.11). Fortunately, our quadratic equation (2.9) can be enormously
simplified by the linear approximation (3.12). In fact, only the first four
terms survive in this case:

(5.1) (DD +ioy DDy —m?>+ V, D)y =0.

In the case of a prescribed external static gravitational field,i.e. the Newtonian
potential due to a macroscopic body of mass M

(5.2) o(r)=—GM|r,



664 K. HAYASHI
related to our field variable 8, as (see Appendix B for derivation)

(5.3) Su(r) =2¢(r)/c*,

(5.1) becomes

e 29\ B2 29 A
(5.4) {E—}—é/ﬁd—mﬂbﬁ-( *'—)gmﬁ—'cj +§% +
ih?
2mce?

S [ck Vé-a) + Z- v¢><v]} —0,

where we explicitly write ¢, the velocity of light, and #, Planck’s constant
divided by 27; we denote the total energy by W =me?+ E and use the con-
ventional notations for the Dirac spin matrices

. o -
5.5 a:( ) z::( )
G - o)

(o are the Pauli spin matrices).
Likewise, in the case of a fixed Coulomb potential

(5.6) @(r) = e]r,
the quadratic form (2.12) becomes

(B + e)* ek
omer | 2me

(5.7) {E toadtept— (Veo- a)} =0,

where the vector potential is neglected, and — Vg means an electricfield. These
two equations are similar in form in the first three terms, which are nothing
but the ordinary Schridinger equation. The relativistic correction due to the
velocity dependence of mass appears in the fourth and fifth terms in our eq. (5.4),
while it appears only in the fourth term in (5.7). The last two members in (5.4)
along with the last one in (5.7) are of course peculiar to the Dirac theory, be-
cause these termsinvolve the Dirac spin matrices e and Z. Further discussion
of (5.4) can be given straightforwardly; for instance, (5.4) will be represented
in terms of only the large component spinor, and thereby given a physical
meaning more clearly. When we take into account those nonminimal interac-
tions which violateC, Pand/or T and involve the symmetric field (see Table IT),
there appear additional contributions to (5.4), which will be discussed in detail
elsewhere. There is a preliminary but interesting argument on this subject (*);
we note the equation therein discussed is different from (5.4) which is derived
from the generaily covariant Dirac equation (2.7).
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Now we shift our attention to a skewsymmetric tensor field A,,(x). This
field cannot be generated by unpolarized macroscopic bodies, as is clear from
the field equations (8.25) it satisfies and from the Tetrode formula (2.45) which
relates its source, an antisymmetric part of the energy-momentum tensor, to the
spin of the spinor field. Thus, we have to consider this field as a quantized field
in order to see its behaviour. If we assume its coupling constant A to be fairly
small as compared to unity, we will be able to work in perturbation theory,
where only a free quantized field A4,,(xr) appears. Before proceeding to quantize
our skewsymmetric field, we here determine the number of its independent com-
ponents. It suffices for this purpose to consider the field equations (3.25) without
a source term and the supplementary condition (3.20) at the classical level:

(5.8a) T Au(x) =0,
(5.8b) & Apl(x) =0,
(5.8¢) Ap(e) = —A;(r) .

The divergence-free condition (5.80) lowers the number of independent
variables from 6 to 3. We can, however, envisage a gauge transformation
specified by

(5.9) Ap(a) = Ay () + ful@) ., —Fu(®)

under which the set of equations (5.8) is required to be invariant. This condition
is met if a set of the gauge functions f,(x) satisfies the relations

(5.10a) Ufulr) =0,

(5.10D) Arfulw) =0,

which are also subject to a gauge transformation given by

(5.11) fr(@) = ful@) + g(@) 1y
with
(5.12) Og@)=0.

Thus, the gauge functions fi(z) have only 2 independent components. With
a suitable choice of the latter ones, the number of independent components
of A, (x) reduces further from 3 to 1. Thus, we conclude that there is only
one physical particle associated with A,,, which is a mneutral massless scalar
particle. In fact, one can easily show that there survives only one variable,
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e.g. Ay,(x) = — Ay (2) for a plane wave propagating along the z-axis; A, (z') =
= A,,(z) for a rotation about the z-axis. In passing we note that the gauge
transformation (5.9) is nothing but an antisymmetric part of the linearized
form of (2.4). For an infinitesimal general co-ordinate transformation

(5.13) o — ot — Af*(x) ,

(2.4) becomes

k

(5.14) bl (x) = bl (x) — Af* (@) , b, (@) .

If we apply the linear approximation (3.12) to this, we obtain the desired re-
sult (6.9).

Now, we express our skewsymmetric field in terms of the creation and
annihilation operators a(p; k) and a'( p; b) of a neutral massless scalar particle
with helicity h =0, and a fictitious neutral massless spin-1 particle with
helicity h = 41, including another set of particles which have the same
nature as the former:

— —3 d3p .
(5.15) Awlw) = m)7H o055

X {eu(ps W a(p; b) exp lipa] + en(p; ) a'(p; b) exp [—ipal},

where helicity sum over % takes 41 and 0 for one set of massless spin-1 and -0
particles, and also 4-1 and 0 for another set of massless spin-1 and -0 particles,
and the symbol T means complex conjugation for e-number quantities and Her-
mitian adjoint for operators. The various conditions imposed on A4,(x) are
now shifted to the « polarization tensors » e, (p; h):

(5.16a) ea(p; h) = —eulp; b),
(5.16b) Pie(p; ) =0,

and for the gauge transformation (5.9)
(5.16¢) en(p; b) = en(p; b) +ipe(p; b) —ipeedp; b,

where e(p; k) are the «polarization vectors» involved in a free quantized
field f,(x) satisfying (5.10). We could of course take a different representation
of a free-field operator, for instance, in terms of only a single physical scalar
particle involved in 4,,(x), as deduced from a previous argument on the number
of independent field variables. Then we would have to worry about the Lorentz
invariance of the S-matrix. We have, however, learned from the Gupta-Bleuler
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formalism of quantum electrodynamics that this problem can be cirecumvented
by introducing some unphysical particles with indefinite metric (timelike vs.
longitudinal photons) with the modified version of the Lorentz condition applied
to Hilbert space so as to admit only the physical particles in the asymptotic
states. With this in mind, we have expressed our field operator A, (x) as in
(5.15). We would have to construct the polarization tensor explicitly when
the particles associated with A, (x) appear as external particles in a Feynman
diagram. On the contrary, it is here not necessary because we are only interested
in the scattering problem between spin-1 particles, more specifically, between
the proton and the electron, where A,, is exchanged in the lowest-order pertur-
bation. We need instead the propagator function for our skewsymmetric field;
for this purpose, it is no longer necessary to specify the polarization tensor,
as we will show below. What we need later in some calculations is the time-
ordered product of 4,, with itself taken between vacuum states:

— d* i
(B5.17)  (T{Au(@) Ap(y)))y = (Zn)ﬂ f . o Pualp) explipe— 1)1,

where

(5.18) Prun(p) = Y era(p; B) el (p3 B) = Pra(p) -
h

In a previous paper (1*) we discussed the method of projection operators for
high-spin propagators. Here we apply this method mutatis mutandis. First,
the numerator of the propagator function in momentum space must be anti-
symmetric with respect to k and [ as well as m and » in (5.18) because of (5.16a).
Secondly, (5.16b) now requires that contraction of four-momentum with any
of the indices in P,,,, vauish, for instance

(519) pIcPkImn(p) - 0 .

Finally, P;,,.. ought to be gauge invariant in the sense of {5.16¢). Nevertheless,
we transeribe this condition into the gauge invariance of the scattering am-
plitudes under (5.16¢), hence the numerator of the propagator is not necessarily
gauge invariant by itself. In other words, gauge-variant terms therein are
expected to be counteracted when coupled to the material part (bilinear forms
of a spinor field, in the present case). It will be shown that this cancellation
indeed occurs at least in the scattering amplitudes to be considered below.
With these properties mentioned above, let us construet the numerator;
using an unspecified symmetric tensor d,,, we write

(5.20) Pklmn: dkmdln—dk‘ndlm)

(3¥) K. Havasui: Progr. Theor. Phys., 41, 214 (1969).
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which is so chosen that it is antisymmetric under interchange of k and I as
well as of m and n. Next, let us determine the explicit form for d,,. Owing
to Lorentz invariance, this can be written as

(5.21) diy = ady, + bpepi/p?,
with two arbitrary coefficients, which must satisfy the following relation:
(5.22) a+b=1

in view of the condition (5.19). As was shown in ref. (**), the numerator of the
propagator is the projection operator in the cage of a massive particle. We here
postulate that this is also the case for our present problem. Regarding P, a8
the (km)-(In) element of matrix P, we find that the condition for the projection
operator takes the form

(523) Pkileimjn = aAPk'mln = Pkmln .

Thus, @ can take the values, -1 and 4 4. On the other hand, trace of the
projection operator is its multiplicity, the number of all the degrees of freedom
involved in A;,, i.e. 6 = all the helicity states of two massless spin-1 particles
and of two massless spin-0 particles, hence we have

(5.24) Pklk( - 6a2 - 6 .

Hence @ is either +1 or — 1, but the physical results derived by the use of the
propagator with (5.20) do not depend on the sign of a. For simplicity, we shall
take a as -+1 hereafter. Thus, we conclude that (5.17) is the propagator
for a massless scalar particle associated with the Ay -field, Needless to say,
the building block d;, of our propagator is, with the above choice of the coei-
ficients, the projection operator for a spin-1 particle in the sense that d;, selects
only the pure P-wave component, i.c.

dkmdml = dkl y
(5.25)

dmm =3 )
where
(5.26) A= O — PiPi[D? -

Before closing the argument on the propagator, we note that its numerator (5.20)
can further be simplified in the actual caleulations of the scattering amplitudes
in the following form, as can readily be verified in an explicit example:

(5'27) Pklmn - 6km61n_ 6kn61m -
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We conclude this Section with a brief discussion of the possibility that
gravitational interactions violating some of P, ¢ and T might cause the energy-
level shift of the hyperfine structure of the hydrogen atom, one of the simplest
quantum-mechanical systems. As for the usual linearized gravitational field
denoted by 8.(z) in this paper, it follows immediately from the extreme small-
ness of Einstein’s gravitational constant (3.3) that it is almost hopeless
to discuss the physical effects due to the possible violation of these discrete
symmetries, although the latter cannot be ruled out from the present accuracy
of the available data (*). We then turn our attention to a skewsymmetric field
denoted by A4,,(z) in this paper, which would have to exist in the case of vio-
lation of €, P and/or T. It is worth noting that this new field represents a
deviation from Einstein’s theory of gravitation, irrespective of P, C and T
conservation. Acecordingly, its quantum, a massless scalar particle, will be
called for short a «deviaton.» We have so far assumed that a departure, if
any, from Einstein’s theory might occur via the violation of the discrete sym-
metries. MIYAMOTO and NAKANO took the alternative way, viz. to depart
from Einstein’s theory by retaining the separate conservation of ¢, P and T (?).
They studied the simplest quantal system of the hydrogen atom in order to see
if a deviaton affects its hyperfine structure. The method of deriving a potential
from a relevant scattering amplitude has been well known (415), and hence
we quote only the result: The elastic scattering amplitude via one-deviaton
exchange between a proton and an electron, where L, contributes to both
proton and electron vertices, is given at the nonrelativistic limit by

(5.28) T(q; L,, L,) = (A*/647%)(q X 6")(q X &%) /q*,
from which the potential is derived:
(6.29)  V(r) = (A}/32m){(873)(6”-6°) d(r) — (1/r*)[(67-6*) — (3/r*)(c? -r)(0*-T)]} .

The present accuracy of the precision measurements in quantum electrody-
namies gives the upper bound on the unknown coupling (°)

(5.30) 2247 < 10-5hic/(GeV)? .

It is not yet clear at the moment if such a deviaton exists with the coup-
ling strength obeying this condition. However, one thing is clear: Whether
or not the gravitational interaction between the proton and the electron
conserves P, ¢ and T is also an open question at the moment. There are
no theoretically reasonable grounds to put G,(0) =0 = G;(0), which appeared
in Eq. (1.1).

() 8. 8. ScnweBER: _An Introduction to Relativistic Quantum Field Theory (New
York, 1960), p. 580.
(13) N. Hosuizaxi and 8. Macuipa: Progr. Theor. Phys., 24, 1325 (1960).
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6. — Discussion.

Most particle physicists know that the weaker the interaction strength
gets the greater the reflection symmetries such as parity, charge conjugation,
and time reversal are violated. Motivated by this empirical rule, we
attempted to answer the inquiry, whether or not gravitation, the weakest of
all the forces we know, doesalso enjoy the violation of these discrete symmetries,
There is no a priori basis whatsoever for applying it to gravitation, which
indeed differs significantly from the former interactions in its great universality
and its infinite range of force (the classical limit), subject to a macroscopic
inverse-square law,

The extreme weakness of gravitation prevents us from having a clear answer
to the question posed. From the experimental side almost nothing can be
said about it for the moment. We had therefore to approach the question
mainly from the theoretical side. With general covariance as the guiding prin-
ciple we find an unexpected situation that there must be a massless scalar
particle, termed for short a «deviaton» if Nature prefers a deviation from
Einstein’s theory of gravitation. Obviously, the gravitational interactions
violating any of C, P and T do deviate from the theory. Unfortunately, we
have to express our inability to present any means of detecting such a deviaton
—neutral, massless and spinless. Contrary to the « common sense » that the
masslessness of a particle exchanged between, say, the nucleonsimplies an infinite
range of force, this new deviaton, if yet unobserved, does not give rise to a long-
range force, nor any macroscopic force, instead exhibiting rather peculiar pro-
perties, First, its force, when interpreted in terms of potential, depends on the
spin of the proton and electron which generates it. Second, the deviaton couples
to matter with a singular coupling involving the derivative of its own field
(a skewsymmetric tensor field) when the gravitational interaction violates any
of 0, P and T. This means that a resulting potential between spin-} particles
would become highly singular, for instance, involving the delta-function and/or
its derivative, thereby affecting the material wave function only at the origin.

We have so far not touched upon the neutrino as a source of gravitation.
As far as we know the neutrino (antineutrino) appears with left (right) helicity
alone in the weak interactions. If this is also the case for the gravitational
interaction, they obviously violate parity (P) and charge conjugation (C),
nevertheless conserving CP. Furthermore, if these neutrinos are a wunique
agency through which the violation of P and C can occur, then we will be able
to discuss, for instance, P-violation without any need of deviatons and hence
we would have to withdraw most of our conelusions drawn in this paper. How-
ever, as is well known, strong P- and C-violation effects are observed in the
nonleptonic weak decay processes such as A —pn~, hence the neutrinos are
not the unique cause of the violation of P and C. Alternatively, we can even
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speculate that owing to its great universality the gravitational field would
presumably couple to the neutrino with right helicity and the antineutrino
with left helicity which do not participate in the weak interactions, thus con-
serving P and C.

We close this paper with our hope that a more definite answer will be given
as to the presence or absence of a deviaton, thereby verifying or denying a
deviation from Einstein’s gravitational theory in the realm of particle physics.
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APPENDIX A

The Riemann temnsor and its contracted tensors in terms of the tetrads.

We shall obtain the Riemann tensor in terms of the tetrads by applying
the commutator of the covariant derivative with respect to the Christoffel
symbol to an arbitrary contravariant vector field A":

(Al) (A\;‘u);v_ (‘4\;11);/4 - R\llw‘4z ’
where the Riemann tensor is defined by

(A'z) R‘\A,uv =1 \l/t,v_ ]—H}w./z + F“/F)'Iwﬁl,u - [mﬁy jwﬂlv .

Substituting &,"(x) for A" and transforming Greek indices to Latin ones, we
obtain the desired tensor as follows:

(A'S) I{klmn - bkocblabm/lban‘Z/w -
- (DnDk(m— Dm Dkln + Djkn D)'Im_' DjInDjkm + Dkl}'( Dimn— D;fnm)) ’
where
(A.4) Dy = b (x)¢,,
(‘A5) Dkl-m = _]2 (Cl«'lm_ Clkm_ ka!)
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and Cy,,, is defined by (2.13). Now it is easy to derive the contracted Riemann
tensor R,; corresponding to R%;., = Ry,:

(A~6) bRy, = bR i, = bk#blv(_ g)%Rm, -
= (bbm‘” C(kl)m).y + bb(k‘” ITl).,u + bOmnk C(mn)l - % Okmn Olmn
(Vl = Cmml) ’
where the determinant b is given above (2.6) and g is the determinant det (g,,);
small parentheses enclosing Latin indices indicate symmetrization. Finally, we

obtain the Riemann sealar B = R, = §" R,,:

(A'7) bR = b{% Cklm Cklm— % Clclm kal + Irm Vm} + (bem” Vm),/t .

APPENDIX B

Relation between the Newton potential and the linearized gravitational field
variable.

In Einstein’s theory of gravitation, the scalar potential of a gravitational
field is defined by the metric tensor

(B.1) Gool@) = — (1 4 2¢/¢?) .

If we use the relation between the metric tensor and the tetrads (2.28) with
the linear approximation (3.12), and also take the nonrelativistic limit where
only au(®) = — aq{x) can contribute, we obtain

(B.2) Joo(®) = — 1 + 2ag0(2) .

On the other hand, the correct gravitational field variable is not a,,(#) but S, (@)
in the sense that the latter satisfles the wave equation (3.24) subject to the
divergence condition (3.17): A retarded solution to this set of the field equa-
tions is well known:

(B.3) Bl 1) = — J da To(®, 2=7)0)

47 jx—x']|

If we employ (3.16) in (B.1) and (B.2) in view of the Poisson equation
(B.4) A¢p = 4aG M §¥(x) ,

and our equation derived from (3.24) with (B.3)

(B.B) A8y = —xMe2d3(x) ,
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we obtain the desired result

(B.6) Soo(®) = 2ag(r) = — 2¢/e?

and reproduce the well-known relation

(B.7) xtet = 8.

® RIASSUNTO (%

Nell'ipotesi della covarianza generale si discute la struttura delle interazioni gravi-
tazionali fra protone ed elettrone. Vi sono 15 (3) diversi accoppiamenti fra una par-
ticella di spin 4 con massa (un neutrino a due componenti) ed il campo gravitazionale,
purché queste interazioni non eoinvolgano derivate superiori a quelle che compaiono
nei lagrangiani di Dirac e gravitazionale liberi. Nel limite del campo debole si possono
suddividere le interazioni in 4 eclassi: (O, P, T) = (+, 4.+, ), (+,— —), (—, +,—)
e (—,—, +). Ogni deviazione della teoria di Einstein comporta un tensore energia-
impulso asimmetrico, quindi coinvolgendo ipotetiche particelle senza massa e senza spin,
rappresentate da un campo tensoriale a simmetria obliqua la cui sorgente & lo spin del
protone e dell’elettrone. Si discutono anche i possibili effetti di questa particella sulla
struttura iperfine deli’atomo d’idrogeno.

(*) Traducione a cura della Redazione.

T'pasuranmonnele B3aHMOIEHCTBHA NPOTOHA M JJIeKTPoHA. B03MOKHOE CyleCTBOBaHHE
CKAJIAPHOH YACTHHBI ¢ HYJEBOH MaCCOil.

Pestome (*). — Ipexnonaras obuiy:d KOBAPUAHTHOCTb, MBI 0OCYXIaEM CTPYKTYpYy rpa-
BATALMOHHBIX B3aMMOLEHCTBUA MEXAy NMPOTOHOM u 3nekTporoM. CyluecteyroT 15 (3)
pPa3uYHbIX CBA3CH MEXOY MACCHBHBIMHU YACTHUAMH CO CIMHOM % (IBYX-KOMIOHEHTHBIM
HEATPHHO) ¥ FPABHTALIMOHHBIM TI0JIEM, TIPH YC/IOBHH, YTO 3T B3aHMOMIECHCTRHS He CONePKaT
GoJiee BHICOKMX MPOU3BOAHBIX, YeM T€, KOTODPbIE MOABIAIOTCA B CBOGOIHOM JIHPAKOBCKOM
M rpaBMTALOHHOM narpawkxuaHax. B mpesene cnaboro mons paccMaTpuBaeMble B3au-
MOJEHCTBHUS MOTYT ObITh pasfeleHbl Ha yeThIpe knacca: (0, P, T)=(+, -+, +), (+, —, —),
(= +, =) n (— —, +). JTioboe OTKIOHEHHE OT Teopuy DHHIITEHHA MPUBOIUT X acUM-
METPUYHOMY TEH30pY 3HEPIUM-UMIIYJIbCa, CJICAOBATENLHO, BKJIOYAET THIOTETHYECKUE
Gesnaccosble, beccnuHoBble YACTHLIBI, KOTOPBIE OMHCHIBAIOTCSH KOCOCHMMETPHYECKHM TeH-
30PHBEIM TIONEM, MCTOYHHMK KOTOPOIO MPEACTABISAET CNUH TMPOTOHA M JNEKTpoHa. Mel
Takke OOCYKIAEM BOIMOKHOC BIMSHHME TAKON HACTHLBI HAa CBEPXTOHKYIO CTPYKTYpY
aroma BojJOpona.

(*) IHepesedero pedaxyueii.

414 — I1 Nuovo Cimenio A.



