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INTUITIONISTIC FUZZY IMPLICATION OPERATORS:
EXPRESSIONS AND PROPERTIES
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ABSTRACT. The expressions of 32 fuzzy coimplication operators(FCO) and
32 intuitionistic fuzzy implication operators(IFIO) are given in this paper.
The Co-D-P properties which the FCOs should satisfy are presented. The
FCOs and IFIOs’situation of satisfying the properties which they should
satisfy, respectively, are discussed in details.
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1. Introduction

Study in intuitionistic fuzzy sets and application of intuitionistic fuzzy control
have been developed quickly since the definition of intuitionistic fuzzy sets was
introduced by Atanassov in 1983. Technology of intuitionistic fuzzy control has
been applied to many fields including medical field[9-12]. But the basic theory of
intuitionistic fuzzy control is inferior to its application, especially the theory of
intuitionistic fuzzy reasoning. Since Zadeh[2] introduced the compositional rule
of inference (CRI), many researchers have take advantage of fuzzy implication
operators to represent the relation between two variables linked together by
means of an if-then rule. In intuitionistic fuzzy reasoning theory, intuitionistic
fuzzy implication operators play the same important role. However how many
intuitionistic implication operators can be used in reality? What properties do
they satisfy? Which one is t-norm and t-conorm? etc.. In this paper, we will
focus on the expressions of intuitionistic fuzzy implication operators and their
properties.
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The paper is arranged as follows. In Section 2, the expressions of 32 fuzzy
coimplication operators are given. It is verified whether they satisfy the 14 prop-
erties in common use. Section 3 introduces 32 intuitionistic fuzzy implication
operators by making use of fuzzy implication, coimplication and aggregation
operators. Their properties are discussed in detail.

2. Definition and notations

The notation of intuitinistic fuzzy set was introduced in [1] as a generalization
of the notation of fuzzy set.

Let X be an ordinary finite non-empty set. An intuitionistic fuzzy set in X
is an expression A given by

A={<z,pa(z),va(z) > |z e X},

where pa(x) : X — [0,1], va(z) : X — [0,1] with the condition 0 < pu(x) 4+
va(z) <1, for all z in X.

The numbers pa(z) and va(z) denote, respectively, the membership degree
and the nonmembership degree of the element = in A.

For convenience of natation, we abbreviate ”intuitionistic fuzzy set” to ZFS
and represent ZFS(X) as the set of all the ZFS in X.

ZFS theory has the virtue of complementing fuzzy sets, that are able to
model vagueness, with an ability to model uncertainty as well. In ZFS theory
the value ma(z) = 1 — pa(x) — va(z), the intuitionistic fuzzy index, denotes a
measure of non-determinacy ( or undecidedness).

The operations equality, inclusion, complement, intersection, union,etc., for
ZFS of an ordinary set are defined in terms of their membership and nonmem-
bership functions. That is, for every A, B € ZFS(X),

o A< Bif and only if pa(x) < pup(xz) and va(z) > vp(x) for all z in X.
o A=< Bif and only if pa(x) < pup(z) and va(z) < vp(x) for all z in X.
o A= B if and only if A < B and B < A.

o ANB ={<z,min (ua(z), up(x)), max (va(z),ve(z)) > |z € X}.

o AUB = {< z,max (ua(x), up(x)), min (va(z),ve(z)) > |z € X}.

o The complementary of an ZFS is A, = {(x,va(z), pa(z))|lz € X}.

For convenience, let us take the following set:
L* = {LZ' = (1'171'2) S [0,1]2 | T] + 29 < 1}
For every Z,¢ € L* the following expressions are known.

ox <px gy x1 <y and xo > yo;
ox Ry a1 <y and xo < yo;
cxCpxy e 1—x1 <y

0V § = ((x1Vyr), (22 Ay2));
0T AL § = ((x1 Ayr), (T2 V y2));
o ¢ = (.IQ,{El);
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o 1p- = (1,0); 0z. = (0,1).

Evidently, the intuitionistic fuzzy index of £ € L* is defined as 73 = 1—z1—x2.
Obviously, 0 < 7z < 1.

There are several notations will be used in this paper in order to construct
intuitionistic fuzzy implication operators.

Definition 2.1. A strong negation is any strictly decreasing and continuous
[0,1] — [0, 1] mapping n satisfying n(0) = 1,n(1) = 0 and n(n(x)) = x for all =
in X.

A lot has been written in the fuzzy literature about aggregation operators.
Normally these operators are demanded the boundary conditions and monotonic-
ity. H.Bustince gave a definition in [3] shown below, in addition to the properties
above, symmetry is also demanded.

Definition 2.2. A function M : [0,1]? — [0, 1] is called aggregation operator if
it satisfies the following conditions,

Al. M(0,0) = 0;

A2, M(1,1) = 1;

A3. M is nondecreasing in both places;

A4. M(z,y) = M(y,z) for all (z,y) € [0,1]>.
An aggregation operator is called idempotent if it satisfies

M(z,x) =z, for all xe€]l0,1].

It is significant that any aggregation operator M that satisfies idempotency and
A3 also satisfies the inequalities A(z,y) < M(z,y) < V(z,y).

3. Fuzzy coimplication Operators

In fuzzy theory a conditional rule in expert systems has the form
If v is A then y is B (3.1)

where z is a variable taking values in A and y is a variable taking values in B,
A and B are fuzzy sets in X and Y, respectively.

In the framework of Zadeh’s calculus of fuzzy restrictions, the fuzzy condi-
tional rule is interpreted as a fuzzy relation restricting the possible values of
the ordered pair (x,y). This fuzzy relation can be defined using a generalized
implication operator I as

XxY — [0,1]

(@,y) — I(pa(@),ps(y)) for all (z,y) € X XY
2

where T is a fuzzy implication operator (FIO), that is, the function I : [0,1]* —
[0, 1] satisfies the properties:

p1. If x < z then I(z,y) > I(z,y) for all y € [0, 1];

po. If y <t then I(z,y) < I(x,t) for all x € [0,1];
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ps. 1(0,y) =1 for all y € [0,1];
pg. I(x,1) =1 for all x € [0, 1];
ps. 1(1,0) = 0.

Other properties (always called D-P properties) usually demanded of I are the
following.

pe- I(1,y) =y for all y € [0,1];
pr. I(z,1(y, 2)) = I(y, I(z, 2));
ps. x >y if and only if I(z,y) = 1;

po. I(x,0) =1—z for all z € [0,1];

pio- I(z,y) > y;

p11- I(z,2) = 1;

pi2. I(z,y) =I(1 -y, 1 —a);

p1s. I is continuous on [0, 1] x [0, 1];

p1a. If 2 > 0, then I(x,0) < 1; If y < 1, then I(1,y) < 1.

It is known that I(pa(z),up(y)) is always interpreted as the truth degree
of the conditional rule (3.1). By the definition of ZFS, in order to get an
intuitionistic fuzzy implication operator, we have to know the non-truth degree
of the conditional rule (3.1).

In [3], the definition of fuzzy coimplication which is dual to fuzzy implication
is given for interpreting the non-truth degree of the conditional rule (3.1).

Definition 3.1. A function I. : [0,1]2 — [0,1] is called coimplication if it
satisfies the properties

pe1- If x < z then I.(z,y) > I.(z,y) for all y € [0, 1];

De2. Iy <t then I.(z,y) < I.(z,t) for all z € [0, 1];

Pes. Ie(z,0) =0 for all z € [0,1];

Pea- Ic(1,y) =0 for all y € [0, 1]

pes- 1.(0,1) = 1.

The proposition below states the condition under which an implication gives

rise to a coimplication. With the proposition, we can construct fuzzy coimpli-
cation operators (FCOs) by their dual FIOs.

2
<

bl

Proposition 3.1.A4 function I.. : [0,1]%> — [0, 1] is a coimplication if and only if
the function I(z,y) = n(I.(n(x),n(y)) is an implication for any strong negation
n.

In this paper, the strong negation n will be considered as standard N, that
is, n(z) = N(z) =1—=x for all z € [0,1]. In this sense, I.(1 — pa(z),1— up(y))
can be interpreted as the degree of non-truth of the fuzzy conditional rule (3.1).
Obviously, 1(ua(2), jp (1)) + (1 — pa(e), 1 — up(y)) = 1.

From the definition of intuitionistic fuzzy implication operator in [3], we know
that a class of intuitionistic fuzzy implication operators can be constructed by
using of FIOs, FCOs and aggregation operators. In this reason we will discuss
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the 32 FIOs in common use concluded in [5-7] and their dual FCOs. The ex-
pressions are to be shown below.

) . 1 <y o 0 T >y
Ro: Iop(x,y) —{ (1—-z)Vy x>y, Toc(,y) = { l-z)ANy z<y.
Kleene-Dienes: [1(z,y) = (1 —z) Vy, Le(z,y)=(1—2)Ay.
Reichenbach: IL(z,y)=1—x+zy, L(z,y)=y—zy
Lukasiewicz: I3(z,y) = L TSy Ise(z,y) = 0 T2y

Py = l—z+y x>y, 3\ Y) = y—x x<y.
1 x=0 0 T =
Goguens Liey) =4 (b)) wog e =] w== oo
T 1—=x
I . 1 <y 0 x>y
Gadel: Is(z,y) = { y T3>, Isc(z,y) = { y z<y.
. ) J A-2)vVy 1-2)Ay=0
Dubois-Prade: Ig(x,y) = { 1 otherwise,
_J Q=-z)Any zA(l-y)=0
loe(z,y) = { 0 otherwise.
Zadeh: I(z,y) =1 —-2)V(zAy), Iz(z,y) = 1—3:)/\(:0\/y)

. . 1 z<y x>y
Gaines-Rescher:  Ig(x,y) = { 0 x>y, Isc(z,y) { 7 <.

Yager: I(z,y) =y*, Toc(z,y)=1-(1~-y)'~

Mamdani: Lo(z,y) =2 Ay, Loe(z,y) =z Vy.

P.C.: hi(z,y) =zy, Tic(z,y)=x+y—ay.

B.C.: La(z,y) =0V (x+y—1), Laec(z,y) =1A(xz+y).

) _J ANy zVvy=1 (xVy zAy=0
E.C.o hs(z,y) = 0 zvy<l, hie(,y) { x Ay > 0.
P.D.: Iz, y) =+ y — zy, Lye(z,y) =
B.D.: Lis(z,y) =1A (z+y), L5 (, ) (3: +y—1).

) _f (zvy xzAy=0 xVy=1
E.D.: h(,y) = { 1 zAy>0, Lige(2,y) = rVy<l

oo Yy T+y
Einstein C.: Li7(z,y) = , Ire(x,y) = .
17(@.y) 1+(1—-2)(1—y) 17e(2,y) 1+ay
. . * T+y Y
Einstein D. Ls(x,y) = , Lse(x .
18(@Y) = 75, 1808 = T T Ay
_J 1 z<l O x>0
IlQ(xvy) - { y = 1, IIQC('Ivy) - { Yy r=0.

*For saving room, P. denotes Probability, B. denotes Bounded, E. denotes Extreme, D.
denotes Disjunction and C. denotes Conjunction.
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Ino(z,y) = (1 =z + 22y — 2®y) A 1, Inoe(z,y) = (2° +y —x — 2%y) V0.
1 z<lory=1 _J (0 z>0 o0 y=0
In(z,9) _{ 0 otherwise, Ie(2,y) _{ 1 otherwise.
I (z,y) =2 Vy, Iose(w,y) = v N y.
- 1 <y - 0 z>y
123(3579)—{ t_ﬁ z >y, 123c($7y)—{ sy,
1 =0 0 z=1
124(3379)—{ y x>0, I24c(337y)—{ y z<l.
1 <y {)_ r2y
lo log Y
125(x7y): @ I>y>0 125C(Iay): 1—=x $<y<1
0 r>y=0 log (1 —y)
’ 1 r<y=1
Iyg(z,y) = (1 —aP + yP) A L.
Ioge(w,y) = (1= (1= (1—2)? + (1= y)7)7) V0.
1—-2z .
In7(z,y) = 2y + 5 Lre(w,y) =y — a2y + 5.
:Z?—I— T+
Ig(z,y) Y Dose(z,y) = 5 z
<y B 0 T >y
Iggfby {1—x+:vy :v>y, IQQC(xvy)_{y_xy $<y'
<y
Iso(z,y) = 1—3: \/% I<y<ax<l
(1-2x) otherwise,
T >y
Isoc(z,y) = (1-x) /\y/\ O<zr<y<l1
(I—xz)Ay otherwise.
<y . 0 T>y
Igl(fby 1_:1; T >, IBlC(Iay)_{ 1—2 x <y.

Just as we know, an FIO should satisfy the properties given above. Based on
the definition(3.1), a fuzzy coimplication operator (FCO) can be demanded to
satisfy other properties in addition to I.; — I.5, and we will call them Co-D-P
properties:

De6- Ic(ou y) =Y

Per- Ic(x7 Ic(ya Z)) = Ic(ya IC(LL', Z))7
Pes- Ie(x,y) =0 if and only if z > y;
Deg- Le(x,1) =1 — x;

Pero- Le(z,y) <y
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Dci1- IC(I;I) = Oa

Dci12- IC(Ia y) = IC(l - Y, 1- I)a

Pe1s- I is continuous on [0, 1] x [0, 1];

Pe1a- Uz < 1, then I.(z,1) > 0; If y > 0, then I.(0,y) > 0.

Theorem 3.1: These properties are not independent.
(i) If pei2 holds, then pe1 and pea are equivalent.
(ii) pe1o can be inferred from pes and pes.
(iil) pea can be inferred from peio and peis.
(iv) Sufficient condition of p.s can be inferred from pey and peii-

Easier method to know which one of 32 FCOs shown above is t-norm, t-
conorm or which one should be selected during designing an intuitionistic fuzzy
control system is to know which property an FCO satisfy. So next we will discuss
whether 32 FCOs Iy, — I31. satisfy the properties p.1 — pc14. The results will be
represented in Table 1 (Y stands for ”satisfy” and N stands for ”don’t satisfy”).

Compared with the Table 1 in [5], we can make a conclusion that the FCOs
hold the corresponding properties to their dual FIOs’.

4. Intuitionistic fuzzy implication operators

Atanassov and Gargov [4] and later Cornelis and Deschrijver[8] gave the def-
inition of intuitionistic fuzzy implication operator.

An intuitionistic fuzzy implication operator (IFIO) is any Z : L*? — L*,
mapping satisfying the border conditions:

Z((Oa 1)7 (Oa 1)) = (L 0)71((07 1)5 (17 O)) = (17 O)a
I((L 0)7 (17 O)) = (17 O);I((L 0)7 (07 1)) = (07 1)a
and the two following conditions:

1) If # < §j, then VZ € L*, I(#, 2) > Z(§, ).
2) If § < %, then Vi € L*, Z(%,§) < Z(&, 3).

In [3], Bustince, Barrenechea and Mohedano gave another definition of IFTO.
It satisfied the conditions above and recovered J Fodor’s definition of FIO when
the sets are fuzzy.

Definition 4.1: An intuitionistic fuzzy implication operator is a function: 7 :
L*? — L* with the properties below.

Py. If z,y € L* are such that z1 + 22 =1 and y1 + y2 = 1, then 7z, ) = 0;
P Vze L* if & <y, then Z(2, 2) > I(3, 2);

P,. ¥z € L*, if § < Z, then Z(&,7) < Z(%, 2);

P;. VzZ e L*,I(OL*,E) =1p~;

Py Vi e L*T(Z, 1) = 1p+;

Ps. Z(1p+,0p+) = Opx.
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Pc9 Pecl0 Pcll Pecl2 Pel3  Pel4

DPc7 Pe8

Pca  Pes  Pcb

Pc2  Pe3

pcl

A A DA DR D D D N D R R L Z R 22 L2 R R e e e

ZAAAAZZ R LA ARZ AN AR L LL R AR AR AL

HAANANZZRZ AN LL L L L L L L L L L L L L L L L L LA

HEZAANRAZ AN L LR L L L L L LA E R DA AL Z A

RN ZL AN L L L LA A AL R AR LN L LA
HAANANZLZARR L LL L L L L L L L L L AL LN LD L L Z
HEZAANRZE AN L L L L L L L L L L L LR A AL Z
A A A AR A LT A AN A A AN ZZ R Z NI NN A
RAAAA RN IR Z AR N L L LR N AL L LR LR LA
P R P D D D D D D D R 2 ZZ R 2R A R Z R R D 2 R e
RAAAARN AN AN N L L L L L L LD AL R R DL R
RAAAA RN AL AN L L L LD R L L2 R
P P D DR D D D D e D D D e D D e e D D e e

RN AL AN L L L L L L LD DAL LR R R L LR R

IlOc
Illc
T12c
1136
Il4c
Iisc
Ich
Il?c
I1sc
Ilgc
I20c
I21c
I22c
I23c
I24c
I25¢
I26c
I27¢
Iasc
I29c
I30c
I31c

S & 2 &
~ o~

ISC

S 8.8 3 3
SN S S

Table 1.FCOs’ situation of satisfying the properties

IFIOs can be demanded to satisfy other properties in addition to Prg — Prs.

P
—
D
I
i
—_
8
I
=
>
VI By
—~
) LI
Sd 2
SN wfu
]
I
— I = 8o
~ > hade)
Sas g "
N == =
- &8 k Ia >
R L=l &)
I S A Rt
S EEBR s
S S oo™ s —
V| TS A~
1Dy D~ N~ R
s I fRmomE T
iy @ SREBERE R
SC L TRREERE
PO = = T B I
AL AR AR AR AR
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Prg. 16 % = 0p- or §j = 17+, then Z(%,§) = 11-;

Pi7. Z(2,9) = 11~ if and only if Z = 15+ and § = Op~;
P18. I(j,i'c = c;

Piy. Z(2,Z(g,%)) = 1p~.

Where Ps — Py are properties of the truly intuitionistic fuzzy and the others
are the properties inherited when the fuzzy implications are generalized to the
intuitionistic fuzzy case.

In intuitionistic fuzzy theory the intuitionistic fuzzy conditional rule has the
form

If  is A then y is B, (4.1)

where z is a variable taking values in A and y is a variable taking values in B,
A and B are ZFS in X and Y, respectively.

With FIOs, FCOs and aggregation operators, the truth degree of the intu-
itionistic fuzzy conditional rule (4.1) is given by

I(Ml (MA(I), 1- VA(.I)), MQ(ILLB(y>’ 1- VB(y)))v
and the non-truth degree is given by

Ie(M3(va(x),1 = pa(z)), Ma(vp(y), 1 — ps(Y))),
where I is any FIO, I, is any FCO and M;, My, M3, M, are any idempotent
aggregation operators.
Evidently, the sum of these two values must be less than or equal to one, that
is,

I(Mi(a@),1 = va(@), Ma(us(v), 1 - ve(y))

1 (Ma(va(@),1 = pa(@), Ma(vs(v),1 = ps(v))) < 1.

Obviously, the inequality above is not verified with all aggregations My, Mo,
M3, My, and just any I and I.. Based on the following proposition, we can
construct some IFIOs.

Proposition 4.1[3]. Let I be a fuzzy implication operator and I. be the coim-
plication associated to I. Let My, Mo, M3, My be four idempotent aggregation
operators such that
Ml(x7y) + M3(1 -, 1- y) >1
and Msy(x,y) + My(1 — 2,1 —y) <1, for all z,ye€][0,1]. (4.2)

Then T : L*? — L* given by
I(z,9) = (I(Mr(21,1 = 22), M2(y1,1 — y2)), Le(Ms(22, 1 — 21), Ma(y2, 1 — 1))
is an IFIO.

From proposition 4.1, we can conclude that My, Ms, M3, My satisfy the in-

equality (4.2), then IFIO can be constructed. In this paper, taking M, =V = M3
and My = A = My, then we get 32 IFIOs by 32 FIOs and their dual FCOs shown
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in part 3. The expressions will be shown in the following.

(1, O) 1-— i) S Y1
Ry: Il(:f,]j): (,TQ\/yl,!El /\yg) 11—z <y
(z2 Vy1,0) otherwise
Kleene-Dienes: Io(Z,9) = (x2 V y1, 71 Ay2)
Reichenbach I3(Z,9) = (2 + y1 — T2y1, T1Y2)
Lukasiewicz: Z4(Z,9) = A A (z2+y1),0V (x1 +y2 — 1))
Goguen: Ls(x,9) = { (1A 2(,16 3) mtyal) " (?thi?jzis? :
(1,0) 1—az2<um
Godel: Iﬁ(j,g) = (yl, yg) 1l—x1 < Y2

(y1,0)  otherwise
Dubois-Prade:  Z7(Z,9) = { (@2Vy1,21 Ay2) 22Ay1 =0 and 1 Vyr =1

(1,0) otherwise

Zadeh: Zg(i?,g) = (IQ V ((1 — IQ) AN yl),xl AN ((1 — .Il) V yz))
(1,0) 1—22<uy

Gaines-Rescher: To(2,9) =< (0,1) 1—21 <y
(0,0)  otherwise

Yager: Tio(#,9) = (317" 1 — (1 — y2)™")

Mamdani: T (z,9) = (1 —22) Ayr, (1 —21) Vya)

P.C.: 112(.f,:lj) = (yl —y1I2,1—I1 —I—.Ilyg)

B.C.: Ilg(j,g) = (O \Y (yl — IQ), 1A (1 — X1 + yz))

E.C. T14(Z,9)

(I=z2) Ay, (L—21)Vy2)  (I—z2)Vyr =1
— and (1—z1)Ay2=0

(0,1) otherwise
PD 115(5775) = (1 — T2 + T2Y1,Y2 — yQJfl)
B.D.: Tie(z,7) = (LA(Q =224+ 31),0V (y2 — 21))

E.D. Ti7(Z,9)
(I=22)Vy, (1 —z1)Ay2))  (1—a2) Ay =0
= and (1—z1)Vy2=1
(1,0) otherwise

— 1 _
Einstein C.: Tis(%,7) = ( 91— Yixo : 1+ Y2 )
L+xy —2oy1’ 14+ y2 — 2192
1- _
Einstein D.: Tio(7,§) = ( T2 + Y1 7 Y2 — Y221
L+yr —@oyr 1421 — oy

7 0) = (y1,y2) 21 =1 and 22 =0
Io0(2,9) = { (1,0) otherwise

Ion(Z,9) = (LA (x2 +y1 — 23y1),0 V (2F — 21 + 22192 — 27Y2))

,0) y17=1 and 21 <1 and 29 >0
otherwise

1-23(‘%7?]) = ((1 - ‘TQ) Vi, (1 - xl) A y2)
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(170)7 1—$2§y1
To Yo+ 121 — 1
o , , 1—z1 <
Toa(2,9) = (1—y1 Y2 ) LS
2 ,01, l—22>y; and 1 —z1 > yo
1—n
S (1,0) 21 =0 and z2=1
125(17,y)—{ (y1,92) otherwise
(150)3 1—$2§y1
log (1 — log =22
o8 ( IQ), 8 o , 1—x9 >y >0and
logyr  "log (1 —y2)
-z <y2 <1
1 1-—
o (M,()), l—ws >y >0 and 1 — 21 > yo
Io6(Z,9) = log yn
log Y2
0,7301 Jd—zo>y;=0and 1 —z; <yz <1
log (1 — y2)
(0,0), l—xzo>y;=0and 1 —z1 > o
(0,1), otherwise.

Tor(@,9) = (1A (L= (L=22)? +90)7),0A (1= (1 =2} + (1= g2))7))

Tog(2,9) = (yl — y1x2 + %,:myg + ! 2x1
I29(:E,ﬂ)=(1 $;+y171 x;+y2>
(170) l—22 <y
Z30(2,9) = { (2 +y1 — 22y1, T1y2) 1 — 21 <92
(2 +y1 — 2291,0) otherwise
(1’0) 11—z <
($2Vy1\/%,$1/\y2/\%) O<yp<l—xza<1
and 0<1l—21<y2<1
1
I31(2,9) = (@2Vy1V 5,0) O;glf_lxlfg;l
(xz\/yl,xl/\yz/\%) y1=0 or 22 =0
and 0<1l—2z1<y2<1
(2 VY1, 21 Ay2)) otherwise
(1,0) 1—22 <1y
I3o(Z,9) = (w2,21) 1—m1 <y

(22,0)  otherwise

For convenience of making use of these IFIOs in reality, in the following table,
we will discuss whether the 32 IFIOs satisfy the properties Py — Pig(Y stands
for ”Yes” and N stands for "No”).
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Zo Zio Z11 Zi2 Z13 Zia Tis Tie Iiv

Il IQ Ig I4 Is IG I7 Is

A A A R
A R
R A A A
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A A A R T s
2 o e e R B Z R R 2T R B Z 2
Dt D o D D e e D 2 72 T 7 o 2,
D Z o Z R Z D 2T R 22 e
D 2 B D D e o D B D Z o e e e e 2
D D B e D D e D 2 e e D 2 e e 2 e 4
Dt Dt o D D e e 2 Z o D Z e 1 7 1 2
D Dt e D e 2 Z e e e e e et e e 2
D Dt e B e D 2 o D 2 o e 2 1 R 2
D Dt B D e D e e D e e 2 e e 2 D e e
D Dt B e B D e D 2 e e D e e e et e 4 2,

R =TT B B T e
T < Sl O N B W A

Ps

CCdCd

Table 2. IFIOs’ Situation of Satisfying the Properties(I)

Tio Zoo T21 Zoo Zo3 Toa Zos Tos Zov Zos T29 Z3o I3 Ia2

T1s

A A A A N A R
D Z R i e o o o R 227 2 Z
T B T T o 2 R e Z
N2 R Z R Z M ZZZZZ 2222 Z,
N Z R 2 Z R R 222222 2 Z 22
T R B R ZZ R B Z T T e 2
M Z R R R ZZ 227222 Z 22 Z
R R R Z 2R ZZZZ 222 Z 22 Z
D Z o B o ZUZ o e e e e b e e e
D e e B e b 2 b o 22 2
D D B e B B e b D e R b o 22 2
R R o 222222 Z 2
D e R D o Z o pm 222 e 2
DD e b B e e D B b b D e e b e e e

RN NI AN AL LA L L L2 Z

Cd S

oW S 25 9 ® T n o ® o
T I Ul < W A B R B s

Table 3.IFIOs’ Situation of Satisfying the Properties(II)
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5. Conclusion

In the paper, we have expressed 32 fuzzy implication operators Iy — I3; and
their dual 32 fuzzy coimplication operators Iy, — Is1.. It is verified whether the
coimplication operators satisfy the properties p.; — pc14. We have constructed
32 intuitionistic fuzzy implication operators Z; — Z32 and have verified whether
they satisfy the properties Py — Pig. The results obtained can be applied to
design an intuitionistic fuzzy control system, which is one of our future work.
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