
WUJNS
Wuhan University Journal of Natural Sciences

Vol. 11 No. 1 2006 133-137

Article ID: 1007-1202(2006)01-0133-05

A Granularity.Aware Parallel Aggregation
Method for Data Streams

[] WANG Yong-li, XU Hong-bing t ,
XU Li-zhen, QIAN Jiang-bo,
LIU Xue-jun
Department of Computer Science and Engineering,

Southeast University, Nanjing 210096, Jiangsu, China

Abstract. This paper focuses on the parallel aggregation
processing of data streams based on the shared-nothing archi-
tecture. A novel granularity-aware parallel aggregating model
is proposed. It employs parallel sampling and linear regression
to describe the characteristics of the data quantity in the query
window in order to determine the partition granularity of tup-
les, and utilizes equal depth histogram to implement partitio-
ning. This method can avoid data skew and reduce communi-
cation cost. The experiment results on both synthetic data and
actual data prove that the proposed method is efficient, prac-
tical and suitable for time-varying data streams processing.

Key words: data streams; parallel processing; linear re-
gression; aggregation; data skew

CLC number: TP 311

Received date: 2005-05-10
Foundation item: Supported by Foundation of High Technology Pro-
ject of Jiangsu (BG2004034), Foundation of Graduate Creative Pro-
gram of Jiangsu (xm04-36)
Biography: WANG Yon~li (1974-), male, Ph.D. candidate, re-
search direction: data streams processing, knowledge discovery, hard-
ware and software blending. E-mail : wyl_seu@ 126. corn
t To whom correspondence should be addressed. E-maih hbxu@ seu.
edu. c n

0 Introduction

D ata streams in many applications, such as web service,
traffic control, weather forecast etc, come from distrib-

uted data sources at different geographic locations. Distributed
processing is the inevitable development trend for managing
data streams. Shared-nothing clusters can scale up to thou-
sands of computers, increase the available main memory, pro-
cessors, disk space and bandwidth along the way, and thereby
provide potential for high throughput and low latencies. Yet
to date(As yet), the shared-nothing approach has been over-
looked for continuous query (CQ) systems D]. CQ systems
challenge traditional parallelism techniques because of the de-
lay of the communication; those tuples that have been parti-
tioned out may cause inconsistency when expiration. They re-
quire adaptive, online repartitioning, and load balancing of
lookup-based operators.

At present, there have been a lot of research work in
parallel processing of time series, common data partitioning
method is on the basis of overlap time-line strategy [z] , typical
time sequence data such as stock price usually keeps intact
within one period, however, each attribute value of tuples in
data streams is possible to be inconsistent with each time unit.
We consider data streams are a general form of time series, so
the partition strategy applies to time series is different with
partition strategy for data streams. The fundamental differ-
ence of the data partitioning characteristics between data
streams and static relation data sets is whether the tuples that
have been partitioned can reappear. It is the decisive influence
for data repartition tactics when data skew occurs and the at-
tribute is involved in query changes.

We propose a parallel aggregation method for data steams

133

based on shared-nothing architecture. Because aggrega-
tion is the most important operation in many applica-
tions, we mainly focus on aggregation operation in this
paper. We have realized all kinds of aggregation that are
described in Rd. [3]. These kinds of aggregation are
sufficient for more extensive and complicated operations.

1 Granularity-Aware Parallel Aggre-
gation Model

1.1 Coordinator.Worker Architecture
As a realization of our proposed method, we con-

struct a parallel aggregation model called coordinator-
worker. Its architecture is composed of the coordinator
(Data Engine) and the worker (Front-end) with the que-
ry preprocess layer in the hardware. It uses two-phase
scheduling. Firstly, by analysing the approximate distri-
bution of each data stream, we use variable partition
granularity to reduce the cost of communication and dis-
tribute equal computing load to each processor. Second-
ly, after the query task and data streams have been dis-
tributed, we apply repartition correction factor to imple-
ment load shedding dynamically.

The architecture of worker-coordinator is illustrated
in Fig. 1. Each site possesses its own local memory and
disk, and communicates via messages with each other.
The coordinator is responsible for receiving the query re-
quest from users, parsing the continuous query, genera-
ting the query plan and the data stream partitioning strat-
egy. It performs distribu{ed scheduling, load shedding,
monitoring of the quality of the service and outputting the
final query result to users. This central scheduling can

Stream

Stream
Stream
Stream

Wor

r s t

Fig. 1 Coordinator-worker architecture

134

reduce the frequency of communication among sites. The
coordinator utilizes idle time to process its own task,
store the information of the task and request from the
worker into different queues. Each site can receive simul-
taneous data streams. It is redistributed to the other ap-
propriate workers in all-to-all way in control of the coor-
dinator. Each worker uses the same time window for the
same query, and then executes the query operation in-
volved in the content locally. The local query results are
sent to the coordinator and are merged into the final re-

sult. Compared with the existing SCADA system whose
front-end is only responsible for acquiring data rather
processing complex tasks, this architecture distributes a
lot of tasks to multiple intelligent front-end (worker) and
intensively reduces the workload of the central server, so
it can get better performance.

The key design issue includes data stream partition
strategy, approximate algorithm, adaptively resource

management, parallel continuous query optimising, etc.
This paper focuses on data partition strategy appropriate
for data streams. We list the key steps for the parallel
aggregating algorithm based on the coordinator-worker
model. This is a complete query plan.

@ The same data stream is sampled in each site and
samples are sent to the coordinator;

@ The coordinator computes approximate variable
partition granularity according to time-window in CQ and
samples

@ The coordinator computes partition vector utili-
zing attributes of samples involved in CQ. Then partition
vector is sent to all worker;

@ Each worker redistributes stream tuples into the
other worker on the basis of partition vector;

@ Each worker computes local aggregation in paral-
lel over redistributed data streams;

@ Each local aggregation result is sent to the coor-
dinator, which generates the global aggregation and out-
puts the final result. These steps proceed in cycles;

@ For limitation of space, we omit realization de-
tails of sampling and aggregating in this paper.

1.2 Data Partition Strategy Adapted to Stream Ag.
gregating

It is unrealistic for tuples to serve as the partition
granularity for data streams in Shared-nothing environ-
ment. The parallel processing will become meaningless
because of the high communication cost. In order to share
the overlap window among multiple queries over the same

streams, we should guarantee that the tuples partitioned
to each site at one time fall in as many time-windows as

possible. The worker need not upgrade the tuples buffer
frequently. One naive method to calculate the size of the
share time-window is to fetch the union of the time-win-
dows at a certain moment. The number of tuples in the
longest time-window is regarded as the partition granu-
larity. However in many application scenarios, the maxi-

mal time-window size may be very long, which will cause
congestion to occur, and the system cannot feedback to

user's query request in time.

Our method is to set up the regressing statistic mod-
el for the size of the time-window according to the limited
observation sample, and utilize the average number of the
tuples in time-window that results from this statistic
model as the partition granularity, for load shedding and
sharing. It uses the maximal time-window length as the
scale of maintaining intermediate tuples for local opera

tion in the worker in order to assign the main memory

adaptively. ()nee beyond the threshold of consumed
memory, the part intermediate result should be discard or
be stored into persistent stores. The purpose of sampling
and regression analyzing in some workers is illustrated in
Fig. 2.

Local
Stream

The scale of
~'maintaining

intern ediate
tnples

~ l Reqression [- - - - - -
[analyzing

Partin%n Grannlarity[
Partition vect~] I

I ~ 1 generat,ng I I

pling~.J Repartilioning ~__ _ Other
Workers

Stream derived
from other workers.[Localaggregatingi~artresnlts Coordinator

Fig, 2 The purpose of sampling and regression
analysing in some worker

1.3 Stream Partition Relevant Definition
Consider a stream S containing an integer-valued at-

tribute X. The value set V of X is the set of values of X

that are present in S. For each v (V , the frequency f(v)

is the number of tuples t~ S with t. X = v. We assume

that the elements of V have been sorted according to

some sorting parameters, most commonly according to

the numeric values of the vi, i. e. , V = {vl] l ~ i ~ N }

where i<j iff v i< %. A histogram b~? of data distribu-

tion X is constructed by partitioning the frequency vector

F of X into B(>~ 1) intervals called buckets. In each

bucket, we approximate the frequencies and values in
some succinct fashion.

Definition 1 (Partition Vector vEi~). For V i, l ~ i
~<k, all records on site Sl have key value less than v[-l~,
all records on site sz have key value greater than v~l~ but
less than v~-2~, and so on, until all records on site sk

have key value greater than v~bl~. We say that v~i] is
the partition vector.

Definition 2 (Average Window I.ength A (t) and

Maximat Window I.ength M(t)) . For any given times-

tamp t, we define that function A(t) is the average length
of time-window specified by user number at .r, and M(t)
is the maximal length of time-window at t. and M(t) is
the maximal length of time-window at t. In order to esti-
mate the value of A(ts) and M(t i) at future timestamp
t l, we observe n pair samples (A(t i) , M(t,)) / = 1 , 2 ,
�9 " , n during p time period from historical data steams,
where tl denotes timestamp, A(h) denotes number of tu-

pies in average length time-window, M(h) denotes num-

ber of tuples in maximal length of time-windows. Sup-
pose that the streaming velocity of tuples is relatively
fixed, i. e. , the value of A(h) and M(t,) only depend on
ti. We first build regressing equation E(y) = a 4 - ~ (y
denotes A(t,) or M(6)). Then we apply a' and/3 ', the
ordinary least square estimate of a and/3, and experience
regressing equation y ' = a ' § to predict the value of

Y/(3's denotes A(t I) or M(tc)) by equation y l=a4-~ l
§162 Where ~, called random error, is a random variable
with 0 mean, which relates to abrupt events.

Definition 3 (Bin Slice (BS)). We say that parti-

tion granularity of tuples is Bin Slice, called BS, where
BSCv[-i~ and A(t)-~ I BSI, that is to say, the size of BS
depends on the number of tuples in average time-window
length.

Compared with fixed size partition granularity, vari-
able partition granularity depending on A(t) has better
interactivity and flexibility. It can reflect the intent of us-
er sufficiently.

Considering the expiration of data streams, the
method based on range partition is more suitable for ag-
gregate operation correlated with content, which can ef-
fectively avoid the data skew for data repartition. Our
BSEDH(Bin Slice Equi-Depth Histogram) strategy is to
sample over data streams; apply Equi-Depth Histogram
technique to generate approximate partition vector over
sample tuples; use the Bin Slice defined in definition 3 in
every bucket as partition granularity; apply the method

vo~.11 No,1 ~ 135

of Round Robin Range Partition to redistribute tuples re-
ceived locally to the other appropriator site.

This strategy is unsuitable for the situation where
different aggregations are involved in different attributes

of the same tuples. Because of the delay for redistribution
may be greater than the expiration of the tuples. It will

cause bad result and low efficiency. We can establish new

partition vectors for new partition attributes, and dupli-
cate the same tuples to the new site according to the tup-
les' attribute value range. In practical application sys-
tems, aggregation is generally involved in TupMD or
Timestamp attribute. The attribute involved in aggrega-
tion in the same tuples seldom changes. The cost of rep-
lication incurred is acceptable. This tuples replication
method can solve the above-mentioned problems.

2 Experiment Evaluation

In order to test the performance of the proposed

model, we choose aggregate operation GROUP BY-SUM
to test the above-mentioned method. A typical aggrega-
tion query as follows: SELECT AGG (t. X) FROM S
WHERE t. XE [6,121 WINDOW NOW- w_length. The

experiments are conducted on an 8-node shared-nothing
cluster of 2. 66 GHz Pentium machines in which every

node with 256 MB main memory and a 80 GB hard disk.
Each machine was booted with version 2. 4. 18 of the

Linux kernel. We used the LAM implementation of the
MPI communication standard. With the LAM implemen-
tation, the average communication latency is 460 ms.

We use data generator in TelegraphCQ ES? software
package to synthesize the uniform distributed data stream
(Data set D~) and use actual load data (Data set D2) of
power system from one area in Nanjing to test practical
performance of this mode. We construct the discrete event
generator to simulate Automation Generation Control sys-
tem, which reads a tuple at variable intervals (for example
millisecond) from above two data sets and sends it to our
model. Suppose that the number of partition vector is set
up to 8, which is equal to the number of sites.

Experiment 1 tests the relationship between the
quantity of data streams and the parallel speedup. We
test speedup of aggregating algorithm on tuple sets of dif-
ferent sizes (Da), i.e. Corresponds to different stream-

ing velocity. The experiment is run 10 times for four
kinds of different data stream quantities, along with
changing the number of sites from 2 to 8. Where ~ =

136

0.01, we obtain the speedup vs. sites curve shown in
Fig. 3. Labelled speedup is rate according to the running

4.0

3.5

3.0
, 1

2.5
r

r.r

2.0

1.5

1.0
2

-v- 80 000 Tuples /
40 000 Tuples

--e- 8 000 Tuples / " /

i i i L i

3 4 5 6 7
Number of sites

Fig. 3 Effect of data stream size on speedup (D,)

time on each individual site. Fig. 3 indicates the heavier
data stream size taken, the more the improved efficiency
of aggregation algorithm using the partition method based

on sampling and approximating. The intuitive reason for
the good speedup is that adding more sites reduces the
workload of aggregating on each site, but the workload

of sampling on each site isn't changed.
For unlimited data streams, the time used by sam-

pling only occupies a very small part of overall execution

time on 8 sites. For example, compared with overall 220
seconds processing time for 80 000 tuples over data

streams, sampling operation takes 2 seconds only.
Experiment 2 tests the aggregation throughput of

this model over actual load data (D2). Because the first
partition granularity Bin Slice is related to submitted
query only, we list the size of Bin Slice at the different
time-stamp observed in Table 1.

Table 1 The size of Bin Slice at the different time-stamp.

t/s 5 10 15 20 25

Bin Slice/tuples 2 750 1 250 1 812 2 187 2 748

Experiment 3 examines how quickly the load-balan-
cing policy reacts to a load perturbation by introducing an
external load on a single machine. An extra process that
computes for 0.15 s and sleeps for 0. 1 s is used to exert
the load. Fig. 4 illustrates the performance of our mini
bin slice load shedding policy.

The top line in Fig. 4 shows the performance with
no machines perturbed. The performance with load bal-
ancing turned off and load introduced at t--1 s. We re-
port the aggregate throughput computed over one second
interval. Suppose that the size of repartition correction
factor mini Bin Slice is 500 (the number of streaming tu-

30 000

25 000

20 000

~. 15 000

2 10 000

5 000

--o- load

' ' ' ' 30 0 10 15 20 25
t / s

Fig. 4 Balancing processing load (D2)

ples in a half of one second). Our load-balancing policy
feels the effect of the imbalance caused by additional load

after t = 5 s as shown in the bottom curve. It begins to
move min Bin Slice to react to this perturbation. It reaches

steady state after offloading 30 min Bin Slices at t--24 s, it
begins rebalancing after 14 s. The minimum time needed to
transfer these partitions is 1 s. The dilation in reaction
time is a result of two factors. One is the time to process
and drain in-flight tuples before min Bin Slice movement
occurs, and another is the collection phase, which waits as
long as the previous move phase. Experiment 3 proves that
this load balancing policy is efficient and feasible.

3 Conclusion

We propose a granularity-aware coordinator-worker
model for parallel aggregating data streams. This model
use a novel data partition method with the help of approxi-
mate techniques including sampling, linear regression and
equal depth histogram etc, which supports variable reparti-
tion granularity for dynamic load balancing. The key idea

of the granularity-aware method is to analyses the average
(maximal) length of time-window specified by query and
data distribution at every timestamp in a day based on his-
tory information. The experiments prove that the proposed
model adapts to some application domains relatively fixed

to the period of CQ, such as industry control or traffic con-
trol etc. Compared with the conventional control system
this model can get higher performance and better flexibility
by intelligent front-end (worker) with query processing
layer. Improvement of data streams algorithm efficiency,
and parallel query optimizing over data streams are on our
future research agenda.

References

EI~ Shah M, Hellerstein J, Chandrasekaran S, et aL Flux: An

Adaptive Partitioning Operator for Continuous Query Sys-

tem. Report No. UCB/CSD-2-1205. Berkeley : University

of California, 2002.

E23 Gray J, Bosworth A, Layman A, et al. Data cube: A Rela-

tional Aggregation Operator Generalizing Group-by, Cross-

Tab, and Sub-Total. In:Su S Y W,gd. Proc o f Intl. Conf

on Data Engineering, New Orleans: IEEE Computer Socie-

ty, 1996. 152-159.

[31 Alin D, Minos G, Johannes G, et al. Processing complex

aggregate queries over data streams. Proc o f the 2002 A C M

SIGMOD Int ' l Con/. on Management o f Data. New York:

ACM Press, 2002. 61-72.

[-41 Guha S, Koudas N, Shim K. Data-Streams and histograms.

In: Yannakakis M, Ed. Proc or the 33rd Annual A C M

Syrup on Theory o f Computing. Heraklion: ACM Press,

2001. 471 475.

[-5] ChandrasekaranS, Cooper O, Deshpande A, et al.

TelegraphCQ : Continuous Dataflow Processing for an Uncer-

tain World. Proc Con f on Innovative Data Syst Res, Asilo-

mar, CA, January 2003, 269-280.

[]

137

