
WUJNS 
Wuhan University Journal of Natural Sciences 

Vol. 11 No. 1 2006 133-137 

Article ID: 1007-1202(2006)01-0133-05 

A Granularity.Aware Parallel Aggregation 
Method for Data Streams 

[ ]  WANG Yong-li, XU Hong-bing t , 
XU Li-zhen, QIAN Jiang-bo, 
LIU Xue-jun 
Department of Computer Science and Engineering, 

Southeast University, Nanjing 210096, Jiangsu, China 

Abstract. This paper focuses on the parallel aggregation 
processing of data streams based on the shared-nothing archi- 
tecture. A novel granularity-aware parallel aggregating model 
is proposed. It employs parallel sampling and linear regression 
to describe the characteristics of the data quantity in the query 
window in order to determine the partition granularity of tup- 
les, and utilizes equal depth histogram to implement partitio- 
ning. This method can avoid data skew and reduce communi- 
cation cost. The experiment results on both synthetic data and 
actual data prove that the proposed method is efficient, prac- 
tical and suitable for time-varying data streams processing. 
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0 Introduction 

D ata streams in many applications, such as web service, 
traffic control, weather forecast etc, come from distrib- 

uted data sources at different geographic locations. Distributed 
processing is the inevitable development trend for managing 
data streams. Shared-nothing clusters can scale up to thou- 
sands of computers, increase the available main memory, pro- 
cessors, disk space and bandwidth along the way, and thereby 
provide potential for high throughput and low latencies. Yet 
to date(As yet), the shared-nothing approach has been over- 
looked for continuous query (CQ) systems D]. CQ systems 
challenge traditional parallelism techniques because of the de- 
lay of the communication; those tuples that have been parti- 
tioned out may cause inconsistency when expiration. They re- 
quire adaptive, online repartitioning, and load balancing of 
lookup-based operators. 

At present, there have been a lot of research work in 
parallel processing of time series, common data partitioning 
method is on the basis of overlap time-line strategy [z] , typical 
time sequence data such as stock price usually keeps intact 
within one period, however, each attribute value of tuples in 
data streams is possible to be inconsistent with each time unit. 
We consider data streams are a general form of time series, so 
the partition strategy applies to time series is different with 
partition strategy for data streams. The fundamental differ- 
ence of the data partitioning characteristics between data 
streams and static relation data sets is whether the tuples that 
have been partitioned can reappear. It is the decisive influence 
for data repartition tactics when data skew occurs and the at- 
tribute is involved in query changes. 

We propose a parallel aggregation method for data steams 
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based on shared-nothing architecture. Because aggrega- 
tion is the most important operation in many applica- 
tions, we mainly focus on aggregation operation in this 
paper. We have realized all kinds of aggregation that are 
described in Rd. [3]. These kinds of aggregation are 
sufficient for more extensive and complicated operations. 

1 Granularity-Aware Parallel Aggre- 
gation Model 

1.1 Coordinator.Worker Architecture 
As a realization of our proposed method, we con- 

struct a parallel aggregation model called coordinator- 
worker. Its architecture is composed of the coordinator 
(Data Engine) and the worker (Front-end) with the que- 
ry preprocess layer in the hardware. It uses two-phase 
scheduling. Firstly, by analysing the approximate distri- 
bution of each data stream, we use variable partition 
granularity to reduce the cost of communication and dis- 
tribute equal computing load to each processor. Second- 
ly, after the query task and data streams have been dis- 
tributed, we apply repartition correction factor to imple- 
ment load shedding dynamically. 

The architecture of worker-coordinator is illustrated 
in Fig. 1. Each site possesses its own local memory and 
disk, and communicates via messages with each other. 
The coordinator is responsible for receiving the query re- 
quest from users, parsing the continuous query, genera- 
ting the query plan and the data stream partitioning strat- 
egy. It performs distribu{ed scheduling, load shedding, 
monitoring of the quality of the service and outputting the 
final query result to users. This central scheduling can 
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Fig. 1 Coordinator-worker architecture 
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reduce the frequency of communication among sites. The 
coordinator utilizes idle time to process its own task, 
store the information of the task and request from the 
worker into different queues. Each site can receive simul- 
taneous data streams. It is redistributed to the other ap- 
propriate workers in all-to-all way in control of the coor- 
dinator. Each worker uses the same time window for the 
same query, and then executes the query operation in- 
volved in the content locally. The local query results are 
sent to the coordinator and are merged into the final re- 

sult. Compared with the existing SCADA system whose 
front-end is only responsible for acquiring data rather 
processing complex tasks, this architecture distributes a 
lot of tasks to multiple intelligent front-end (worker) and 
intensively reduces the workload of the central server, so 
it can get better performance. 

The key design issue includes data stream partition 
strategy, approximate algorithm, adaptively resource 

management, parallel continuous query optimising, etc. 
This paper focuses on data partition strategy appropriate 
for data streams. We list the key steps for the parallel 
aggregating algorithm based on the coordinator-worker 
model. This is a complete query plan. 

@ The same data stream is sampled in each site and 
samples are sent to the coordinator; 

@ The coordinator computes approximate variable 
partition granularity according to time-window in CQ and 
samples 

@ The coordinator computes partition vector utili- 
zing attributes of samples involved in CQ. Then partition 
vector is sent to all worker; 

@ Each worker redistributes stream tuples into the 
other worker on the basis of partition vector; 

@ Each worker computes local aggregation in paral- 
lel over redistributed data streams; 

@ Each local aggregation result is sent to the coor- 
dinator, which generates the global aggregation and out- 
puts the final result. These steps proceed in cycles; 

@ For limitation of space, we omit realization de- 
tails of sampling and aggregating in this paper. 

1.2 Data Partition Strategy Adapted to Stream Ag. 
gregating 

It is unrealistic for tuples to serve as the partition 
granularity for data streams in Shared-nothing environ- 
ment. The parallel processing will become meaningless 
because of the high communication cost. In order to share 
the overlap window among multiple queries over the same 



streams, we should guarantee that the tuples partitioned 
to each site at one time fall in as many time-windows as 

possible. The worker need not upgrade the tuples buffer 
frequently. One naive method to calculate the size of the 
share time-window is to fetch the union of the time-win- 
dows at a certain moment. The number of tuples in the 
longest time-window is regarded as the partition granu- 
larity. However in many application scenarios, the maxi- 

mal time-window size may be very long, which will cause 
congestion to occur, and the system cannot feedback to 

user's query request in time. 

Our method is to set up the regressing statistic mod- 
el for the size of the time-window according to the limited 
observation sample, and utilize the average number of the 
tuples in time-window that results from this statistic 
model as the partition granularity, for load shedding and 
sharing. It uses the maximal time-window length as the 
scale of maintaining intermediate tuples for local opera 

tion in the worker in order to assign the main memory 

adaptively. ()nee beyond the threshold of consumed 
memory, the part intermediate result should be discard or 
be stored into persistent stores. The purpose of sampling 
and regression analyzing in some workers is illustrated in 
Fig. 2. 
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1.3 Stream Partition Relevant Definition 
Consider a stream S containing an integer-valued at- 

tribute X. The value set V of X is the set of values of X 

that are present in S. For each v ( V ,  the frequency f(v)  

is the number of tuples t~  S with t. X = v. We assume 

that the elements of V have been sorted according to 

some sorting parameters, most commonly according to 

the numeric values of the vi, i. e. , V = {vl ] l ~ i ~ N }  

where i<j  iff v i<  %. A histogram b~? of data distribu- 

tion X is constructed by partitioning the frequency vector 

F of X into B(>~ 1) intervals called buckets. In each 

bucket, we approximate the frequencies and values in 
some succinct fashion. 

Definition 1 (Partition Vector vEi~). For V i, l ~ i  
~<k, all records on site Sl have key value less than v[-l~, 
all records on site sz have key value greater than v~l~ but 
less than v~-2~, and so on, until all records on site sk 

have key value greater than v~bl~. We say that v~i] is 
the partition vector. 

Definition 2 (Average Window I.ength A (t) and 

Maximat Window I.ength M(t)) .  For any given times- 

tamp t, we define that function A(t) is the average length 
of time-window specified by user number at .r, and M(t) 
is the maximal length of time-window at t. and M(t) is 
the maximal length of time-window at t. In order to esti- 
mate the value of A(ts ) and M(t i ) at future timestamp 
t l,  we observe n pair samples (A(t i ) ,  M(t,)) / = 1 , 2 ,  
�9 " ,  n during p time period from historical data steams, 
where tl denotes timestamp, A(h) denotes number of tu- 

pies in average length time-window, M(h) denotes num- 

ber of tuples in maximal length of time-windows. Sup- 
pose that the streaming velocity of tuples is relatively 
fixed, i. e. , the value of A(h) and M(t,) only depend on 
ti. We first build regressing equation E(y) = a 4 - ~  (y 
denotes A(t,) or M(6 )). Then we apply a' and/3 ', the 
ordinary least square estimate of a and/3, and experience 
regressing equation y ' = a ' §  to predict the value of 

Y/(3's denotes A(t I ) or M(tc)) by equation y l=a4-~ l  
§162 Where ~, called random error, is a random variable 
with 0 mean, which relates to abrupt events. 

Definition 3 (Bin Slice (BS)). We say that parti- 

tion granularity of tuples is Bin Slice, called BS, where 
BSCv[-i~ and A(t)-~ I BSI, that is to say, the size of BS 
depends on the number of tuples in average time-window 
length. 

Compared with fixed size partition granularity, vari- 
able partition granularity depending on A( t )  has better 
interactivity and flexibility. It can reflect the intent of us- 
er sufficiently. 

Considering the expiration of data streams, the 
method based on range partition is more suitable for ag- 
gregate operation correlated with content, which can ef- 
fectively avoid the data skew for data repartition. Our 
BSEDH(Bin Slice Equi-Depth Histogram) strategy is to 
sample over data streams; apply Equi-Depth Histogram 
technique to generate approximate partition vector over 
sample tuples; use the Bin Slice defined in definition 3 in 
every bucket as partition granularity; apply the method 
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of Round Robin Range Partition to redistribute tuples re- 
ceived locally to the other appropriator site. 

This strategy is unsuitable for the situation where 
different aggregations are involved in different attributes 

of the same tuples. Because of the delay for redistribution 
may be greater than the expiration of the tuples. It will 

cause bad result and low efficiency. We can establish new 

partition vectors for new partition attributes, and dupli- 
cate the same tuples to the new site according to the tup- 
les' attribute value range. In practical application sys- 
tems, aggregation is generally involved in TupMD or 
Timestamp attribute. The attribute involved in aggrega- 
tion in the same tuples seldom changes. The cost of rep- 
lication incurred is acceptable. This tuples replication 
method can solve the above-mentioned problems. 

2 Experiment Evaluation 

In order to test the performance of the proposed 

model, we choose aggregate operation GROUP BY-SUM 
to test the above-mentioned method. A typical aggrega- 
tion query as follows: SELECT AGG (t. X) FROM S 
WHERE t. XE [6,121 WINDOW NOW- w_length. The 

experiments are conducted on an 8-node shared-nothing 
cluster of 2. 66 GHz Pentium machines in which every 

node with 256 MB main memory and a 80 GB hard disk. 
Each machine was booted with version 2. 4. 18 of the 

Linux kernel. We used the LAM implementation of the 
MPI communication standard. With the LAM implemen- 
tation, the average communication latency is 460 ms. 

We use data generator in TelegraphCQ ES? software 
package to synthesize the uniform distributed data stream 
(Data set D~ ) and use actual load data (Data set D2 ) of 
power system from one area in Nanjing to test practical 
performance of this mode. We construct the discrete event 
generator to simulate Automation Generation Control sys- 
tem, which reads a tuple at variable intervals (for example 
millisecond) from above two data sets and sends it to our 
model. Suppose that the number of partition vector is set 
up to 8, which is equal to the number of sites. 

Experiment 1 tests the relationship between the 
quantity of data streams and the parallel speedup. We 
test speedup of aggregating algorithm on tuple sets of dif- 
ferent sizes (Da), i.e. Corresponds to different stream- 

ing velocity. The experiment is run 10 times for four 
kinds of different data stream quantities, along with 
changing the number of sites from 2 to 8. Where ~ = 
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0.01, we obtain the speedup vs. sites curve shown in 
Fig. 3. Labelled speedup is rate according to the running 
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Fig. 3 Effect of data stream size on speedup (D,) 

time on each individual site. Fig. 3 indicates the heavier 
data stream size taken, the more the improved efficiency 
of aggregation algorithm using the partition method based 

on sampling and approximating. The intuitive reason for 
the good speedup is that adding more sites reduces the 
workload of aggregating on each site, but the workload 

of sampling on each site isn't changed. 
For unlimited data streams, the time used by sam- 

pling only occupies a very small part of overall execution 

time on 8 sites. For example, compared with overall 220 
seconds processing time for 80 000 tuples over data 

streams, sampling operation takes 2 seconds only. 
Experiment 2 tests the aggregation throughput of 

this model over actual load data (D2). Because the first 
partition granularity Bin Slice is related to submitted 
query only, we list the size of Bin Slice at the different 
time-stamp observed in Table 1. 

Table 1 The size of Bin Slice at the different time-stamp. 

t/s 5 10 15 20 25 

Bin Slice/tuples 2 750 1 250 1 812 2 187 2 748 

Experiment 3 examines how quickly the load-balan- 
cing policy reacts to a load perturbation by introducing an 
external load on a single machine. An extra process that 
computes for 0.15 s and sleeps for 0. 1 s is used to exert 
the load. Fig. 4 illustrates the performance of our mini 
bin slice load shedding policy. 

The top line in Fig. 4 shows the performance with 
no machines perturbed. The performance with load bal- 
ancing turned off and load introduced at t--1 s. We re- 
port the aggregate throughput computed over one second 
interval. Suppose that the size of repartition correction 
factor mini Bin Slice is 500 (the number of streaming tu- 
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Fig. 4 Balancing processing load (D2) 

ples in a half of one second). Our load-balancing policy 
feels the effect of the imbalance caused by additional load 

after t = 5 s as shown in the bottom curve. It begins to 
move min Bin Slice to react to this perturbation. It reaches 

steady state after offloading 30 min Bin Slices at t--24 s, it 
begins rebalancing after 14 s. The minimum time needed to 
transfer these partitions is 1 s. The dilation in reaction 
time is a result of two factors. One is the time to process 
and drain in-flight tuples before min Bin Slice movement 
occurs, and another is the collection phase, which waits as 
long as the previous move phase. Experiment 3 proves that 
this load balancing policy is efficient and feasible. 

3 Conclusion 

We propose a granularity-aware coordinator-worker 
model for parallel aggregating data streams. This model 
use a novel data partition method with the help of approxi- 
mate techniques including sampling, linear regression and 
equal depth histogram etc, which supports variable reparti- 
tion granularity for dynamic load balancing. The key idea 

of the granularity-aware method is to analyses the average 
(maximal) length of time-window specified by query and 
data distribution at every timestamp in a day based on his- 
tory information. The experiments prove that the proposed 
model adapts to some application domains relatively fixed 

to the period of CQ, such as industry control or traffic con- 
trol etc. Compared with the conventional control system 
this model can get higher performance and better flexibility 
by intelligent front-end (worker) with query processing 
layer. Improvement of data streams algorithm efficiency, 
and parallel query optimizing over data streams are on our 
future research agenda. 
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