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BLOCK ITERATIVE METHODS FOR FUZZY LINEAR
SYSTEMS

KE WANG∗ AND BING ZHENG

Abstract. Block Jacobi and Gauss-Seidel iterative methods are studied
for solving n×n fuzzy linear systems. A new splitting method is considered
as well. These methods are accompanied with some convergence theorems.
Numerical examples are presented to illustrate the theory.
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1. Introduction

Many engineering problems, such as equilibrium and steady-state problems, a
mechanism using the kinetostatic approach, require the solution of simultaneous
algebraic linear equations. However, many real-world engineering systems are
too complex to be defined in precise terms, therefore, imprecision is often in-
volved in many engineering design process. Fuzzy systems, which can formulate
uncertainty in actual environment, play an essential role in such cases [6, 8–10],
and lots of modeling techniques, control problems, and operations-research al-
gorithms have been designed for them since the concept of fuzzy number and
arithmetic operations with these numbers are first introduced and investigated
by Zadeh [14, 15].

One of the major applications using fuzzy number arithmetic is treating sys-
tems of simultaneous linear equations whose parameters are all or partially repre-
sented by fuzzy numbers. For example, Rao and Chen [11] consider the following
system of fuzzy linear equations in engineering analysis:

AX = B, (1.1)
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where X = (x1, x2, · · · , xn)T is a fuzzy vector which satisfies equation (1.1), and
A = (aij)n×n (i, j = 1, 2, · · · , n) and B = (b1, b2, · · · , bn)T denote the input
fuzzy coefficient matrix and fuzzy right-hand-side vector, respectively. They
provide a computational method to solve the fuzzy linear system (1.1). This
kind of fuzzy linear system also arises in economics and finance as Leontief’s
input-output model, see [6].

As a special instance of system (1.1), Friedman et al [8] consider an n×n fuzzy
linear system, whose coefficient matrix is crisp and the right-hand side column is
an arbitrary fuzzy number vector. By the embedding approach given in [13], the
authors replace the original n×n fuzzy linear system by a 2n×2n crisp function
linear system, i.e., solving the n × n fuzzy linear system is equal to solving a
2n × 2n crisp function linear system. In general, the 2n × 2n crisp function
linear system is large and sparse, see [8]. As is well-known, iterative methods
play important roles in solving such crisp function linear systems. Therefore,
iterative methods for solving such fuzzy linear systems have been investigated
by many authors [1–3,5,7,12], which include classic point iterative methods (such
as Jacobi, Richardson, Gauss-Seidel, SOR, SSOR, ESOR, MSOR, AOR etc.),
conjugate gradient method, steepest descent method and LU decomposition and
Adomian decomposition methods.

In this paper, we consider block iterative methods for n × n fuzzy linear
systems presented in [8], which are efficient and practical because these methods
only require the nonsingularity of the coefficient matrix of a fuzzy linear system
while point iterative methods mentioned above require the diagonal entries of the
coefficient matrix are nonzero. We mainly provide block Jacobi, Gauss-Seidel
methods and a new splitting method. By the new method, the augmented system
for the original fuzzy linear system falls into two independent subsystems, thus
the new method is suitable for solving large-scale fuzzy linear systems in parallel
computing environment.

In Section 2 we recall preliminaries for n×n fuzzy linear systems. The block
iterative methods are discussed in Section 3. Numerical examples are given to
illustrate our theory in Section 4 and conclusion in Section 5.

2. Preliminaries

Following [13], an arbitrary fuzzy number is represented, in parametric form,
by an ordered pair of functions (u(r), u(r)), 0 6 r 6 1, which satisfy the following
requirements:

1. u(r) is a bounded left continuous nondecreasing function over [0, 1];
2. u(r) is a bounded left continuous nonincreasing function over [0, 1];
3. u(r) 6 u(r), 0 6 r 6 1.

A crisp number α can be simply expressed as u(r) = u(r) = α, 0 6 r 6 1.
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The addition and scalar multiplication of fuzzy numbers previously defined
can be described as follows, for arbitrary u = (u(r), u(r)), v = (v(r), v(r)) and
real number λ,

(a) u + v = (u(r) + v(r), u(r) + v(r));

(b) λu =
{

(λu(r), λu(r)), λ > 0,
(λu(r), λu(r)), λ < 0.

Definition 2.1 [8]. The n × n linear system




a11x1 + a12x2 + · · · + a1nxn = y1,
a21x1 + a22x2 + · · · + a2nxn = y2,

...
an1x1 + an2x2 + · · · + annxn = yn,

(2.1)

where the coefficient matrix A = (aij), 1 6 i, j 6 n is a crisp matrix and yi,
1 6 i 6 n are fuzzy numbers, is called a fuzzy linear system (FLS).

Definition 2.2 [8]. A fuzzy number vector X = (x1, x2, · · · , xn)T given by

xi = (xi(r), xi(r)), 1 6 i 6 n, 0 6 r 6 1,

is called a solution of the fuzzy linear system (2.1) if




n∑
j=1

aijxj =
n∑

j=1

aijxj = y
i
,

n∑
j=1

aijxj =
n∑

j=1

aijxj = yi.
i = 1, 2, · · · , n. (2.2)

Following Friedman et al [8], the system (2.1) can be extended to a 2n × 2n
crisp linear system

SX = Y (2.3)
where

n n

S = n
n

[
S1 > 0 S2 > 0
S2 > 0 S1 > 0

]
,

and

X =
[

X
−X

]
, Y =

[
Y
−Y

]
,

where

X =




x1

x2
...

xn


 , X =




x1

x2

...
xn


 , Y =




y
1

y
2
...

y
n


 , Y =




y1

y2
...

yn


 .
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The entries skl of S are determined as follows

aij > 0 ⇒ sij = aij , si+n, j+n = aij ,
aij < 0 ⇒ si, j+n = −aij , si+n, j = −aij ,

1 6 i, j 6 n,

and any skl which is not determined by the above items is zero, 1 6 k, l 6 2n.

The following theorem implies when FLS (2.1) has a unique solution.

Theorem 2.1 [8]. The matrix S is nonsingular if and only if the matrices
A = S1 − S2 and S1 + S2 are both nonsingular.

Under the conditions of Theorem 2.1, the solution vector of (2.1)

X = S−1Y (2.4)

is thus unique but may still not be an appropriate fuzzy vector. By Theorem 2
of [8], we know that S−1 has the same structure as S, i.e.

S−1 =
[

T1 T2

T2 T1

]
.

The following result provides a sufficient condition for the unique solution to
be a fuzzy vector.

Theorem 2.2 [4]. The unique solution X of (2.4) is a fuzzy vector for arbitrary
fuzzy vector Y if S−1 is nonnegative.

Restricting the discussion to triangular fuzzy numbers, i.e. y
i
(r), yi(r) and

consequently xi(r), xi(r) are all linear functions of r, and having calculated X
which solves (2.3), we can define the fuzzy solution to the original system given
by (2.1) as follows.

Definition 2.3. Let X = {(xi(r),−xi(r)), 1 6 i 6 n} denote the unique solu-
tion of (2.3). The fuzzy vector U = {(ui(r), ui(r)), 1 6 i 6 n} defined by

ui(r) = min {xi(r), xi(r), xi(1), xi(1)} ,
ui(r) = max {xi(r), xi(r), xi(1), xi(1)}

is called the fuzzy solution of SX = Y . If (xi(r), xi(r)), 1 6 i 6 n are all fuzzy
numbers, then ui(r) = xi(r), ui(r) = xi(r), 1 6 i 6 n and U is called a strong
fuzzy solution. Otherwise, U is called a weak fuzzy solution.

3. Block Iterative Methods for FLS

For nonsingular system (2.3), where S is nonsingular, that is A = S1 − S2

and S1 + S2 are nonsingular, we can use the following splitting,

S = D − L − U,
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where

D =
[

S1 − S2 0
0 S1 − S2

]
,

L =
[

0 0
−S2 0

]
, U =

[
−S2 −S2

0 −S2

]
, (3.1)

or

D =
[

S1 + S2 0
0 S1 + S2

]
,

L =
[

0 0
−S2 0

]
, U =

[
S2 −S2

0 S2

]
, (3.2)

or

D =
[

S1 − S2 0
0 S1 + S2

]
,

L =
[

0 0
−S2 0

]
, U =

[
−S2 −S2

0 S2

]
, (3.3)

or

D =
[

S1 + S2 0
0 S1 − S2

]
,

L =
[

0 0
−S2 0

]
, U =

[
S2 −S2

0 −S2

]
, (3.4)

or

D =
[

S1 − S2 0
0 S1 − S2

]
,

L =
[

0 0
−S2 −S2

]
, U =

[
−S2 −S2

0 0

]
, (3.5)

or

D =
[

S1 + S2 0
0 S1 + S2

]
,

L =
[

0 0
−S2 S2

]
, U =

[
S2 −S2

0 0

]
, (3.6)

or

D =
[

S1 − S2 0
0 S1 − S2

]
,

L =
[

−S2 0
−S2 0

]
, U =

[
0 −S2

0 −S2

]
, (3.7)
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or

D =
[

S1 + S2 0
0 S1 + S2

]
,

L =
[

S2 0
−S2 0

]
, U =

[
0 −S2

0 S2

]
. (3.8)

If S1 is nonsingular, we may use splitting

S =
[

S1 0
0 S1

]
−

[
0 0

−S2 0

]
−

[
0 −S2

0 0

]

≡ D − L − U. (3.9)

3.1. Block Jacobi Methods

From splittings (3.1)-(3.9), we can get several different block Jacobi iterative
schemes as below.

(1) For splittings (3.1), (3.5) and (3.7), we have scheme

Xk+1 = HJXk + D−1Y, k = 0, 1, · · · , (3.10)

where Xk =
[

Xk

−Xk

]
and

HJ = D−1(L + U)

=
[

−(S1 − S2)−1S2 −(S1 − S2)−1S2

−(S1 − S2)−1S2 −(S1 − S2)−1S2

]
.

(2) For splittings (3.2), (3.6) and (3.8), we have scheme

Xk+1 = HJXk + D−1Y, k = 0, 1, · · · , (3.11)

where Xk =
[

Xk

−Xk

]
and

HJ = D−1(L + U)

=
[

(S1 + S2)−1S2 −(S1 + S2)−1S2

−(S1 + S2)−1S2 (S1 + S2)−1S2

]
.

(3) For splitting (3.3), the scheme is

Xk+1 = HJXk + D−1Y, k = 0, 1, · · · , (3.12)

where Xk =
[

Xk

−Xk

]
and

HJ = D−1(L + U)

=
[

−(S1 − S2)−1S2 −(S1 − S2)−1S2

−(S1 + S2)−1S2 (S1 + S2)−1S2

]
.
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(4) For splitting (3.4), the scheme is

Xk+1 = HJXk + D−1Y, k = 0, 1, · · · , (3.13)

where Xk =
[

Xk

−Xk

]
and

HJ = D−1(L + U)

=
[

(S1 + S2)−1S2 −(S1 + S2)−1S2

−(S1 − S2)−1S2 −(S1 − S2)−1S2

]
.

(5) For splitting (3.9), the scheme is

Xk+1 = HJXk + D−1Y, k = 0, 1, · · · , (3.14)

where Xk =
[

Xk

−Xk

]
and

HJ = D−1(L + U)

=
[

0 −S−1
1 S2

−S−1
1 S2 0

]
.

For the above iterative schemes, we have the following convergence results.

Theorem 3.1. The block Jacobi iteration (3.10) is convergent if and only if
ρ((S1 − S2)−1S2) < 1

2 .

Proof. Let λ ∈ λ(HJ ). Then

det(λI − HJ) = det
([

λI + (S1 − S2)−1S2 (S1 − S2)−1S2

(S1 − S2)−1S2 λI + (S1 − S2)−1S2

])

= λn · det(λI + 2(S1 − S2)−1S2).

Thus,
ρ(HJ ) = ρ(−2(S1 − S2)−1S2) = 2ρ((S1 − S2)−1S2),

which implies ρ(HJ ) < 1 if and only if ρ((S1 − S2)−1S2) < 1
2 . �

Similarly, we can obtain the next theorem.

Theorem 3.2. Iteration (3.11) converges if and only if ρ((S1 + S2)−1S2) < 1
2 .

Similar to Theorem 3.1 and 3.2, we have

Theorem 3.3. If S1 is nonsingular, then the iteration (3.14) is convergent if
and only if ρ(S−1

1 S2) < 1.

Remark 3.1. For schemes (3.12) and (3.13), as we know, the corresponding
iterations are convergent if and only if ρ(HJ) < 1.
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3.2. Block Gauss-Seidel methods

Applying the classic Gauss-Seidel method to splittings (3.1)-(3.4), respec-
tively, we obtain four block Gauss-Seidel iterative schemes.

(1) For splitting (3.1), the scheme is

Xk+1 = HGSXk + (D − L)−1Y, k = 0, 1, · · · , (3.15)

where Xk =
[

Xk

−Xk

]
and

HGS = (D − L)−1U

=
[

−(S1 − S2)−1S2 −(S1 − S2)−1S2

[(S1 − S2)−1S2]2 [(S1 − S2)−1S2]2 − (S1 − S2)−1S2

]
.

(2) For splitting (3.2), the scheme is

Xk+1 = HGSXk + (D − L)−1Y, k = 0, 1, · · · , (3.16)

where Xk =
[

Xk

−Xk

]
and

HGS = (D − L)−1U

=
[

(S1 + S2)−1S2 −(S1 + S2)−1S2

−[(S1 + S2)−1S2]2 [(S1 + S2)−1S2]2 + (S1 + S2)−1S2

]
.

(3) For splitting (3.3), the scheme is

Xk+1 = HGSXk + (D − L)−1Y, k = 0, 1, · · · , (3.17)

where Xk =
[

Xk

−Xk

]
and

HGS = (D − L)−1U

=




−(S1 − S2)−1S2 −(S1 − S2)−1S2

(S1 + S2)−1S2

·(S1 − S2)−1S2

(S1 + S2)−1S2

·[I + (S1 − S2)−1S2]


 .

(4) For splitting (3.4), the scheme is

Xk+1 = HGSXk + (D − L)−1Y, k = 0, 1, · · · , (3.18)

where Xk =
[

Xk

−Xk

]
and

HGS = (D − L)−1U

=




(S1 + S2)−1S2 −(S1 + S2)−1S2

−(S1 − S2)−1S2

·(S1 + S2)−1S2

−(S1 − S2)−1S2

·[I − (S1 + S2)−1S2]


 .
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If S1 is nonsingular, from splittings (3.5)-(3.9), we have the following five
Gauss-Seidel iterations.

(5) For splitting (3.5), the scheme is

Xk+1 = HGSXk + (D − L)−1Y, k = 0, 1, · · · , (3.19)

where Xk =
[

Xk

−Xk

]
and

HGS = (D − L)−1U

=
[

−(S1 − S2)−1S2 −(S1 − S2)−1S2

S−1
1 S2(S1 − S2)−1S2 S−1

1 S2(S1 − S2)−1S2

]
.

(6) For splitting (3.6), the scheme is

Xk+1 = HGSXk + (D − L)−1Y, k = 0, 1, · · · , (3.20)

where Xk =
[

Xk

−Xk

]
and

HGS = (D − L)−1U

=
[

(S1 + S2)−1S2 −(S1 + S2)−1S2

−S−1
1 S2(S1 + S2)−1S2 S−1

1 S2(S1 + S2)−1S2

]
.

(7) For splitting (3.7), the scheme is

Xk+1 = HGSXk + (D − L)−1Y, k = 0, 1, · · · , (3.21)

where Xk =
[

Xk

−Xk

]
and

HGS = (D − L)−1U

=
[

0 −S−1
1 S2

0 −S−1
1 S2

]
.

(8) For splitting (3.8), the scheme is

Xk+1 = HGSXk + (D − L)−1Y, k = 0, 1, · · · , (3.22)

where Xk =
[

Xk

−Xk

]
and

HGS = (D − L)−1U

=
[

0 −S−1
1 S2

0 S−1
1 S2

]
.

(9) For splitting (3.9), the scheme is

Xk+1 = HGSXk + (D − L)−1Y, k = 0, 1, · · · , (3.23)
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where Xk =
[

Xk

−Xk

]
and

HGS = (D − L)−1U

=
[

0 −S−1
1 S2

0 (S−1
1 S2)2

]
.

Remark 3.2. For schemes (3.15)-(3.18), as we know, the corresponding itera-
tions are convergent if and only if ρ(HGS) < 1.

For schemes (3.19)-(3.23), the following result is obtained.

Theorem 3.4. If S1 is nonsingular, then the block Gauss-Seidel iterations
(3.19)-(3.23) are convergent if and only if ρ(S−1

1 S2) < 1.

Proof. For (3.19), let λ ∈ λ(HGS), then

det(λI − HGS) = det

([
λI + (S1 − S2)

−1S2 (S1 − S2)
−1S2

−S−1
1 S2(S1 − S2)

−1S2 λI − S−1
1 S2(S1 − S2)

−1S2

])
= λn · det(λI + S−1

1 S2).

Thus, ρ(HGS) = ρ(S−1
1 S2), i.e., ρ(HGS) < 1 if and only if ρ(S−1

1 S2) < 1.
The same applies to (3.20)-(3.23). �

3.3. A new splitting method

If S1 is nonsingular and ρ(S−1
1 S2) < 1, we consider the following splitting:

S = M − N, (3.24)

where

M =
[

S1[I − (S−1
1 S2)2]−1 S2[I − (S−1

1 S2)2]−1

S2[I − (S−1
1 S2)2]−1 S1[I − (S−1

1 S2)2]−1

]
,

N =
[

S1[I − (S−1
1 S2)2]−1(S−1

1 S2)2 S2[I − (S−1
1 S2)2]−1(S−1

1 S2)2

S2[I − (S−1
1 S2)2]−1(S−1

1 S2)2 S1[I − (S−1
1 S2)2]−1(S−1

1 S2)2

]
.

It can be verified that M is invertible and

M−1 =
[

S−1
1 −S−1

1 S2S
−1
1

−S−1
1 S2S

−1
1 S−1

1

]
.

As is well known, system (2.3) with splitting (3.24) is equal to

X = M−1NX + M−1Y,

which induces iterative scheme

Xk+1 = M−1NXk + M−1Y,
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that is, {
Xk+1 = (S−1

1 S2)2Xk + S−1
1 S2S

−1
1 Y + S−1

1 Y ,

Xk+1 = (S−1
1 S2)2Xk + S−1

1 S2S
−1
1 Y + S−1

1 Y ,
(3.25)

viz.
Xk+1 = HXk + BY, k = 0, 1, · · · , (3.26)

where Xk =
[

Xk

−Xk

]
,

H = M−1N =
[

(S−1
1 S2)2 0

0 (S−1
1 S2)2

]
,

and

B = M−1 =
[

S−1
1 −S−1

1 S2S
−1
1

−S−1
1 S2S

−1
1 S−1

1

]
.

For the new iterative method, we have the convergence result:

Theorem 3.5. If S1 is nonsingular, then the block iteration (3.25) or (3.26)
is convergent if and only if ρ(S−1

1 S2) < 1.

Proof. Let λ ∈ λ(H). Then

det(λI − H) = det
([

λI − (S−1
1 S2)2 0

0 λI − (S−1
1 S2)2

])

= det(λI − (S−1
1 S2)2) · det(λI − (S−1

1 S2)2),

i.e., ρ(H) = (ρ(S−1
1 S2))2. Thus, ρ(H) < 1 if and only if ρ(S−1

1 S2) < 1. �

Remark 3.3. Note that (3.25) implies that we can compute X and X indepen-
dently, thus, the new method is suitable for computing in parallel environment.

4. Numerical examples

In this section, we will give some numerical examples to illustrate the methods
presented in this paper. For this purpose, we define a stopping criterion with
tolerance ε > 0 as follows

‖Xk+1 − Xk‖ 6 ε.

As we know, any other type of fuzzy number can be approximated by triangular
fuzzy number. Hence the triangular fuzzy numbers are used in all of the following
numerical examples. For a triangular fuzzy number x = (a+br, c+dr), we define
its norm as

‖x‖ = max { |a|, |b|, |c|, |d|} ,
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which is equivalent to Hausdorff distance of fuzzy numbers. Thus the norm of

X =
[

X
−X

]
=




x1
...

xn

−x1

...
−xn




=




x1a + x1br
x2a + x2br

...
x2n,a + x2n,br


 ,

where xia and xib are crisp numbers, i = 1, · · · , 2n, 0 6 r 6 1, can be defined as

‖X‖ = max
i

{|xia| , |xib|} . (∗)

We use the following examples to illustrate our theory. All runs are performed
in MATLAB.

Example 4.1. Consider the 25 × 25 fuzzy linear system




x1 + 2x2 − x3 = (r, 2 − r),
x2 + 2x3 − x4 = (r, 2 − r),
...

x24 + 2x25 − x1 = (r, 2 − r),
x25 + 2x1 − x2 = (r, 2 − r).

The extended 50× 50 matrix is

S =

[
S1 S2

S2 S1

]

=



1 2 0 · · · 0 0 0 0 0 1 · · · · · · 0 0

0 1 2 · · · 0 0 0 0 0 0
. . . · · · 0 0

0 0 1
. . . 0 0 0 0 0 0 · · ·

. . . 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

...
. . .

...
0 0 0 · · · 1 2 0 0 0 0 · · · · · · 0 1
0 0 0 · · · 0 1 2 1 0 0 · · · · · · 0 0
2 0 0 · · · 0 0 1 0 1 0 · · · · · · 0 0

0 0 1 · · · · · · 0 0 1 2 0 · · · 0 0 0

0 0 0
. . . · · · 0 0 0 1 2 · · · 0 0 0

0 0 0 · · ·
. . . 0 0 0 0 1

. . . 0 0 0
...

...
...

...
...

. . .
...

...
...

...
. . .

. . .
...

...
0 0 0 · · · · · · 0 1 0 0 0 · · · 1 2 0
1 0 0 · · · · · · 0 0 0 0 0 · · · 0 1 2
0 1 0 · · · · · · 0 0 2 0 0 · · · 0 0 1



,
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which is nonsingular. S1 is also nonsingular, therefore, the exact solution is

x1 = · · · = x25 = (1/4 + r/4, 3/4− r/4),

which is a strong fuzzy solution.
Applying the iterative schemes provided in Section 3 and the point iterative

methods in [4] on this system with X0 = 0, we have the numerical results in
Table 1.

Example 4.2. Consider the 3 × 3 fuzzy linear system




3x1 − x3 = (1 + r, 3 − r),
x1 + x2 + x3 = (r, 2 − r),
−x2 + 2x3 = (−3,−2− r).

The extended 6 × 6 matrix is

S =
[

S1 S2

S2 S1

]
=




3 0 0 0 0 1
1 1 1 0 0 0
0 0 2 0 1 0
0 0 1 3 0 0
0 0 0 1 1 1
0 1 0 0 0 2




, which is nonsingular,

where S1 =




3 0 0
1 1 1
0 0 2


 is nonsingular as well, and the exact solution is





x1 = (x1(r), x1(r)) = (0.075 + 0.325r, 0.825− 0.425r),
x2 = (x2(r), x2(r)) = (0.45 + 0.95r, 1.95− 0.55r),
x3 = (x3(r), x3(r)) = (−0.525− 0.275r,−0.775− 0.025r),

which is a weak fuzzy solution. In fact x3 is not a fuzzy number. Therefore the
fuzzy solution is





u1 = (u1(r), u1(r)) = (0.075 + 0.325r, 0.825− 0.425r),
u2 = (u2(r), u2(r)) = (0.45 + 0.95r, 1.95− 0.55r),
u3 = (u3(r), u3(r)) = (−0.8,−0.525− 0.275r).

With X0 = 0, we have the iteration results in Table 2.

Example 4.3. Consider the 3 × 3 fuzzy system




2x1 + 3x2 − x3 = (−1 + 4r, 6− 3r),
3x1 − x2 + 2x3 = (4 + 2r, 12− 6r),
x1 + 2x2 + 3x3 = (4 + 5r, 13− 4r).
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The extended 6 × 6 matrix is

S =
[

S1 S2

S2 S1

]
=




2 3 0 0 0 1
3 0 2 0 1 0
1 2 3 0 0 0
0 0 1 2 3 0
0 1 0 3 0 2
0 0 0 1 2 3




, which is invertible,

where S1 =




2 3 0
3 0 2
1 2 3


 is also invertible. The exact solution is





x1 = (x1(r), x1(r)) = (1, 2 − r),
x2 = (x2(r), x2(r)) = (r, 1),
x3 = (x3(r), x3(r)) = (1 + r, 3 − r).

which is a strong fuzzy solution.
With X0 = 0, we have the iteration results in Table 3.

The following three tables show the numerical results of Examples 4.1-4.3,
respectively, with the vector norm (∗).

Table 1.

scheme ρ iterations approximate solution (ε = 10−4)
Jacobi method
(3.10) 1.0000 � �
(3.11) 126.8183 � �
(3.12) 63.8941 � �
(3.13) 63.8941 � �
(3.14) 0.9846 10 x1 = · · · = x25 =

(0.2500 + 0.2500r, 0.7500 − 0.2500r)
point method 3.0000 � �
Gauss-Seidel
(3.15) 0.9897 15 x1 = · · · = x25 =

(0.2500 + 0.2500r, 0.7500 − 0.2500r)
(3.16) 3.8939 × 103 � �
(3.17) 32.4216 � �
(3.18) 32.4216 � �
(3.19) 0.9846 10 x1 = · · · = x25 =

(0.2500 + 0.2500r, 0.7500 − 0.2500r)
(3.20) 0.9846 9 x1 = · · · = x25 =

(0.2500 + 0.2500r, 0.7500 − 0.2500r)
(3.21) 0.9846 10 x1 = · · · = x25 =

(0.2500 + 0.2500r, 0.7500 − 0.2500r)
(3.22) 0.9846 9 x1 = · · · = x25 =

(0.2500 + 0.2500r, 0.7500 − 0.2500r)
(3.23) 0.9694 6 x1 = · · · = x25 =

(0.2500 + 0.2500r, 0.7500 − 0.2500r)
point method 4.2368 � �
new method 0.9694 6 x1 = · · · = x25 =
(3.26) (0.2500 + 0.2500r, 0.7500 − 0.2500r)

ρ is the spectral radius of the iteration matrix.

� indicates the method is not convergent.
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Table 2.

scheme ρ iterations approximate solution
Jacobi method
(3.10) 0.6325 15 x1 = (0.0753 + 0.3247r, 0.8247 − 0.4247r)

ε = 10−3 x2 = (0.4491 + 0.9509r, 1.9509 − 0.5509r)
x3 = (−0.5244 − 0.2756r,−0.7756 − 0.0244r)

(3.11) 1.0000 � �
(3.12) 0.6588 26 x1 = (0.0750 + 0.3250r, 0.8250 − 0.4250r)

ε = 10−4 x2 = (0.4500 + 0.9500r, 1.9500 − 0.5500r)
x3 = (−0.5250 − 0.2750r,−0.7750 − 0.0250r)

(3.13) 0.6588 25 x1 = (0.0750 + 0.3250r, 0.8250 − 0.4250r)
ε = 10−4 x2 = (0.4500 + 0.9500r, 1.9500 − 0.5500r)

x3 = (−0.5250 − 0.2750r,−0.7750 − 0.0250r)
(3.14) 0.4082 13 x1 = (0.0750 + 0.3250r, 0.8250 − 0.4250r)

ε = 10−4 x2 = (0.4500 + 0.9500r, 1.9500 − 0.5500r)
x3 = (−0.5250 − 0.2750r,−0.7750 − 0.0250r)

point method 0.8362 39 x1 = (0.0749 + 0.3251r, 0.8251 − 0.4251r)
ε = 10−3 x2 = (0.4496 + 0.9504r, 1.9504 − 0.5504r)

x3 = (−0.5252 − 0.2748r,−0.7748 − 0.0252r)
Gauss-Seidel
(3.15) 0.5362 13 x1 = (0.0748 + 0.3251r, 0.8253 − 0.4251r)
ε = 10−3 x2 = (0.4496 + 0.9502r, 1.9502 − 0.5501r)

x3 = (−0.5244 − 0.2753r,−0.7755 − 0.0247r)
(3.16) 0.7813 43 x1 = (0.0750 + 0.3250r, 0.8250 − 0.4250r)

ε = 10−4 x2 = (0.4500 + 0.9500r, 1.9500 − 0.5500r)
x3 = (−0.5250 − 0.2750r,−0.7750 − 0.0250r)

(3.17) 0.4441 11 x1 = (0.0749 + 0.3250r, 0.8249 − 0.4249r)
ε = 10−3 x2 = (0.4501 + 0.9500r, 1.9502 − 0.5501r)

x3 = (−0.5250 − 0.2750r,−0.7751 − 0.0250r)
(3.18) 0.4441 14 x1 = (0.0750 + 0.3250r, 0.8250 − 0.4250r)

ε = 10−4 x2 = (0.4500 + 0.9500r, 1.9500 − 0.5500r)
x3 = (−0.5250 − 0.2750r,−0.7750 − 0.0250r)

(3.19) 0.4082 9 x1 = (0.0753 + 0.3247r, 0.8248 − 0.4248r)
ε = 10−3 x2 = (0.4502 + 0.9498r, 1.9501 − 0.5501r)

x3 = (−0.5255 − 0.2745r,−0.7749 − 0.0251r)
(3.20) 0.4082 11 x1 = (0.0749 + 0.3250r, 0.8251 − 0.4250r)

ε = 10−3 x2 = (0.4499 + 0.9500r, 1.9500 − 0.5500r)
x3 = (−0.5248 − 0.2750r,−0.7751 − 0.0250r)

(3.21) 0.4082 12 x1 = (0.0750 + 0.3250r, 0.8250 − 0.4250r)
ε = 10−4 x2 = (0.4500 + 0.9500r, 1.9500 − 0.5500r)

x3 = (−0.5249 − 0.2750r,−0.7751 − 0.0250r)
(3.22) 0.4082 10 x1 = (0.0748 + 0.3251r, 0.8248 − 0.4249r)

ε = 10−3 x2 = (0.4502 + 0.9500r, 1.9502 − 0.5500r)
x3 = (−0.5250 − 0.2750r,−0.7750 − 0.0250r)

(3.23) 0.1667 6 x1 = (0.0750 + 0.3250r, 0.8250 − 0.4250r)
ε = 10−3 x2 = (0.4499 + 0.9500r, 1.9500 − 0.5500r)

x3 = (−0.5249 − 0.2750r,−0.7751 − 0.0250r)
point method 0.6907 29 x1 = (0.0750 + 0.3250r, 0.8250 − 0.4250r)

ε = 10−4 x2 = (0.4500 + 0.9500r, 1.9500 − 0.5500r)
x3 = (−0.5250 − 0.2750r,−0.7750 − 0.0250r)

new method 0.1667 6 x1 = (0.0750 + 0.3250r, 0.8250 − 0.4250r)
(3.26) x2 = (0.4500 + 0.9500r, 1.9500 − 0.5500r)

ε = 10−3 x3 = (−0.5250 − 0.2750r,−0.7751 − 0.0250r)

ρ is the spectral radius of the iteration matrix.

� indicates the method is not convergent.
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Table 3.

scheme ρ iterations approximate solution (ε = 10−4)
Jacobi method
(3.10) 0.4593 13 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)

x2 = (−0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.11) 0.8495 67 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)
x2 = (−0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 + 1.0000r)

(3.12) 0.5499 20 x1 = (1.0000 + 0.0000r, 2.0000 − 1.0000r)
x2 = (0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.13) 0.5499 19 x1 = (1.0000 + 0.0000r, 2.0000 − 1.0000r)
x2 = (−0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.14) 0.2981 10 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)
x2 = (0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

point method can’t be used directly
Gauss-Seidel
(3.15) 0.3692 11 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)

x2 = (−0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.16) 0.4248 14 x1 = (1.0000 + 0.0000r, 2.0000 − 1.0000r)
x2 = (−0.0000 + 1.0000r, 1.0000 + 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.17) 0.3649 12 x1 = (1.0000 + 0.0000r, 2.0000 − 1.0000r)
x2 = (0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.18) 0.3649 12 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)
x2 = (0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.19) 0.2981 9 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)
x2 = (−0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.20) 0.2981 11 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)
x2 = (−0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.21) 0.2981 10 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)
x2 = (−0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.22) 0.2981 10 x1 = (1.0000 + 0.0000r, 2.0000 − 1.0000r)
x2 = (0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

(3.23) 0.0889 6 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)
x2 = (−0.0000 + 1.0000r, 1.0000 − 0.0000r)
x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

point method can’t be used directly
new method 0.0889 6 x1 = (1.0000 − 0.0000r, 2.0000 − 1.0000r)
(3.26) x2 = (0.0000 + 1.0000r, 1.0000 − 0.0000r)

x3 = (1.0000 + 1.0000r, 3.0000 − 1.0000r)

ρ is the spectral radius of the iteration matrix.

5. Conclusion

In this paper we present some block iterative methods for solving n×n fuzzy
linear systems and obtain the necessary and sufficient conditions for the conver-
gence of some iterative schemes. For an n×n fuzzy linear system, if the extended
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matrix S by Friedman et al [8] is nonsingular, under the convergence conditions,

then for any initial vector X0, the iterations will converge to X =
[

X
−X

]
,

the unique solution of SX = Y . The methods are suitable for large systems,
even the number of variables is quite high, and, theoretically, the number can
be arbitrarily large. As mentioned in Section 2, a crisp number α can be simply
expressed as u(r) = u(r) = α, 0 6 r 6 1, therefore, if there are no fuzzy sets but
single numeric values, numeric values of solution will be provided. The numer-
ical examples show that these methods are efficient and applicable for solving
such fuzzy linear systems.

Acknowledgement

The authors would like to thank Professor Zengtai Gong, Department of
Mathematics, Northwest Normal University, Lanzhou 730070, P.R. China, and
the referees for their kind assistance.

References

1. S. Abbasbandy, R. Ezzati and A. Jafarian, LU decomposition method for solving fuzzy
system of linear equations, Appl. Math. Comput. 172 (2006), 633-643.

2. S. Abbasbandy and A. Jafarian, Steepest descent method for system of fuzzy linear equa-
tions, Appl. Math. Comput. 175 (2006), 823-833.

3. S. Abbasbandy, A. Jafarian and R. Ezzati, Conjugate gradient method for fuzzy symmetric
positive definite system of linear equations, Appl. Math. Comput. 171 (2005), 1184-1191.

4. T. Allahviranloo, Numerical methods for fuzzy system of linear equations, Appl. Math.
Comput. 155 (2004), 493-502.

5. T. Allahviranloo, The Adomian decomposition method for fuzzy system of linear equations,
Appl. Math. Comput. 163 (2005), 553-563.

6. J.J. Buckley, Solving fuzzy equations in economics and finance, Fuzzy Sets and Systems
48 (1992), 289-296.

7. M. Dehghan and B. Hashemi, Iterative solution of fuzzy linear systems, Appl. Math.
Comput. 175 (2006), 645-674.

8. M. Friedman, M. Ming and A. Kandel, Fuzzy linear systems, Fuzzy Sets and Systems 96
(1998), 201-209.

9. J.U. Jeong, Stability of a periodic solution for fuzzy differential equations, J. Appl. Math.
Comput. 13 (2003), 217-222.

10. H.M. Nehi, H.R. Maleki and M. Mashinchi, A canonical representation for the solution of
fuzzy linear system and fuzzy linear programming problem, J. Appl. Math. Comput. 20
(2006), 345-354.

11. S.S. Rao and L. Chen, Numerical solution of fuzzy linear equations in engineering analysis,
Internat. J. Numer. Methods Engrg. 42 (1998), 829-846.

12. K. Wang and B. Zheng, Symmetric successive overrelaxation methods for fuzzy linear
systems, Appl. Math. Comput. 175 (2006), 891-901.

13. W. Cong-Xin and M. Ming, Embedding problem of fuzzy number space: Part I, Fuzzy Sets

and Systems 44 (1991), 33-38.
14. L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.



136 Ke Wang and Bing Zheng

15. L.A. Zadeh, Toward a generalized theory of uncertainty (GTU)—an outline, Inform. Sci.
172 (2005), 1-40.

Ke Wang received his BSc, MSc and PhD degrees from Lanzhou University, China, in July
1999, June 2003 and June 2006, respectively. He was awarded Qiu Shi Graduate Student
Scholarship by Qiu Shi Science & Technologies Foundation, Hong Kong, in Dec. 2005 and
has been working in Department of Mathematics at East China Normal University, China,

as a postdoctor fellow since June 2006. His research interests focus on numerical linear
algebra, matrix analysis and related topics.

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P.R. China
Department of Mathematics, East China Normal University, Shanghai 200062, P.R. China
E-mail: kwang@math.ecnu.edu.cn

Bing Zheng received his B.Sc from North West Normal University (China, 1983) and
M.Sc from Anhui University (China, 1989). In 2003, he received his Ph.D from Shanghai
University in China and is now working at School of Mathematics and Statistics of Lanzhou
University in China as an associate professor. During 2001-2002, he is a visiting scholar
at Indian Statistical Institute (Delhi Center). His main research area is Numerical Linear
Algebra including generalized inverses of matrix and operator in Banach or Hilbert spaces.
He has published some papers in various international and national journals including
Applied Mathematics and Computation, ELA and etc.

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P.R. China
E-mail: bzheng@lzu.edu.cn


