
WUJNS
Wuhan University Journal of Natural Sciences

Vol. 11 No. 1 2006 127-132

Article ID: 1007-1202(2006)01-0127-06

An Optimized Approach for Extracting
Approximate Functional Dependencies
in XML Documents

[] SHI Lei, YANG Xiao-chun t , YU Ge,
WANG Bin, ZHOU Hua-hui
School of Information Science and Engineering,

Northeastern University, Shenyang 110004, IJaoning, China

Abstract: In this paper, the definition of approximate

XFDs based on value equality is proposed. Two metrics, sup
port and strength, are presented for measuring the degree of
approximate XFD. A basic algorithm is designed for extrac-
ting minimal set of approximate XFDs, and then two opti-
mized strategies are proposed to improve the performance.
Finally, the experimental results show that the optimized al-

gorithms are correct and effective.

Key words: XMI.; functional dependencies; strength of

functional dependencies

CLC number: TP 311.13

Received date: 2005-04 10
Foundation item: Supported by the National Natural Science Foun-
dation of China (60173051), Teaching and Research Award Program
for ()utstanding Young Teachers in Higher Education Institution of
the Ministry of Education, the National Research Foundation for the
Doctoral Program of Higher Education of China(20030145029), and
the Natural Science Foundation for Doctoral Career Award of IJaoning
Province(20041016).
Biography: SH1 Lei(1980-), male, Master candidate, research direc-
tion: XML access control, data mining. E mail:neushi@ 126. com
1" To whom correspondence should be addressed. E mail:yangxc@
mail. neu. edu. cn

0 Introduction

F unctional dependency (FD) is one of most important in-
tegrity constraints in databases. FDs, expacially ap-

proximate FDs, are widely used on knowledge discovering,
privacy protection, data inference E1'2] , etc. For instance, pa-
thologists wish to acquire the relation between various dietetic
habits and diseases, salesmen want to know the relation be-

tween different age-grades and consuming patterns, etc.
Those prevailing non-precise relationships between data are
called approximate FDs Es~. XML (eXtensible Markup Lan-

guage) becomes the standard {or data description and data ex-

change, recently. However due to semi-structured nature,
XML functional dependencies(XFDs) differ a lot from those in
traditional relational databases and extracting approximate
XFDs is quite different from that in relational database.

Some work E4 rl has been done on XFDs and most of them
focuses on precise XFDs. Ref. E4] defines XFD on Tree Tup-
les. In Ref. [4], an XFD is defined between either internal
nodes or leaf nodes of an XML tree, whereas in Re{. E5], an
XFD only holds between leaf nodes. In addition, in terms of
judging the equality of two nodes, Ref. E4] considers two
nodes equal under the condition that the identities of two
nodes are the same.

However, in the real world, contents of the document
are more meaningful than the identities of nodes in the docu-
ment. For instance, an element part has subelements shape
and size. Given parts nl and ne, it is more appropriate to com-
pare not only the two elements themselves but also their sub-

127

elements shape and size. We will adopt such way (called

value equality) to evaluate the equality of two nodes, so

that, approximate XFDs we define later, will reflect the

patterns of the XML document more reasonable. In addi-

tion, Re{. [4-6-] do not mention how to measure approx-

imate XFDs.

Current algorithms mainly focus on extracting ap-

proximate FDs in relational databases Is'8 ~o]. Buneman,

et al use an Apriori-alike algorithm for mining a reduced

set of approximate keys from an XML document [u] .

In this paper, we mainly focus on the issues of defi-

ning and extracting approximate XFDs in XML docu-

ments. Our contributions are listed as follows.

1) We propose a new definition of XFDs based on

value equality. Two criteria namely strength and support

for measuring approximate XFDs are given as well.

2) We introduce the concept of minimal set of ap-

proximate XFDs. The basic algorithm and two optimized

strategies are proposed to extract such a set.

3) We use experiments to show the proposed algo-

rithm is feasible and effective.

1 Definition of Approximate XFDs

An XML document can be viewed as a tree called

XML tree. For further understanding of XML tree, path

and related concepts, one can refer to Ref. [4,12-]. Fig-

ure 1 is an example of XML tree containing information

of patients in several hospitals, where "/Hospitals/Hos-

pital/hName/S" is a path. From the document, we can

easily find an XFD, if patients live in the same "ward"
then they suffer the same "disease".

Our XFD definition is based upon value equality

(=v) [~~ to express the dependency relationships be-

tals

a t e t

"c (~ ~ ~ 'ard~tsease ~ c n t e r /,.~ ,,~ ~ . z,..,~ ~ ~ isease

ZLg
"Tom w305" "leukemia Bob w305" "leukemia"

tween a node and its sub-trees. Comparing our definition

with Ref. [-4-], the major differences are @ We use value

equality to evaluate the relationship between two nodes;

@ We do not need to transform XML documents into

tree tuples.

XFDs are concerned with related nodes, therefore,

we first define related-nodes set.

Definition 1 Related-nodes set. Given paths p and

q, n is a node in an XML document T and nE [-]-q-]-]2,

then we call a set of nodes S (S C [[p]]) are related with

n in T as n's related nodes set about path p, denoted as

n(p/q), n(p/q) = {v] vE [[p-]], a is the closest ances-

tor of both n and v and a E [-[PNq -]-] }. Where f-f-q-V]

denotes a set of nodes that path q can reach starting from

the root of an XML document [1~ , p N q denotes the lon-

gest public path of p and q.

For instance, in Fig. 1, assume path p=" /Hosp i -

tals / Hospital/patient/ward" and path q = "/Hospitals/
Hospital/patient/disease", p ~ q = "/Hospitals/Hospi-

tal/patient", node V~o E]-I-q-I-I, then V~o' s related nodes

set about path p is vlo (p/q) = {v8 }, where, Vlo and v8

belong to the same patient. '

With the Definition 1, we are ready to define XFDs

based on value equality.

Definition 2 XFDs based on value equality:An XFD

F is an expression of the form F: X-*q where X = {Pl,

P2 ," ' , P, } are set of paths and q is a single path. An

XML document T satisfies the XFD F, if for any nl, n2 E

If-q-I-I, if n~ =/:v n2, then there exists iE 1-1, n], such that

nl (pi/q)=/=v n2 (Pi/q). Paths Pl, P2, "", P, are called
determining paths and q is called depending path.

Definition 3 XFD Tuples �9 We assume an approxi-

mate XFD F: X "q (X={pl , P2 ," ' , P,,} is a set of
paths and q is a single path). The XFD Tuples R of F is

~ ospital

hN(~p:ame ~ patient

hospital" x(.~/ ~
"Jane" '%501 fever"

Fig. 1 An example of XML tree

128

a table with (n-F 1) columns, and each column name of

this table is "Pl" "Pc " " "q", , ", "" , p. , respectively.
In addition, it satisfies: @ for each vCc [[q]] , there ex-
ists a tuple rER such that r["q"] = {v}; @ for each rE
R, suppose r ["q"] = {v}, for each Pi, iF-[1 , n], r

["Pi"] =v(pi/q).
Obviously, every column value of any tuple in R is a

set of nodes, and the total amount of tuples equals to the

number of [[q]] in the XML document, i.e.][[q]]l .
XFD tuples R satisfies the precise XFD X-+q, if for

every two tuples rl, rz ER, rl ["q"]g:v r2 ["q"], there
exists iC-[1, n], q ["Pi"]:/:v re ["pi"]. R satisfies a
precise XFD X-,q, denoted as R<(X-+q).

After mapping an XML document into XFD Tuples,
we introduce support and strength as two criteria for
measuring approximate XFDs based on XFD Tuples.

Definition 4 Given an XML document T: one of its

approximate XFDs F:X ,q (X is a set of paths and q

is a path) and R is the XFD tuples of F, then the
strength of F is the percentage of maximum XFD Tuples
satisfying the precise XFD.

strength=max{ S I S c R , S < (X - , . q) }
]R} (l)

The support of X ~q ts the total amount of tup]es in
R.

support(F, T) = I RI (2)
Intuitively, 0<~strength(F, T) ~ I , if and only if

strength(F, T) = 1, can we say that F is a precise XFD,
otherwise F is an approximate XFD. From our point of
view, only those whose support and strength are great
enough are interesting and worthy of extracting, there-
fore, in this paper, we focus on extracting approximate
XFDs, such that, for each of those, the support and
strength are not smaller than two given thresholds mini-
mal support and minimal strength, respectively.

2 Extracting Approximate XFDs

In this section, we first present a minimal set of ap-
proximate XFDs, and then introduce the algorithm of ex-
tracting it from an XML document. Finally, several opti-
mization policies are proposed and applied to this algo-
rithm.
2.1 Minimal Set of Approximate XFDs

We consider an approximate XFD candidate a quali-
fied one only if its support and strength are no smaller

than given minimal support and minimal strength, re-

spectively. In order to extract the minimal set of qualified
approximate XFDs, we give two definitions here.

Definition 5 Non-trivial approximate XFD: Given

an approximate XFD X ,q, if qgvX, then, X -q
is called a non-trivial approximate XFD.

Definition 6 Minimal approximate XFD: Given X

-q is an qualified approximate XFD, if there does not

exist any YCX, where Y ,-q is also a qualified ap-

proximate XFD, then we say that X ,-q is a minimal

approximate XFD.
We denote a set of approximate XFDs in an XML

document T as minXFDs(T), which contains all minimal
non-trivial XFDs whose strength and support satisfy two
minimal constraints respectively. Obviously, minXFDs(r)

is a minimal set of approximate XFDs, therefore we just

need to extract all minimal non-trivial approximate XFDs
from the XML document.

2.2 Candidate-Paths Set
Since the determining paths and depending path of a

candidate XFD are respectively a set of paths and one sin-
gle path, therefore, prior to extracting approximate

XFDs, we should acquire all paths.
We denote all paths in an XML document T as

Paths(T) cq which can be generated from searching the
whole document. However, some paths are semantically

overlapped. For instance, "/Hospitals/Hospital/
hName" and "/Hospitals/Hospital/hName/S" actually
both refer to the name of a hospital. We phase out paths

ending with "S", and the rest are called candidate paths,
denoted as EPaths(T). Obviously, EPaths(T) is a sub-
set of Pa th(T) , therefore can significantly reduce the
searching space.

We design an algorithm called extractEPaths for ex-
tracting all candidate paths from an XML document.
Since extracting candidate paths is out of the scope of this
paper, we will not discuss it here.
2.3 Strategies for Extracting Approximate XFDs

In this section, we will first introduce the searching

space for extracting approximate XFDs. And then we
will give a method of extracting approximate XFDs in the
searching space, two optimized searching strategy are

also given.

2.3.1 Searching space
Suppose an XML document T and its candidate path

129

set EPaths(T), we will search XFDs in a space made up
of EPaths(T). The searching space S is.

S = {X----~q Xc_ Epaths(T),
X :/: ~ and q E EPaths(r)}

We organize the searching space in a lattice. The
0-th level of the lattice is empty, and the ith level con-
tains in total C~, (n is the total number of candidate paths)
elements each of which is a composition of i different can-
didate paths. Every element X in the lattice, can be de-
termining paths of a candidate for approximate XFDs,
and we denote a set of paths that can possibly be X's de-
pending path by Rhs (X), where Rhs (X) = EPaths (T).
In this way, the more candidate paths a element X con-
tains, the higher level X will stay in the lattice.
2.3. 2 Basic searching strategy

Searching space S is now orderly organized into a
lattice, we can extract approximate XFDs on this lattice.

Since the 0-th level is empty, searching process
starts from the 1st level to the last level. At the i-th level
Li, for every element X in Li and for any q~Rhs(X) , a

candidate F (X , q) is formed and its strength and
support are computed(one can follow definition 4 to cal-
culate strength and support, in addition, we will offer
some optimizations in Section 2. 4). If the calculated
strength and support are no smaller than minimal support
and minimal strength, respectively, furthermore, if F is
minimal and non-trivial, then, F will be put out.
2.3.3 Optimized searching strategy 1

To speed up the searching, we apply some pruning
rules into the basic searching algorithm, so that, all trivi-
al candidates and all non-minimal candidates will be
pruned away from searching space. The optimized algo-
rithm is also based on lattice. However, the searching
process goes interactively with dynamic construction of
the lattice, in detail.

1) Construct the ith level of this lattice. If i = 1 then
L~= {{p} I pEEPaths(T) }; if i > 1, then L~ is con-
structed based on the previous level L~-I. Li =-{ (XUY)
I x , gEgz- i and IX-YI=I}

2) At level L~, for every element X in L~, generate
Rhs(X). If i=1 , Rhs({p}) = {q[qffEPaths(T) and
q=/:p}; else Rhs(X) - -q~p~xRhs(X-p) . If every ele-
ment X at this level satisfies Rhs(X) - - ~ , then it sug-
gests no candidate left, end the algorithm;

3) For every element X of L~ and VqC-Rhs(X),

check whether the strength and support of X *q sat-

isfy the two constraints. If satisfy, then put X -q out
as a qualified approximate XFD, and delete q from
Rhs(X). If R h s (X) - - ~ , deleted X from Li.
2. 3. 4 Optimized searching strategy 2

For a candidate X - q, its support equals to
][[q]]l. This inspires us to prune the searching space

furthermore.
Based on strategy 1, when generating the Rhs of 1st

level' elements X, set Rhs(X) = { p I P E Epaths(T) and
I[[q]]]>~minSupport}. Then every candidate generated
is guaranteed to satisfy the minimal support constraint.
2.4 Optimized Computation of Strength

To avoid repeated comparisons of different nodes,

prior to searching, we mark any two nodes, which are
value equal with the same integer value. In this way, for

later value equal comparison, we only need compare the

integer value of two nodes instead of their sub-trees.

3 Algorithm

Algorithm extractAXFD adopts both the optimized
Strategy 1 and optimized Strategy 2.] EPathsl denotes
the number of candidate paths, and ILl I denotes the
number of elements in ith level.

Agorithm. extractAXFD
Input. XML document T, minSupport, min-

Strength
Output. approximate XML Functional Dependencies
1. EPaths = extractEPaths(T) ;

2. L I = {{p}]pEEPaths};
3. for each {p} in L1
4. Rhs(p) = {q I qEEPaths,

I [[q]]]>~minSupport and q:/: p};
5. end for
6. AXFDs--checkAXFD(L1);
7. for i = 2 to I EPathsl
8. Li = genNextLevel(Li_l)
9. if J Li [-- 0 then break
10. AXFDs + = checkAXFD(Li)
11. end for
12. return AXFDs

Procedure checkAXFD searches all candidates at ith
level. In detail, for every element X of ith level and
every pE Rhs(X), it first check whether the strength of

X -q is no smaller than minimal strength, if so, X

130

~q is put out as a qualified approximate XFD, mean-
while p is removed from Rhs(X).

Procedure genNextLevel constructs the next level Li
with the searching results of previous level L~-~.

4 Experimental Results

We implement the algorithms using JAVA program-
ming language, and apply it to real-world hospital XML
documents that have the same DTD with Fig. 1.

The experimental environment is as follows: Penti-
um4 2.4 GHz CpU, 512 MB memory, 80 GB hard disk.
The operating system is Windows XP and we use dom4j
for parsing XML document.

We apply the algorithm into a hospital XML docu-
ment that contains 1 000 patients' information in 6 hospi-
tals. Set minimal support and minimal strength 10 and
0.98 respectively, we extracted the following 8 approxi-

(" Hs" " " " mate XFDs: is Hospitals for short, "H" is
"Hospital" for short and "P" is "patient" for short)

/Hs /H/P ,/Hs/H/P/pName

/ n s /H/P ---+/Hs/H/P/ward

/Hs/H/P---~/Hs/H/P/disease

/Hs /H, /Hs /H/P /ward ,'/Hs/H/P/disease

/Hs/H/hName, /Hs/H/P/ward , ' /Hs/H/P/
disease

/Hs/H,/Hs/H/P/ward,/Hs/H/P/pName ,'/
Hs/H/P

/Hs/H/P/disease,/Hs/H/P/ward, Hs/H/P/

pName , /Hs /H /P
/ Hs/H/hName,/Hs/H/P/pName,/Hs/H/P/

ward , ' /Hs/H/P
Figure 2(a) compares execution times of three algo-

rithms with different pruning rules: basic algorithm, al-
gorithm with optimized Strategy 1 and algorithm with op-
timized Strategy 2. As we can see, the one with opti-
mized Strategy 2 is nearly 5 times faster than that of bas-
ic, and 1 time faster than that with optimized Strategy 1.

Figure 2 (b) compares the effieiency of the algo-
rithms with and without strength optimization. The algo-
rithm adopting strength optimization is roughly 30 times
faster than that without strength optimization.

We set minimal support to 10 and test the algorithm

on a hospital XML document containing 1 000 patients'
information of 6 hospitals. Figure 3 shows the relation-
ship between minimal strength val and number of extrac-
ted approximate XFDs. The number of approximate
XFDs decreased when minimal strength increases from 0.
5 to 1. That is because, when minimal strength decrea-
ses, it loosens the restriction for approximate XFDs,
therefore, extracts more approximate XFDs.

400
r~ 3 5 0 �9 Optimized strategy 2

-.. - -O-- Optimized strategy I

300
250

~ 200
150
100
50!

e~o ..=

0 200 400 600 800 1000
Documentsize/kB

(a) The effieiency ofthe optimized strategies
3500
3000 --O--Optimized strength calculating j

2500 �9 N o ~

2000

1500

1000

500
0e ;~--'Z'~'O ~

0 200 400 600 800 1000
Documentsize/kB

(b) The effieiency ofthe optimized strength calculating

Fig. 2 The efficiency of algorithms

e~

E
Z

18

15'

12

9

6

3

0

Fig. 3

0.5 0.6 0.7 0.8 0.9 1.0
Minimal strength

The relationship between minimal support and
number of approximate FDs extracted

5 Conclusion

We defined approximate XFDs based on value equal-
ity, and presented two criteria namely strength and sup-
port for measuring approximate XFDs. We proposed the
concept of minimal set of approximate XFDs, a method

131

and two optimized strategies are proposed for extracting
such a set from an XML document. The experimental re-
suits show that the proposed extracting approaches are
correct and effective.

References

[1] Yang X, Li C. Secure XML Publishing without Information
Leakage in the Presence of Data Inference. Proceedings o f

30th International Conference on Very Large Data Bases.
Toronto, Canada, Sept. 2004. 96-107.

[2] Yang X, Li C, Yu G. XGuard.. A System for Publishing XMI.
Documents without Information Leakage in the Presence of Da-

ta Inference. Proceedings o f International Conference on Data

Engineering. Tokyo, Japan, April 2005. 1124-1125.
[3] Kivinen J, Mannila H. Approximate Inference of Functional

Dependencies from Relations. Theor Comput Sci, 1995,149
(1) :129-149.

[4] Arenas M, Libkin L. A Normal Form for XMI. Documents.
ACM Trans. Database Syst, 2004,29:195-232.

[5] Liu J, Vincent M W, Liu C. Functional Dependencies, from
Relational to XML Ershov Memorial Conference. Novosibir-
sk, Russia, July, 2003. 531-538.

[6-] Lee M L, Ling T W, Low W L. Designing Functional De-
pendencies for XML. Proceedings o f 8th International Con-

ference on Extending Database Technology. Prague, Czech
Repubic, March 2002. 124-141.

[7] Yang X, Wang G. Mapping Referential Integrity Constraints
from Relational Databases to XML. Proceedings o f the 2nd

International Conference on Advances in Web-Age Informa-

tion Management. German.. Springer-Verlag Press, 2001.
329-340.

[8] Huhtala Y, K/irkkainen J, Porkka P, et al. TANE: An Ef-
ficient Algorithm for Discovering Functional and Approximate

Dependencies. Comput J , 1999,42 = 100-111.
[9-] Mannila H, Toivonen H. Levelwise Search and Borders of

Theories in Knowledge Discovery. Data Min Knowl Discov,
1997,1(3) :241-258.

[10] Ilyas I F, Markl V, Haas P J, et al. CORDS.. Automatic

Discovery of Correlations and Soft Functional Dependencies.
Proceedings o f Proceeding at the ACM SIGMOD Interna-

tional Conference on Management o f Data. Paris, France,
June 2004. 647-658.

[11] Grahne G, Zhu J. Discovering Approximate Keys in XML
Data. Proceedings o f International Conference on Informa-

tion and Knowledge Management. Virginia, USA, Nov.
2002. 453-460.

[12] Buneman P, Davidson S, Fan W, et al. Reasoning about
Keys for XML. International Workshop on Database Pro-
gramming Languages. Lecture Notes in Computer Science
2397. Frascati, Italy, Sept. 2002. 133-148.

[]

132

