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IMPLICIT DIFFERENCE APPROXIMATION FOR THE TIME
FRACTIONAL DIFFUSION EQUATION

P. ZHUANG AND F. LIU∗

Abstract. In this paper, we consider a time fractional diffusion equation
on a finite domain. The equation is obtained from the standard diffusion
equation by replacing the first-order time derivative by a fractional deriva-
tive (of order 0 < α < 1 ). We propose a computationally effective implicit
difference approximation to solve the time fractional diffusion equation.
Stability and convergence of the method are discussed. We prove that
the implicit difference approximation (IDA) is unconditionally stable, and
the IDA is convergent with O(τ + h2), where τ and h are time and space
steps, respectively. Some numerical examples are presented to show the
application of the present technique.
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1. Introduction

Time-fractional diffusion equations (TFDE), obtained from the standard dif-
fusion equation by replacing the first-order time derivative by a fractional de-
rivative of order 0 < α < 1, (in Riemann-Liouville or Caputo sense), have been
treated in different contexts by a number of authors. Mainardi [14] first dis-
cussed the fractional diffusion-wave equation. Using the method of the Laplace
transform, it is shown the fundamental solutions of the basic Cauchy and Sig-
nalling problems can be expressed in the terms of an auxiliary function M(z; β),
where z = |x|/tβ is the similarity variable. Wyss [19] considered the time frac-
tional diffusion equation and the solution is given in closed form in terms of Fox
functions. Schneider and Wyss [18] considered the time fractional diffusion and
wave equations. The corresponding Green functions are obtained in closed form
for arbitrary space dimensions in terms of Fox functions and their properties
are exhibited. Gorenflo et al. [6] used the similarity method and the method
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of Laplace transform to obtain the scale-invariant solution of time-fractional
diffusion-wave equation in terms of the wright function. Liu et al. [10] con-
sidered time-fractional advection-dispersion equation and derived the complete
solution. Huang and Liu [8] considered the time-fractional diffusion equations in
a n-dimensional whole-space and half-space. They investigated the explicit rela-
tionships between the problems in whole-space with the corresponding problems
in half-space by the Fourier-Laplace transforms. Time fractional diffusion and
wave equations are derived by considering continuous time random walk prob-
lems, which are in general non-Markovian processes. Space fractional diffusion
equations with the fractional spatial derivative are used for studying Markovian
processes. The physical interpretation of the fractional derivative both cases
is that it represents a degree of memory in the diffusing material [7] . Many
authors considered more general equations. Anh and Leonenko [2] presented a
spectral representation of the mean-square solution of the fractional diffusion
equation with random initial condition. Gorenflo et al. [5] gave a mapping
between solutions of fractional diffusion-wave equations. Enzo et al. [3] and
Luisa et al. [13] considered and proved the solutions to the Cauchy problem
of the fractional telegraph equation can be expressed as the distribution of a
suitable composition of different processes. However, published papers on the
numerical solution of fractional partial differential equations are sparse. This
motivates us to consider their effective numerical methods. Liu et al. [9, 11]
used fractional Method of Lines to solve the space fractional diffusion equation,
they transform this partial differential equation into a system of ordinary dif-
ferential equations. Fix and Roop [4] developed a finite element method for
a two-point boundary value problem. Meerschaert et al. proposed finite dif-
ference approximations for two-sided space-fractional partial differential equa-
tions [15] and fractional advection-dispersion flow equations [16]. Liu et al. [12]
considered a discrete non-Markovian random walk approximation for the time
fractional diffusion equation and discussed the stability and convergence of the
approximation.

In this paper, we consider the time fractional diffusion equation. This paper is
organized as follows: The analytical solution of the fractional diffusion equation
in a bounded domain is given in section 2. The fractional implicit difference
approximation is proposed in section 3. In sections 4 and 5, the stability and
convergence of the implicit difference approximation are analyzed respectively.
In section 6, the numerical examples are given.

2. The analytical solution of the TFDE in a bounded domain

In this section, we consider the fractional diffusion equation (FDE) of the
form

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2
, 0 ≤ x ≤ L, 0 < t ≤ T (1)

with initial and boundary conditions:
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u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T, (2)

u(x, 0) = f(x), 0 ≤ x ≤ L, (3)

where 0 < α < 1.
The fractional derivative ∂αu(x,t)

∂tα in (1) is the Caputo fractional derivatives
of order α defined [17] by

∂αu(x, t)
∂tα

=
1

Γ(1 − α)

∫ t

0

∂u(x, ξ)
∂ξ

dξ

(t − ξ)α
, 0 < α < 1. (4)

When α = 1, we recover in the limit the well-known diffusion equation (Mar-
kovian process)

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2
, 0 ≤ x ≤ L, 0 < t ≤ T. (5)

In the case α < 1, we have to consider the previous all time levels (non-Markovian
process).

By taking the finite sine transform and Laplace transform, the analytical
solution for the equation (1) with the boundary conditions as above is obtained
[1] as:

u(x, t) =
2
L

∞∑

k=0

Eα(−a2n2tα) sin(anx)
∫ L

0

f(r) sin(anr)dr, (6)

where a = π
L and

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
(7)

is the Mittag-Leffler function.
Some special Mittag-Leffler type functions are listed as follow:

E1(−z) = e−z, E2(−z2) = cos(z), E 1
2
(z) =

∞∑

k=0

zk

Γ(k
2 + 1)

= ez2
erfc(−z),

(8)

where erfc(z) is the error function complement defined by

erfc(z) =
1√
π

∫ ∞

z

e−t2dt. (9)

3. Implicit difference approximation for the TFDE

In this section the following time-fractional diffusion equation

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2
, 0 ≤ x ≤ L, 0 < t ≤ T, (10)

u(x, 0) = f(x), 0 ≤ x ≤ L, (11)
u(0, t) = u(L, t) = 0 (12)

is considered. A fractional implicit difference approximation is proposed.
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Define tk = kτ, k = 0, 1, 2, · · · , n, xi = ih, i = 0, 1, 2, · · · , m, where τ = T
n

and h = L
m are space and time steps, respectively. Let uk

i be the numerical
approximation to u(xi, tk).

In the differential equation (10) we have adopted a symmetric second dif-
ference quotient in space at level t = tk+1 for approximating the second-order
space derivative. The time fractional derivative term can be approximated by
the following scheme:

∂αu(xi, tk+1)
∂tα

=
1

Γ(1 − α)

k∑

j=0

∫ (j+1)τ

jτ

∂u(x, ξ)
∂ξ

dξ

(tk+1 − ξ)α

≈ 1
Γ(1 − α)

k∑

j=0

u(xi, tj+1) − u(xi, tj)
τ

∫ (j+1)τ

jτ

dξ

(tk+1 − ξ)α

=
1

Γ(1 − α)

k∑

j=0

u(xi, tj+1) − u(xi, tj)
τ

∫ (k−j+1)τ

(k−j)τ

dη

ηα

=
1

Γ(1 − α)

k∑

j=0

u(xi, tk+1−j) − u(xi, tk−j)
τ

∫ (j+1)τ

jτ

dη

ηα

=
τ1−α

Γ(2 − α)

k∑

j=0

u(xi, tk+1−j) − u(xi, tk−j)
τ

[
(j + 1)1−α − j1−α

]

=
τ−α

Γ(2 − α)

[
u(xi, tk+1) − u(xi, tk)

]

+
τ−α

Γ(2 − α)

k∑

j=1

[
u(xi, tk+1−j) − u(xi, tk−j)

][
(j + 1)1−α−j1−α

]

Now, let bj = (j + 1)1−α − j1−α, j = 0, 1, 2, · · · , n, and define

Lα
h,τu(xi, tk) =

τ−α

Γ(2 − α)

k∑

j=0

bj

[
u(xi, tk+1−j) − u(xi, tk−j)

]
. (13)

Then we have

∣∣∣∣
∂αu(xi, tk+1)

∂tα
− Lα

h,τu(xi, tk+1)
∣∣∣∣

≤ 1
Γ(1 − α)

k∑

j=0

∫ tj+1

tj

∣∣∣∣
∂u(xi, ξ)

∂ξ
− u(xi, tj+1) − u(xi, tj)

τ

∣∣∣∣
dξ

(tk+1 − ξ)α
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≤
C1

Γ(1 − α)
τ

k∑

j=0

∫ tj+1

tj

dξ

(tk+1 − ξ)α

≤
C1

Γ(1 − α)
τ

∫ tk+1

0

dξ

(tk+1 − ξ)α

≤ Ĉ1τ (14)

where C1, are Ĉ1 are constants.
Thus, we obtain the following form

uk+1
i − uk

i +
k∑

j=1

bj

(
uk+1−j

i − uk−j
i

)
= µΓ(2 − α)

(
uk+1

i+1 − 2uk+1
i + uk+1

i−1

)
,
(15)

for i = 1, 2, · · · , m−1, k = 0, 1, 2, · · · , n−1, where µ =
τα

h2
. Let r = µΓ(2−α),

the above equation can be rewritten as the following form

−ruk+1
i+1 + (1 + 2r)uk+1

i − ruk+1
i−1 = uk

i −
k∑

j=1

bju
k+1−j
i +

k∑

j=1

bju
k−j
i .

Hence, for k = 0:

− ru1
i+1 + (1 + 2r)u1

i − ru1
i−1 = u0

i , (16)

for k > 0:

− ruk+1
i+1 + (1 + 2r)uk+1

i − ruk+1
i−1 = (1 − b1)uk

i +
k−1∑

j=1

uk−j
i (bj − bj+1) + bku0

i ,
(17)

where i = 1, 2, · · · , m. Eqs. (16) and (17) can be written as




Au1 = u0,
Auk+1 = c1uk + c2uk−1 + · · · + cku1 + bku0, k > 0,
u0 = f ,

(18)

where

A =




1 + 2r −r 0 · · · 0 0
−r 1 + 2r −r · · · 0 0
0 −r 1 + 2r · · · 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 + 2r −r
0 0 0 . . . −r 1 + 2r




, (19)

uk =




uk
1

uk
2

...
uk

m−1


 , f =




f(x1)
f(x2)
...
f(xm−1)


 (20)

and cj = bj−1 − bj , j = 1, 2, · · · , n.
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Using the properties of the function g(x) = x1−α(x ≥ 1), the following results
can be obtained:




1 = b0 > b1 > b2 > · · · → 0,
k∑

j=1

cj = 1 − bk,

∞∑

j=1

cj = 1, 1 > 2 − 21−α = c1 > c2 > c3 > · · · → 0.

(21)

Hence, we have

Remark 1. In (18) we see that A is strictly diagonally dominant with positive
diagonal terms and nonpositive offdiagonal terms. The equation (18) can be
solved.

Remark 2. Matrix A is an M-matrix. The solution uk
i , (i = 0, 1, 2, · · · , m; k =

0, 1, · · · , n) preserves non-negativity, if u0
i , i = 0, 1, 2, · · · , m are non-negative.

Using inductive approach, we can obtain the following conclusion from (16)
and (17).

Remark 3. The solution uj
i is conservative, i.e.,

∞∑

i=−∞
|u0

i | < ∞ ⇒
∞∑

i=−∞
|uj

i | =
∞∑

i=−∞
|u0

i |, j ∈ N. (22)

4. Stability of implicit difference approximation

We suppose that ũj
i , (i = 0, 1, 2, · · · , m; j = 0, 1, 2, · · · , n) is the approxi-

mate solution of (16) and (17), the error εj
i = ũj

i − uj
i , (i = 0, 1, 2, · · · , m; j =

0, 1, 2, · · · , n) satisfies

−rε1
i+1 + (1 + 2r)ε1

i − rε1
i−1 = ε0

i ,

−rεk+1
i+1 + (1 + 2r)εk+1

i − rεk+1
i−1 = c1ε

k
i +

k−1∑

j=1

cj+1ε
k−j
i + bkε0

i , k > 0,

(i = 1, 2, · · · , m − 1),
(23)

which can be written as{
AEk+1 = c1Ek + c2Ek−1 + · · · + ckE1 + bkE0,
E0,

(24)

where Ek =




εk
1

εk
2

...
εk

m−1


. Hence, the following result can be proved using mathe-

matical induction.
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Proposition 1. ‖Ek‖∞ ≤ ‖E0‖∞, k = 1, 2, 3, · · · .

Proof. For k = 1, −rε1
i+1 + (1 + 2r)ε1

i − rε1
i−1 = ε0

i . Let |ε1
l | = max

1≤i≤m−1
|ε1

i |.
Then we have

|ε1
l | ≤ −r|ε1

l+1| + (1 + 2r)|ε1
l | − r|ε1

l−1| (25)

≤
∣∣∣ − rε1

l+1 + (1 + 2r)ε1
l − rε1

l−1

∣∣∣
= |ε0

l | ≤ ‖E0‖∞.

Thus, ‖E1‖∞ ≤ ‖E0‖∞. Suppose that ‖Ej‖∞ ≤ ‖E0‖∞, j = 1, 2, · · · , k . Let
|εk+1

l | = max
1≤i≤m−1

|εk+1
i |.

Then we also have

|εk+1
l | ≤ −r|εk+1

l+1 | + (1 + 2r)|εk+1
l | − r|εk+1

l−1 |

≤
∣∣∣ − rεk+1

l+1 + (1 + 2r)εk+1
l − rεk+1

l−1

∣∣∣

=

∣∣∣∣∣∣
c1ε

k
l +

k−1∑

j=1

cj+1ε
k−j
l + bkε0

l

∣∣∣∣∣∣

≤ c1|εk
l | +

k−1∑

j=1

cj+1|εk−j
l | + bk|ε0

l | (26)

≤ c1‖Ek‖∞ +
k−1∑

j=1

cj+1‖Ek−j‖∞ + bk‖E0‖∞

≤
{

c1 +
k−1∑

j=1

cj+1 + bk

}
‖E0‖∞

= ‖E0‖∞,

i.e., ‖Ek+1‖∞ ≤ ‖E0‖∞. �

Hence, the following theorem is obtained.

Theorem 1. The fractional implicit difference approximations defined by (16)
and (17) are unconditionally stable.

5. Convergence of implicit difference approximation

Let u(xi, tk), (i = 1, 2, · · · , m − 1; k = 1, 2, · · · , n) be the exact solution of
the TFDE (10) - (12) at mesh point (xi, tk). Define ek

i = u(xi, tk) − uk
i , i =
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1, 2, · · · , m − 1; k = 1, 2, · · · , n and ek = (ek
1 , ek

2 , · · · , ek
m−1)

T . Using e0 = 0,
substitution into (16) and (17) leads to

−re1
i+1 + (1 + 2r)e1

i − re1
i+1 = R1

i ,

−rek+1
i+1 + (1 + 2r)ek+1

i − rek+1
i+1 = c1e

k
i +

k−1∑

j=1

cj+1e
k−j
i + Rk+1

i , k > 0
(27)

where

Rk+1
i = u(xi, tk+1) − u(xi, tk) +

k−1∑

j=1

bj

[
u(xi, tk+1−j) − u(xi, tk−j)

]

−µΓ(2 − α)
[
u(xi+1, tk+1) − 2u(xi, tk+1) + u(xi−1, tk+1)

]

=
k∑

j=0

bj

[
u(xi, tk+1−j) − u(xi, tk−j)

]

−µΓ(2 − α)
[
u(xi+1, tk+1) − 2u(xi, tk+1) + u(xi−1, tk+1)

]
.

(28)

From (14), we have

1
Γ(2 − α)τα

k∑

j=0

bj

[
u(xi, tk+1−j) − u(xi, tk−j)

]
=

∂αu(xi, tk+1)
∂tα

+ Ĉ1τ

and
u(xi+1, tk+1) − 2u(xi, tk+1) + u(xi−1, tk+1)

h2
=

∂2u(xi, tk+1)
∂x2

+ C2h
2.

Hence,

Rk+1
i = ταΓ(2 − α)

[
∂αu(xi, tk+1)

∂tα
− ∂2u(xi, tk+1)

∂x2

]
+ Ĉ1τ

1+α + C2τ
αh2.

Also

|Rk+1
i | ≤ C(τ1+α + ταh2), i = 1, 2, · · · , m − 1; k = 0, 1, 2, · · · , n

where C is a constant.

Proposition 2. ‖ek‖∞ ≤ Cb−1
k−1(τ

1+α + ταh2), k = 1, 2, · · · , n, where
‖ek‖∞ = max

1≤i≤m−1
|ek

i | and C is a constant.

Proof. Using mathematical induction method. For k = 1, let ‖e1‖∞ = |e1
l | =

max
1≤i≤m−1

|e1
i |, we have

|e1
l | ≤ −r|e1

l+1| + (1 + 2r)|e1
l | − r|e1

l−1|
≤ | − re1

l+1 + (1 + 2r)e1
l − re1

l−1|
= |R1

i |
≤ Cb−1

0 (τ1+α + ταh2)

(29)
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Suppose that

‖ej−1‖∞ ≤ Cb−1
j (τ1+α + ταh2), j = 1, 2, · · · , k and |ek+1

l |= max
1≤i≤m−1

|ek+1
i |.

Note that b−1
j ≤ b−1

k , j = 0, 1, · · · , k. We have

|ek+1
l | ≤ −r|ek+1

l+1 | + (1 + 2r)|ek+1
l | − r|ek+1

l−1 |
≤ | − rek+1

l+1 + (1 + 2r)ek+1
l − rek+1

l−1 |

=
∣∣∣∣c1e

k
l +

k−1∑

j=1

cj+1e
k−j
l + Rk+1

i

∣∣∣∣

≤
∣∣∣∣c1e

k
l +

k−1∑

j=1

cj+1e
k−j
l + Rk+1

i

∣∣∣∣

≤ c1|ek
l | +

k−1∑

j=1

cj+1|ek−j
l | + C(τ1+α + ταh2)

≤ c1‖ek‖∞ +
k−1∑

j=1

cj+1‖ek−j‖∞ + C(τ1+α + ταh2)

≤
[
c1 +

k−1∑

j=1

cj+1 + bk

]
b−1
k C(τ1+α + ταh2)

= b−1
k C(τ1+α + ταh2),

(30)

Because

lim
k→∞

b−1
k

kα
= lim

k→∞

k−α

(k + 1)1−α − k1−α

= lim
k→∞

k−1

(1 + 1
k )1−α − 1

= lim
k→∞

k−1

(1 − α)k−1

=
1

1 − α
,

(31)

hence, there is a constant C̄,

‖ek‖∞ ≤ C̄kα(τ1+α + ταh2).

�
Because kτ ≤ T is finite, we obtain the following result.

Theorem 2. Let uk
i be the approximate value of u(xi, tk) computed by use of

the difference scheme (16) and (17). Then there is a positive constant C such
that

|uk
i − u(xi, tk)| ≤ C(τ + h2), i = 1, 2, · · · , m − 1; k = 1, 2, · · · , n

(32)
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6. Numerical results

In this section, we present an example in a finite domain to demonstrate that
the IDA is a computationally effective method, and the IDA can been applied to
simulate the behavior of the solution of the fractional reaction-diffusion equation.
We consider the following fractional diffusion equation

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2
, 0 ≤ x ≤ 2, t > 0, (33)

the boundary conditions u(0, t) = u(2, t) = 0 and initial condition

u(x, 0) = f(x) =

{
2x, 0 ≤ x ≤ 1

2
4 − 2x

3
, 1

2 ≤ x ≤ 2
. (34)

The function f(x) represents the temperature distribution in a bar generated by
a point heat source kept in the point x = 1

2 for long enough.
A comparison of the exact solution and the numerical solution using IDA

with various time and space steps for TFDE at t = 0.4 and α = 0.5 is shown in
Figure 1. It is apparent from Figure 1 that the numerical solution is in complete
agreement with exact solution. Computed errors between the exact solution and
IDA for a various time and space steps for TFDE at t = 0.4 and α = 0.5 are
listed in Table 1 and show the effect of τ and h. From Table 1, it can be seen
that our method (IDA) yields convergence with O(τ + h2).

Figures 2 and 3 compare the response of the diffusion system for different real
numbers 0 < α < 1 at t = 0.4 and different x, and at x = 1.5 and different t,
respectively.

Table 1. The error uk
i − u(xi, tk) at t = 0.4

xi h = 1
4 , τ = 1

20 h = 1
8 , τ = 1

75 h = 1
20 , τ = 1

400

0.25 6.6909E-3 1.101E-3 -4.002E-4
0.50 1.49298E-2 4.2616E-3 1.3944E-3
0.75 1.30396E-2 3.035E-3 3.537E-4
1.00 7.6896E-3 -9.254E-4 -3.2303E-3
1.25 9.2103E-3 2.4512E-3 6.444E-4
1.50 6.2192E-3 1.593E-3 3.568E-4
1.75 2.8617E-3 6.264E-4 -1.093E-4

7. Conclusions

In this paper, an implicit finite difference approximation for the time frac-
tional diffusion equation in a bounded domain have been described and demon-
strated. We prove that the implicit difference approximation is unconditionally
stable and convergent. The technique can be applied to solve fractional-order
differential equation.
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Figure 1. Comparison of the exact solution and numerical so-
lution (IDA) at t = 0.4 and α = 0.5.
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Figure 3. Displacement as a function of t at x = 1.5 for various α.
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