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OSCILLATION OF SUBLINEAR DIFFERENCE EQUATIONS
WITH POSITIVE NEUTRAL TERM

QIAOLUAN LI, CHUNJIAO WANG, FANG LI, HAIYAN LIANG AND
ZHENGUO ZHANG∗

Abstract. In this paper, we consider the oscillation of first order sublinear
difference equation with positive neutral term

4(x(n) + p(n)x(τ(n))) + f(n, x(g1(n)), · · · , x(gm(n))) = 0.

We obtain necessary and sufficient conditions for the solutions of this equa-
tion to be oscillatory.
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1. Introduction

Recently, there has been an increasing interest in the study of the oscillatory
behaviors to the solutions of nonlinear and linear difference equations. The ref-
erence [1-6] concern with the oscillation of nonlinear difference equations, while
[7] concern with that of linear difference equations. The reference [8-10] stud-
ied respectively the oscillation of sublinear, superlinear and half-linear difference
equations. In this paper, our objective is to give necessary and sufficient condi-
tions for the oscillation of the following sublinear equation (1.1).

We mainly concern with oscillation of solutions for the following first order
sublinear difference equation with positive neutral term

4(x(n) + p(n)x(τ(n))) + f(n, x(g1(n)), · · · , x(gm(n))) = 0 (1.1)

where 4 is the forward difference operator: 4x(n) = x(n + 1) − x(n); p(n)
is a sequence of real numbers, 1 < p1 ≤ p(n) ≤ p2, p1 and p2 are constants;
τ(n) is a sequence of strictly increasing integers with τ(n) < n, lim

n→∞
τ(n) = ∞;

gi(n) is sequence of positive integers with lim
n→∞

gi(n) = ∞; f(n, x1, · · · , xm) is
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continuous in each xi; g(n) = max
1≤i≤m

{gi(n)} ≤ τ(n).

A solution x(n) of (1.1) is called oscillatory if it is neither eventually positive
nor eventually negative, otherwise, it is nonoscillatory. The equation is called
oscillatory if and only if all its solutions are oscillatory.

f(n, y1, · · · , ym) is said to be strongly sublinear if there exists constants β ∈
(0, 1), β is a quotient of odd positive integers and d > 0 such that

|y|−β |f(n, y, · · · , y)|

is nonincreasing in |y| for 0 < |y| ≤ d.

2. Related lemmas

To obtain our main results, we need the following lemmas.

Lemma 2.1. Assume

z(n) = x(n) + p(n)x(τ(n)) (2.1)

where τ(n) is strictly increasing with τ(n) < n, 4z(n) < 0, x(n) > 0, 1 < p1 ≤
p(n) ≤ p2. Then

x(n) ≥ p1 − 1
p1p2

z(τ−1(n)).

Proof. Let τ−1 be the inverse function of τ and τ−2(n) ≡ τ−1(τ−1(n)). From(2.1),
we have

x(n) =
z(τ−1(n)) − x(τ−1(n))

p(τ−1(n))

=
z(τ−1(n))
p(τ−1(n))

− 1
p(τ−1(n))

[
z(τ−2(n)) − x(τ−2(n))

p(τ−2(n))

]

≥ z(τ−1(n))
p(τ−1(n))

− z(τ−2(n))
p(τ−1(n))p(τ−2(n))

≥
[

1
p(τ−1(n))

− 1
p(τ−1(n))p(τ−2(n))

]
z(τ−1(n))

≥ p1 − 1
p1p2

z(τ−1(n))

for all large n. The proof is completed. �

Lemma 2.2. Assume the difference inequality

4y(n) + q(n)yβ(σ(n)) ≤ 0 (2.2)
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has an eventually positive solution, where q(n) ≥ 0, q(n) 6≡ 0, β > 0, β is a
quotient of odd positive integers. Then the difference equation

4y(n) + q(n)yβ(σ(n)) = 0 (2.3)

also has an eventually positive solution.

Proof. Let y(n) is an eventually positive solution of (2.2). Define a set Ω =
{ x(n) | 0 ≤ x(n) ≤ y(n), n ≥ N}. Then define a mapping Γ on Ω as follows:

(Γx)(n) =





∞∑
s=n

q(s)xβ(σ(s)), n ≥ N

(Γx)(N) + y(n) − y(N), n0 ≤ n ≤ N.

Define a sequence xk(n), k = 1, 2, · · · as follows:

x1(n) = y(n),
xk+1(n) = (Γxk)(n) k = 1, 2, · · · .

Since y(n) is a solution of (2.2), we get

4y(n) + q(n)yβ(σ(n)) ≤ 0.

Summing the above inequality from n to N and letting N → ∞, we obtain

−y(n) +
∞∑

s=n

q(s)yβ(σ(s)) ≤ 0,

or

x2(n) = (Γy)(n) =
∞∑

s=n

q(s)yβ(σ(s)) ≤ y(n) = x1(n).

By induction, we see that

0 ≤ xk(n) ≤ xk−1(n) ≤ · · · ≤ x1(n) = y(n), n ≥ n0.

Hence lim
k→∞

xk(n) = x(n) exists with 0 ≤ x(n) ≤ y(n). Then we can apply the

Lebesgue’s dominated convergence theorem to show that x = Γx, i.e.,

x(n) =
∞∑

s=n

q(s)xβ(σ(s)), n ≥ n0.

Obviously, x(n) is an eventually positive sollution of (2.3). Since x(n) > 0 for
n ∈ [n0, N ], it follows from (2.3) that x(n) > 0 for all n ≥ n0.
The proof is completed. �

Lemma 2.3([1]). Consider the difference equation

4x(n) + q(n)xα(n − k) = 0 (2.4)
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where q(n) is a sequence of nonnegative real numbers and α is a quotient of odd
positive integers. Assume 0 < α < 1. Then every solution of (2.4) oscillates if
and only if

∞∑

n=0

q(n) = ∞.

3. Main results

Theorem 3.1. Assume that
(i) f ∈ C ( [n0,∞) × Rm, R ) is nondecreasing in each yi and

y1f(n, y1, · · · , ym) > 0 for y1yi > 0, 1 ≤ i ≤ m;
(ii) f ∈ C ( [n0,∞) × Rm, R ) is strongly sublinear;

(iii)
∞∑

s=n

f(s, a, · · · , a) = ∞ for every constant a > 0. (3.1)

Then every solution of Eq.(1.1) is oscillatory.

Proof. Assume the contrary and let x(n) be a nonoscillatory solution of Eq.(1.1).
Without loss of generality we may assume that x(n) is eventually positive. From
(2.1), we get z(n) > 0, for all large n. From Eq.(1.1) and condition (i), we have
4z(n) < 0. Since τ(n) is strictly increasing , τ−1 is the inverse function of τ and
τ−2(n) ≡ τ−1(τ−1(n)). Therefore, by Lemma 2.1, we have

x(n) ≥ p1 − 1
p1p2

z(τ−1(n)). (3.2)

Setting

y(n) =
p1 − 1
p1p2

z(n),

From Eq.(1.1), we have

4y(n) +
p1 − 1
p1p2

f(n, x(g1(n)), · · · , x(gm(n))) = 0, n ≥ N.

From (3.2) and (i), we obtain

4y(n) +
p1 − 1
p1p2

f(n, y(τ−1(g1(n))), · · · , y(τ−1(gm(n)))) ≤ 0, n ≥ N. (3.3)

So
4y(n) ≤ 0.

We claim that
lim

n→∞
y(n) = 0.

Assume the contrary and let lim
n→∞

y(n) = l > 0. Thus y(n) ≥ l. From g(n) ≤
τ(n) and the fact that f(n, y1, · · · , ym) is nondecreasing in each yi, we obtain

f(n, y(τ−1(g1(n))), · · · , y(τ−1(gm(n)))) ≥ f(n, l, · · · , l). (3.4)
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From (3.3) and (3.4), we have

4y(n) +
p1 − 1
p1p2

f(n, l, · · · , l) ≤ 0.

Summing the above inequality from n to N and letting N → ∞, we get

l − y(n) +
p1 − 1
p1p2

∞∑

s=n

f(s, l, · · · , l) ≤ 0.

That is,
p1 − 1
p1p2

∞∑

s=n

f(s, l, · · · , l) ≤ y(n) < ∞,

which contradicts (iii).
So

lim
n→∞

y(n) = 0.

Because f(n, y1, · · · , ym) is strongly sublinear, there exists d > 0 and 0 < β < 1
such that

|f(n, y(τ−1(g(n))), · · · , y(τ−1(g(n))))|
|y(τ−1(g(n)))|β

is nonincreasing in |y| for 0 < |y| ≤ d.
There exists N1 ≥ n0 such that 0 < y(τ−1(g(n))) ≤ d for n ≥ N1.
From (i) (ii) and above statements, we have

f
(
n, y(τ−1(g1(n))), · · · , y(τ−1(gm(n)))

)

≥ f
(
n, y(τ−1(g(n))), · · · , y(τ−1(g(n)))

)

≥ d−β (y(τ−1(g(n))))β f(n, d, · · · , d) n ≥ N1.

(3.5)

In view of (3.3) and (3.5), we get

4y(n) +
p1 − 1
p1p2dβ

(
y(τ−1(g(n)))

)β
f(n, d, · · · , d) ≤ 0.

From Lemma 2.2, the difference equation

4y(n) +
p1 − 1
p1p2dβ

(
y(τ−1(g(n)))

)β
f(n, d, · · · , d) = 0. (3.6)

also has an eventually positive solution.
However, from (3.1) and Lemma 2.3 ,we obtain every solution of Eq.(3.6) is
oscillatory, which is a contradiction. The proof is completed. �

Theorem 3.2. Assume that (i) in Theorem 3.1 hold. Then Eq.(1.1) has a
bounded nonoscillatory solution which is bounded away from zero if and only if

∞∑

s=n

|f(s, d, · · · , d)| < ∞ (3.7)

for some constant d 6= 0.
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Proof. (I) Necessity: Let x(n) is a bounded positive solution satisfying x(gi(n)) ≥
b > 0, x(gi(n)) ≤ c for n ≥ n1 ≥ n0, 1 ≤ i ≤ m.
From Eq.(2.1), (i) of Theorem 3.1 and Eq.(1.1), we have

4z(n) + f(n, b, · · · , b) ≤ 0.

Summing the above inequality from n to N and letting N → ∞, we get

−z(n) +
∞∑

s=n

f(s, b, · · · , b) ≤ 0,

i.e.,
∞∑

s=n

f(s, b, · · · , b) ≤ z(n).

Since x(n) and p(n) are all bounded, z(n) defined by (2.1) is bounded.
So

∞∑

s=n

f(s, b, · · · , b) < ∞.

That is to say, (3.7) hold. For the case that x(n) is eventually negative, the
proof is similar.

(II) Sufficiency: Assume there exists d > 0 such that (3.7) hold. Let c >
0 be such that p1c ≤ d. In view of (3.7), there exists N ≥ n0 and N0 =
min{τ(N), inf

n≥N
{g1(n)}, · · · , inf

n≥N
{gm(n)}} such that for n ≥ N

∞∑

s=n

f(s, d, · · · , d) ≤ (p1 − 1)c. (3.8)

We denote with B, the set of all sequences with the topology of uniform conver-
gence on [N0, N ]. Define a set X ⊂ B as follows:

X =
{
x(n) ∈ B : c ≤ x(n) ≤ p1c, 4x(n) ≤ 0, n ≥ N ; x(n) = x(N),

N0 ≤ n ≤ N
}

Since τ(n) is strictly increasing, the inverse function of τ exists. We denote it
with τ−1, and τ−i(n) ≡ τ−1(τ−(i−1)(n))
For every x ∈ X we define:

x(n) =





∞∑

i=1

(−1)i−1x(τ−i(n))
Qi(τ−i(n))

, n ≥ N

x(N), N0 ≤ n ≤ N, (3.9)

where

τ0(n) ≡ n, Q0(n) ≡ 1, Qi(n) =
i−1∏

j=0

p(τ j(n)), i = 1, 2, · · · (3.10)
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Since (3.9) is Leibniz’s series for n ≥ N, it is convergent and the sign of x(n) is
the same as that of the first term.
So

0 < x(n) ≤ x(τ−1(n))
Q1(τ−1(n))

=
x(τ−1(n))
p(τ−1(n))

≤ p1c.

Define a mapping Γ on X as follows:

(Γx)(n)=





c +
∞∑

s=n

f(s, x(g1(s)), · · · , x(gm(s))), n ≥ N

(Γx)(N), N0 ≤ n ≤ N. (3.11)

From (3.8), it is easy to see that ΓX ⊂ X. By definition, we get Γ is continuous
and Γ(X) is uniformly bounded. For every x(n) ∈ X and ε > 0, there exists
N1 ≥ N such that

|(Γx)(n1) − (Γx)(n2)| =
∣∣∣∣

n2∑

s=n1

f(s, x(g1(s)), · · · , x(gm(s)))
∣∣∣∣

≤
∣∣∣∣

n2∑

s=n1

f(s, d, · · · , d)
∣∣∣∣

< ε

for n1, n2 ≥ N1. Thus Γ(X) is relatively compact in the topology of B. By
Schauder Tychonoff fixed point theorem, there exists a x ∈ X such that x = Γx.
i.e.,

x(n) = c +
∞∑

s=n

f(s, x(g1(s)), · · · , x(gm(s))). (3.12)

In view of (3.9), we have

x(n) + p(n)x(τ(n)) = x(n). (3.13)

So

x(n) + p(n)x(τ(n)) = c +
∞∑

s=n

f(s, x(g1(s)), · · · , x(gm(s))).

Now it is easy to see that x(n) is a solution of Eq.(1.1). From Lemma 2.1 and
(3.13), we have

p1 − 1
p1p2

c ≤ p1 − 1
p1p2

x(τ−1(n)) ≤ x(n) ≤ x(n) ≤ p1c.

Therefore, x(n) is a bounded nonoscillatory solution of Eq.(1.1) which is bounded
away from zero. The proof is completed. �
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Theorem 3.3. Assume that (i)-(ii) in Theorem 3.1 hold, and g(n) ≤ τ(n).
Then all solutions of Eq.(1.1) are oscillatory if and only if

∞∑

s=n

|f(s, a, · · · , a)| = ∞

for every constant a 6= 0.

Proof. From Theorem 3.1, we get sufficiency immediatly. Necessity: If not,
assume that

∞∑

s=n

|f(s, a, · · · , a)| < ∞.

In view of Theorem 3.2, Eq.(1.1) has a nonoscillatory solution, which contradicts
our assumption. The proof is completed. �

Remark. The condition (ii) is important for Theorem 3.1 and Theorem 3.3 to
hold. In fact, Theorem 3.1 and Theorem 3.3 are not true probably for linear
equations.

Example 1. Consider the difference equation

4(x(n) + 2x(n − 1)) +
5
8
x(n − 2) = 0.

In our notation, p(n) = 2, τ(n) = n−1, g(n) = n−2, f(n, x(g1(n)), · · · , x(gm(n)))
= 5

8x(n − 2). It is easy to show that the condition (i) and (ii) in Th. 3.1 and
Th.3.3 are satisfied. But the above equation has a nonoscillatory solution. In
fact, x(n) = 2−n is such a solution.

Example 2. Consider the difference equation

4(x(n) + 2x(n − 1)) + 2x
1
3 (n − 3) = 0.

In our notation, p(n) = 2, τ(n) = n−1, g(n) = n−3, f(n, x(g1(n)), · · · , x(gm(n)))
= 2x

1
3 (n − 3). It is easy to see that all assumptions of Th.3.1 are satisfied.

Therefore, every solution of equation is oscillatory.

Theorem 3.4 (Comparison Theorem). Consider another difference equation

4(x(n) + p(n)x(τ(n))) + q(n, x(g1(n)), · · · , x(gm(n))) = 0. (3.14)

Assume Eq.(3.14) satisfies (i) and (ii) of Th.3.1 with g(n) < τ(n) and

q(n, |y|, · · · , |y|) ≤ f(n, |y|, · · · , |y|), (3.15)

for every |y| 6= 0. If Eq.(3.14) is oscillatory, then Eq.(1.1) is oscillatory.
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Proof. Assume the contrary and let x(n) be an eventually positive solution of
Eq.(1.1). In view of (3.15) we obtain x(n) which is an eventually positive solution
of the below inequality

4(x(n) + p(n)x(τ(n))) + q(n, x(g1(n)), · · · , x(gm(n))) ≤ 0. (3.16)

Therefore, Eq.(3.14) also has an eventually positive solution, which contradicts
the assumption of theorem. The proof is completed. �
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