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FALKNER-SKAN EQUATION FOR FLOW PAST A MOVING
WEDGE WITH SUCTION OR INJECTION

ANUAR ISHAK, ROSLINDA NAZAR∗ AND IOAN POP

Abstract. The characteristics of steady two-dimensional laminar bound-

ary layer flow of a viscous and incompressible fluid past a moving wedge
with suction or injection are theoretically investigated. The transformed
boundary layer equations are solved numerically using an implicit finite-
difference scheme known as the Keller-box method. The effects of Falkner-
Skan power-law parameter (m), suction/injection parameter (f0) and the
ratio of free stream velocity to boundary velocity parameter (λ) are dis-
cussed in detail. The numerical results for velocity distribution and skin
friction coefficient are given for several values of these parameters. Compar-
isons with the existing results obtained by other researchers under certain
conditions are made. The critical values of f0, m and λ are obtained nu-
merically and their significance on the skin friction and velocity profiles
is discussed. The numerical evidence would seem to indicate the onset of
reverse flow as it has been found by Riley and Weidman in 1989 for the
Falkner-Skan equation for flow past an impermeable stretching boundary.
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1. Introduction

Historically, the steady laminar flow passing a fixed wedge was first ana-
lyzed in the early 1930s by Falkner and Skan [1] to illustrate the application of
Prandtl’s boundary layer theory. With a similarity transformation the bound-
ary layer equation is reduced to an ordinary differential equation, which is well
known as the Falkner-Skan equation. This equation includes non-uniform flow,
i.e. outer flows which, when evaluated at the wall, takes the form axm, where x
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is the coordinate measured along the wedge wall and a (> 0), and m are con-
stants. There is a large body of literature on the solutions of Falkner-Skan equa-
tion, see Hartree [2], Stewartson [3], Chen and Libby [4], Craven and Peletier
[5], Hastings [6], Oskam and Veldman [7], Rajagopal et al. [8], Botta et al.
[9], Brodie and Banks [10], Asaithambi [11, 12], Heeg et al. [13], Zaturska and
Banks [14], Harris et al. [15], Kuo [16], Pantokratoras [17] and Yang [18]. Liao
[19] has recently developed an analytical technique, named Homotopy Analy-
sis Method, and presented a uniformly valid analytic solution of Falkner-Skan
equation for the wedge parameter β in the range −0.19884 ≤ β ≤ 2. Certain
solutions of the Falkner-Skan equations, with suction and injection, are given in
Rosenhead [20], Watanabe [21] and Yih [22]. Koh and Hartnett [23] have solved
the skin friction and heat transfer for incompressible laminar flow over porous
wedges with suction and variable wall temperature. The flows predicted by the
Falkner-Skan solutions are naturally assumed to be described adequately by the
boundary layer equations which are parabolic in character. However, the use of
the similarity method of solution cannot take account of the “ initial” condition
in general and so the resulting solutions are assumed to be valid, if at all, in
some asymptotic sense (see Banks [24]). This is the case for the Falkner-Skan
flows that has been shown rigorously by Serrin [25] for 0 ≤ β ≤ 2.

However, all these papers are for the Falkner-Skan boundary layer flow over
a fixed wedge placed in a moving fluid. In a very interesting paper, Riley and
Weidman [26] have studied multiple solutions of the Falkner-Skan equation for
flow past a stretching boundary when the external velocity and the boundary ve-
locity are each proportional to the same power-law of the downstream distance.
Boundary layer behavior over a moving continuous solid surface is an important
type of flow occurring in several engineering processes. For example, the thermal
processing of sheet-like materials is a necessary operation in the production of
paper, linoleum, polymeric sheets, wire drawing, drawing of plastic films, metal
spinning, roofing shingles, insulating materials, and fine-fiber matts. In virtually
all such processing operations, the sheet moves parallel to its own plane. The
moving sheet may induce motion in the neighboring fluid or, alternatively, the
fluid may have an independent forced-convection motion that is parallel to that
of the sheet. Both the kinematics of stretching and the simultaneous heating or
cooling during such processes have a decisive influence on the quality of the final
products. Representative applications involving a moving sheet and an indepen-
dently moving fluid can be found in the recent papers by Abraham and Sparrow
[27], and Sparrow and Abraham [28]. In view of these applications, Sakiadis [29]
initiated the study of boundary layer flow over a continuous solid surface moving
with a constant speed in an otherwise quiescent fluid medium. Due to entrain-
ment of ambient fluid, this boundary layer flow is quite different from that over
a semi-infinite flat plate or Blasius [30] problem. An important class of similar-
ity solutions corresponding to the boundary layer on a stretching impermeable
wall was presented by Banks [24]. The resulting ordinary differential equation
which contains a parameter has been discussed in detail. Magyari and Keller
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Figure 1. Physical model and coordinate system

[31] have reported exact similarity solutions for self-similar boundary-layer flows
induced by permeable stretching walls in a quiescent fluid in the presence of
suction and injection by complementing the previously known special cases with
new analytical and numerical results.

The aim of the present paper is to extend the paper by Riley and Weidman
[26] to the case when the walls of the moving wedge are permeable. The general
situations including mass injection as well as suction on the walls are discussed.
It is well-known that the effects of injection on the boundary layer flow are of
interest in reducing the drag force, see Schlichting [32]. The boundary layer
problem of a semi-infinite flat plate moving in a free stream with mass transfer
(suction or injection) has been recently discussed by Fang [33].

2. Problem formulation and basic equations

Consider the steady two-dimensional laminar flow of a viscous and incom-
pressible fluid due to a moving wedge with a constant velocity Uw in the di-
rection opposite to the mainstream, as shown in Fig. 1, where the origin of the
Cartesian coordinates (x, y) is at the tip of the wedge and the x− and y− axes
are measured along the wedge and normal to it, respectively. The moving wedge
is considered permeable with a lateral mass flux of velocity Vw(x) and the outer
flow velocity is U(x). Under the boundary layer approximation, the governing
equations for the continuity and momentum are, respectively given by (see Kuo
[16]):

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2u

∂y2 , (2)

where u and v are the velocity components in the x− and y− directions of the
fluid flow, respectively and ν is the kinematic viscosity of the fluid. We assume
that the boundary conditions of these equations are given by
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Figure 2. Velocity profiles for various m for λ = −0.5 and f0 = ±1
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Figure 3. Skin friction coefficient as a function of λ for various
m when f0 = −1

u(x, 0) = uw(x) = −Uw(x/L)m, v(x, 0) = Vw(x) for x > 0,

u→ U(x) = U∞(x/L)m as y → ∞ for x > 0, (3)

where Uw and U∞ are constants characterizing the wedge moving velocity and
mainstream velocity, respectively. Further, L is a characteristic length and m is
the Falkner-Skan power-law parameter.

To solve Eqs. (1) and (2) subjected to the boundary conditions (3), we intro-
duce the following similarity variables:

ψ = x(1+m)/2

√
2νU∞

(1 +m)Lm
f(η), η =

√
(1 +m)U∞

2νLm
(y/x(1−m)/2), (4)
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Figure 4. Skin friction coefficient as a function of λ for various
m when f0 = 1
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Figure 5. Velocity profiles that show the existence of three
solutions when m = 2, λ = 0.95 and f0 = 1

where ψ(x, y) is the stream function defined as u = ∂ψ
∂y and v = −∂ψ∂x . Thus,

we have

u = U∞

(x
L

)m

f ′(η), v−

√
2νU∞

(m+ 1)Lm
x(m−1)/2

(
m+ 1

2
f +

m− 1
2

ηf ′
)
. (5)

From (3) and (5), we have

Vw(x) = −
√

(m+ 1)νU∞

2Lm
x(m−1)/2f(0). (6)
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Figure 6. Skin friction coefficient as a function of λ for various
f0 when m = 0.5

In order that similarity solutions of Eqs. (1) and (2) exist, we take

Vw(x) = −
√

(m+ 1)νU∞

2Lm
x(m−1)/2f0, (7)

where f(0) = f0 is a constant. Notice that Vw > 0 (i.e., f0 < 0) is for mass
injection and Vw < 0 (i.e., f0 > 0) is for mass suction, while Vw = 0 (i.e., f0 = 0)
is for impermeable surface. Substituting (5) into Eq. (2), we get the ordinary
differential equation

f ′′′ + ff ′′ + β(1 − f ′2) = 0, (8)

which is known as the Falkner-Skan boundary-layer equation. The associated
boundary conditions are given by

f(0) = f0, f
′(0) = −λ, f ′(∞) = 1, (9)

where primes denote the differentiation with respect to η. The parameters β
and λ are defined as

β =
2m
m+ 1

, λ =
Uw

U∞
. (10)

It is worth mentioning that β is a measure of the pressure gradient dp/dx. If β is
positive, the pressure gradient is negative or favorable, and negative β denotes
an unfavorable positive pressure gradient, while β = 0 denotes the flat plate
(White, [34]). However, in this study we consider only the case of 0 ≤ β ≤ 2
(i.e., 0 ≤ m ≤ ∞), which is the flow over a wedge whose included angle is
βπ/2. Further, λ is the velocity ratio of the surface to the mainstream. λ > 0
and λ < 0 correspond to moving surface in opposite and same directions to the
mainstream, respectively, while λ = 0 corresponds to a fixed surface.
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Figure 7. Skin friction coefficient as a function of λ for various
f0 when m = 1
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Figure 8. Skin friction coefficient as a function of λ for various
f0 when m = 2

The quantity of physical significance is the skin friction coefficient, which is
defined as

Cf =
τw

ρU2/2
, (11)

where ρ is the fluid density and the skin friction τw is given by

τw = µ

(
∂u

∂y

)

y=0

, (12)

with µ being the dynamic viscosity. Using variables (4), we get
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Figure 9. Velocity profiles that show the existence of two so-
lutions when m = 1, λ = 1.2 and f0 = 0.5
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Figure 10. Skin friction coefficient as a function of λ for vari-
ous f0 when m→ ∞

1
2
CfRe

1/2
x =

√
m+ 1

2
f ′′(0), (13)

where Rex = Ux/ν is the local Reynolds number.

3. Numerical method

3.1. Exact numerical solution

Equation (8) subject to boundary conditions (9) is solved numerically using an
implicit finite-difference approximation known as the Keller-box method, which
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Figure 11. Velocity profiles at the larger critical values of λ
for m→ ∞
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Figure 12. Skin friction coefficient as a function of f0 for var-
ious m when λ = 0.5

is described in the book by Cebeci and Bradshaw [35]. The solution is obtained
in the following four steps:

• Reduce equation (8) to a first-order system.
• Write this system in difference equations using central differences.
• Solve the resulting algebraic equations by Newton’s method, writing the

linearized equations in matrix-vector form.
• Solve the linear system by the block-tridiagonal-elimination technique.

The step size ∆η in η, and the position of the edge of the boundary layer η∞ had
to be adjusted for different values of parameters to maintain accuracy. Further
details are presented in [35]. The velocity profiles f ′(η) and the skin friction
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Figure 13. Velocity profiles that show the existence of two
solutions for m = 0, when λ = 0.5 and f0 = 0.5
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Figure 14. Skin friction coefficient as a function of f0 for var-
ious λ when m = 0.5

f ′′(0) are calculated for various values of parametersm, λ and f0. The numerical
results thus obtained are presented in tables and figures.

3.2. Solution for large m

This case has been studied by Stewartson [3] and Harris et al. [15]. For large
values of m (→ ∞), Eq. (8) becomes
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solutions for λ = 1.2, when m = 0.5 and f0 = 0.5

f ′′′ + ff ′′ + 2(1− f ′2) = 0, (14)

subject to the boundary conditions (9). If we consider now that −λ is very large,
then the transformation

λ = −λ, f(η) = λ
1/2
F (z), z = λ

1/2
η, (15)

yields the differential equation

F ′′′ + FF ′′ − 2F ′2 = 0, (16)

with the boundary conditions

F (0) = 0, F ′(0) = 1, F ′(∞) = 0, (17)

as λ → ∞ (i.e., λ→ −∞). Primes now denote differentiation with respect to z.
Equation (16) subject to boundary conditions (17) has been solved numerically

Table 1. The values of f ′′(0) for large values of −λ (= λ̄) and
m→ ∞ (β = 2)

−λ Eq. (15) Eq. (18) Error (%)
2 -3.0497 -3.6255 18.9
5 -15.4837 -14.3310 7.4
10 -44.2369 -40.5341 8.4
20 -123.1817 -114.6477 6.9
30 -223.8854 -210.6212 5.9
40 -342.2277 -324.2726 5.2
50 -475.8081 -453.1847 4.8
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Table 2. The values of f ′′(0) for f0 = λ = 0 and various m

m Rosenhead [20] Watanabe [21] Yih [22] Present
0 0.46960 0.469600 0.4696

0.0141 0.50461 0.504614 0.5046
0.0435 0.56898 0.568978 0.5690
0.0909 0.65498 0.654979 0.6550
0.1429 0.73200 0.731998 0.7320

0.2 0.80213 0.802125 0.8021
0.3333 0.92765 0.927653 0.9277

1 1.232588 1.232588 1.2326
1.5 1.3357
2 1.4004
5 1.5504
10 1.6140
100 1.6794

m→ ∞ 1.6872

and we obtained F ′′(0) = −1.2818, which is in a very good agreement with the
result reported by Banks [24] who obtained F ′′(0) = −1.28181. Therefore, we
have

f ′′(0) = −1.2818λ
3/2
, (18)

as m → ∞ and λ → ∞. Table 1 presents some values of f ′′(0) for f0 = 0
(impermeable wall) and large λ when m → ∞ as obtained by direct numerical
integration of Eq. (14). The values given by Eq. (18) are also included in this
table. We can see that the agreement is good enough. The percentage of error
is decreased as λ increases. Hence, this agreement will be improved if we take
very large values of λ.

4. Results and discussion

Numerical calculations are carried out for various values of Falkner-Skan
power-law parameter m, velocity ratio of the surface to the mainstream pa-
rameter λ and suction/injection parameter f0. The characteristics of fluid flow
over a wedge with included angle βπ/2 are considered. Thus we considered the
values of β within the range 0 ≤ β ≤ 2 or equivalent to 0 ≤ m ≤ ∞. To validate
the numerical method used, we have compared our results with the previously
published data by some authors, for certain particular values of parameters.

Tables 2 and 3 present values of reduced skin friction coefficient f ′′(0), which
is the measure of resistance force on the wedge walls, for a fixed (λ = 0) and
impermeable wedge (f0 = 0), and for various values of m and β, while Table 4
gives results for fixed and permeable wedge (f0 6= 0) with included angle 90o.



Flow past a moving wedge 79

Table 3. The values of f ′′(0) for f0 = λ = 0 and various β

β Rajagopal et al. [8] Kuo [16] White [34] Present
0.0 0.469600 0.46960 0.4696
0.1 0.587035 0.587889 0.5870
0.3 0.774755 0.775524 0.77476 0.7748
0.5 0.927680 0.927905 0.9277
1.0 1.232585 1.231289 1.23259 1.2326
1.6 1.521514 1.518488 1.5215
2.0 1.683095 1.68722 1.6872

Table 4. The values of f ′′(0) for λ = 0, m = 1 and various f0

f0 Sparrow et al. [36] Yih [22] Present
-1.0 0.7605 0.75658 0.7566
-0.5 0.9697 0.96923 0.9692
0.0 1.231 1.23259 1.2326
0.5 1.54175 1.5418
1.0 1.88931 1.8893

We choose the values of f0 within the range −1 ≤ f0 ≤ 1, the same choice
as Yih [22]. Results reported by Rajagopal et al. [8], Kuo [16], Rosenhead [20],
Watanabe [21], Yih [22], White [34] and Sparrow et al. [36] are also included
in these tables. It is seen that the comparison with known results are in good
agreement. Therefore, it can be concluded that the developed code can be used
with great confidence to study the problem discussed in this paper.

On the other hand, it is observed from these tables that the drag force or
force due to skin friction increases as the included angle of the wedge increases.
It is also observed that the drag force is larger for suction (f0 > 0) compared to
injection (f0 < 0).

Figure 2 shows the velocity profiles f ′(η) for variousm and f0 when λ = −0.5.
For both cases f0 = −1 and f0 = 1, the boundary layer thickness decreases as m
increases, hence give rise to the velocity gradient, which in turn increase the skin
friction. This result is consistent with Tables 2 and 3, for fixed and impermeable
wedge. As can be seen from Fig. 2, only one curve is produced by a particular
value of m. Therefore, for λ = −0.5 there exist only one solution of f ′′(0) when
f0 = −1 and f0 = 1, as can be seen from Figs. 3 and 4. The number of solutions
depends on the values of λ, m and f0. Further, Fig. 3, for f0 = −1 and m = 2
(included angle = 120o), shows that there is only one solution when λ < 1, two
solutions when 1 ≤ λ ≤ 1.04 and no solution when λ > 1.04. As the value of f0
increases to f0 = 1 (see Fig. 4), there are two solutions when λ = 1.04.

In particular, there are one, two and three solutions when λ < 0.93, 1 ≤ λ ≤
1.97 and 0.93 ≤ λ < 1, respectively. When λ > 1.97, the boundary layer is
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separated from the surface of the wedge. Therefore, solutions based upon the
boundary layer approximation are not valid. Critical values of the parameter
λ for which solutions exist increase as the value of f0 increases. Thus, suction
delays the separation. Further, it is seen that all curves in Figs. 3 and 4 intersect
at a point (−1, 0). This is not surprising since there is no shear stress at the
surface when the wedge and the fluid moving with the same velocity, doesn’t
matter with the values of m and f0.

Moreover, all the solution curves for m > 0 have (1, 0) as the limit point,
whereas for m = 0, the curves ended at the origin. The same discovery as
reported by Riley and Weidman [26] for impermeable wedge. Also, it is observed
that there is always a solution for negative values of λ. Therefore, no separation
occurs when the wedge and the fluid moving in the same direction.

The velocity profiles f ′(η) for which the three solutions exist, as mentioned
above, are presented in Fig. 5, for f0 = 1 and m = 2 with λ = 0.95. It is
seen that there are three different curves, which produce three different values
of f ′′(0). All the curves satisfy the boundary conditions (9). Further, Figs. 6,
7, 9 and 10 present the variation of f ′′(0) as a function of λ for various values of
f0 when m = 0.5, 1, 2 and m → ∞, respectively. The results when m = 0 (flat
plate) can be found in Fang [33].

However, he did not show the variation of the non-dimensional velocity profiles
f ′(η) with the parameters f0 and λ. From Figs. 6, 7, 9 and 10, we can see that
there exist up to three solutions of f ′′(0) for the values of parameters involved.
The variation of f ′′(0) with λ for m = 2 and m → ∞ is shown in Figs. 9 and
10, respectively. It is seen that the difference between these solutions is not very
significant, i.e., the solution curves f ′′(0) display qualitatively the same features
for m = 2 and m→ ∞. The velocity profiles for which dual solutions exist that
can be seen in Fig. 7 are shown in Fig. 8, for λ = 1.2. For a fixed value of
f0, increasing m is to increase the critical values of λ for which solution exist.
Thus, larger value of m delays the boundary layer separation. Figure 11 shows
the velocity profiles at critical values of λ before separation occurs for various
values of f0 when m → ∞. It is found that the critical values increase with f0.
This result is consistent with the above-mentioned result that suction delays the
separation.

Figure 12 presents the variation of f ′′(0) as a function of f0 for various values
of m when λ = 0.5. It is observed that for m = 0, there exist no solution
when f0 < 0.2191. Physically this means that for flat plate, separation occurs
when f0 = 0.2191. Thus, there is no boundary layer structure at the surface
for injection (f0 < 0) and impermeable surface (f0 = 0) as well as very small
suction (0 < f0 < 0.2191). Therefore, solutions based upon the boundary layer
approximation are not valid, for this case. For other values of m, there is always
a solution throughout the range considered in this study. The velocity profiles
f ′(η) for λ = f0 = 0.5 are presented in Fig. 13. There are five different curves
shown in this figure since there are five different values of f ′′(0) when λ = f0 =
0.5, as can be seen from Fig. 12. Fig. 14 shows the variation of f ′′(0) as a
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function of f0 for various values of λ when m = 0.5. It can be seen that for
λ = 1.2, the critical value of f0 is 0.2095.

Thus, for these values of λ and m, separation occurs when f0 = 0.2095. The
velocity profiles f ′(η) that show the existence of two solutions for λ = 1.2, when
m = f0 = 0.5 are presented in Fig. 15. It is to be noted from the velocity
profiles f ′(η) displayed in Figs. 5, 8, 11, 13 and 15 that there exist solutions of
Eqs. (8) and (9) that always have regions within the boundary layer where f ′(η)
becomes negative. That is there exist solutions of Eqs. (8) and (9) displaying
reverse flow.

5. Conclusions

In this paper, we have theoretically studied the problem of steady two-dimensi-
onal laminar fluid flow past a moving wedge with suction or injection. The gov-
erning partial differential equations were transformed using suitable similarity
variables into the Falkner-Skan ordinary differential equation, and then solved
numerically using an implicit finite difference scheme known as the Keller-box
method. Numerical results for the velocity profiles and the skin friction coeffi-
cient for various values of Falkner-Skan power-law parameter m, velocity ratio
parameter λ and suction/injection parameter f0 have been illustrated in tables
and graphs. Comparisons with the existing results for certain values of parame-
ters are made. A discussion for the effects of the parameters involved has been
done. From this investigation, we can draw the following conclusions:

• Drag force is larger for suction compared to injection.
• Suction delays the boundary layer separation.
• Larger included angle of the wedge delays separation.
• Separation does not occur when the wedge and the fluid moving in the

same direction, for the values of parameters considered in this study.
• Dual solutions exist just before the separation.
• There exist up to three solutions or no solution for the values of para-

meters considered in this study.
• Velocity profiles decrease quite rapidly to assume negative values (re-

versed flow) before increasing to satisfy the condition for some values of
the involved parameters.
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