
WUJNS 
Wuhan University Journal of Natural Sciences 

Vo1.11 No.1 2006 107-112 

Art  icle I D: 1007-1202 ( 2006 ) 01-0107-06 

Specification and Verification for 
Semi.Structured Data 

[]  CHEN Tao-lue, HAN Ting-ting, LU Jian t 
State Key [.aboratory of Novel Software "Ii'chnology, 

Nanjing University. Nanjing 210093. Jiangsu, China 

Abstract: "Free logic, inherited from ambient logic, is in- 
troduced as the formal foundation of related programming lan- 
guage and type systems. In this paper, we introduce reeursion 
into such logic syslem, which can describe the tree data more 
clearly and concisely. By making a distinction between propo- 
sition and predicate, a con-:ise seman'ics interpretation for r 
modal logic is given. We also devek)p a model checking algo- 

rithm for the logic without D operator. The correctness of 
the algorithm is shown. Such work can be seen as the basis of 
the semi-structured data processing language and more flexi- 
ble type system. 

Key words: semi-structured data; tree logic; fixpoinl; 
model checking algorithm 

CLC number= TP 301.6 

Received date: 2005-04-10 
Foundation item: Supported by the National Natural ~:iences Foun- 
dation of China (,q0233010. 60273034. 60,10301,1). 863 Program of 
China ( 2002AA 116010), 973 Program of China ( 2002('B."112002 ) 
Biography: ('HF, N Tao-hlt' (1980-), male. M~,ster, research din'c- 
lion: formal method, mobi[e computation. E-mail: cd(a) ics. nju. edu. 
e n  

t To whom corrv~,pondence should be addressed, t", mail=li(~(nju, edu. 
CII 

0 Introduction 

S emi-structured data plays an important role in the ex- 
change otinl'ormation between globally distributed appli- 

cations: examples include BibTex files and XML documents. 
Due to the growing popularity of semi-structured data, and 
particularly XML, there are renewed interests in typed pro 
gramming languages that can manipulate trecqike data struc- 
tures. 

In general, we are going to have some tree like data t, 
and some description language T that can flexibly describe the 
shape of the data. What we are interested in is the description 
languages which are so flexible that they are akin to logics 
rather than to type systems more descriptions see Ref. 1-11. 
Generally speaking, the key problem is to find rich description 
languages and satisfaction and validity algorithms admitted by 
them. 

In the research community, it is well recognized that mo- 

dal logic is an excellent candidate of such description language 
and thus in essence, such problems can be reduced to corre- 
sponding model checking problem, which is the main focus of 
this paper. These problems have been widely studied by some 
researchers. For data model, the research community mostly 
agrees on del'ining semi-structured data using trees with 
"graphical" links or labeled directed graphs. For the descrip- 
tion language, a logic that can be used as a rich description 
language for tree-like data has been provided. It merges as an 
application of the novel area el' spatial logics used for descri- 
bing data and network structures. 

In this paper, we call this logic Tree l.ogic. Many resear- 
ches have focused on such a modal logic system. Actually, 
tree logic is a sublogic of Ambient I.ogic l,or ambient calculus 

w ~ ' ~ a ~ i ~ , . , ~ o f ~ r ~ s ~ e r ~ s  ve.~l No.1 a ~  107 



due to Cardelli and Gordon E12 , or spatial logic due to 

Caires E22 et al. Some detailed comparison is deferred to 

Section 3. With the semi-structured data models and as- 

sociated languages being investigated, the need for ma- 

nipulating private data elements is becoming aware. Such 

private resources can be modeled using names and name 

hiding notions arising from the a--calculus E33 : during data 

manipulation, the identity of a private name is not impor- 

tant as long as the distinctions between it and other (pub- 

lic or private) names are preserved. Such work has been 

initialized in Ref. [1~,  where the simple tree model 

(such as XML) is extended in a general and orthogonal 

way with a hiding operator. Besides that, in logic, some 

modal operators, inspired by spatial logics of concurrency 

devised to cope with acalculus restriction and scope ex- 

trusion, are introduced. However, so far there still lacks 

a satisfactory approach to introduce recursion into such 

logics, due to subtle interactions between recursion and 

first-order quantification. The recursion is important and 

useful since it can describe the tree data more clearly and 

concisely. The standard approach to introducing recur- 

sion into a modal logic is via fixpoint, as in/z-calculus, 

however such work is not trivial since the rich modalities, 

such as |  @, especially the first order quantification tt 

is introduced in order to manipulate hidden labels. To 

deal with such problems, we make a distinction between 

propositions and predicates, thus the possible interactions 

between recursion and first-order quantification can be 

solved based on the above work, a concise semantics in- 

terpretation for our modal logic is given. The main con- 

tribution of this paper lies in the model checking algo- 
rithm for the logic. 

We devote to presenting such an algorithm because 
it is the pivot of semi-data related language and corre- 

sponding type system. The correctness of the algorithm 
is shown. Note that due to space restriction, most of 

proofs in this paper are omitted, we refer the interested 
readers to our technical report E43. 

1 Data Model and Tree Logic 

1.1 Data Model 
Let l ,m,n , ' . ,  ranged over by N, which is a count- 

able infinite set of names. The data model, which essen- 

tially is an edge-labelled finite tree with restriction name, 
is defined by BNF (Backus Normal Form) as follows: 

P,Q:: = 0 I (vn)P I P I Q I nEP] 

108 

where 0 represents a void tree. ( vn )P  represents that 

name n is restricted in P. P I Q represents that tree P and 

tree Q compose with each other, nEP~ represents tree P 

is in an environment named n. As in common process 

calculi, (vn)P introduces the distinction of bound names 

and free names. In common, we use fn(P) and bn(P) to 

denote the set of free names and bound names respective- 

ly appearing in tree P. And we identify s-equivalent 

trees, i. e. trees that are different only in renaming of 

bound names. 

As usually, the structural congruence, denoted by 

-----, is defined as usual. We refer Ref. 1-11 or E4~ for de- 

tails. The following result is well-known for ambient cal- 

culus and can be easily adapted to our data model. 

Lemma 1 The following properties hold: 

(i) (vn)P=--O iff P~-0. 

(ii) For different name m, n, ( vn )P=-m[Q~  iff 

there exists tree R, s.t. P=---m[R~ and Q:~--(vn)R. 

(iii) (vn)P~Q] I (?2 iff there exists tree R], Re, s. 

t. Ql=--(vn)R1 and Q=--Re and n r  or QI=-R1 
and Q ~ ( v n ) R e  and nr fn(Q1 ). 

A substitution {rnl/nl ,"" ,mz/n, } is a function from 

N to N that maps ni onto rni for i ff {1, '"  ,l} and n onto 

itself for n r {/ll ' '~176 }. Substitutions are usually deno- 

ted by ~. The empty substitution, that is the identity 

function on N, is written as [-1. The result of applying 

to P is denoted by Pr In the below, by a-conversion it is 

assumed that a substitution ~ acts as an identity on the 

bound names of the process and keeps the separation be- 

tween bound and free names. We follow this convention 

in the below and will use it implicitly in the proof. T is a 

set of trees and ~r a substitution, Ta is defined as {Pal P 
r}. 

Substitution that just interchange a pair of names, 

which is called transposition and ranged by r, will plays a 

special role in technical developments to follow. More 
precisely, the transposition of n and m, written as {m~ 
n}, denoted the substitution ~: {re,n}-+ {n,m}. It turns 

out that transpositions are a useful tool in proving prop- 

erties concerning fresh names. 

1.2 Tree Logic with Recursion 
We assume a countable infinite set V of name varia- 

bles which is ranged over by : r ,y ,z , . . . ,  such that VU N 

= ~ .  And we assume a countably infinite set X of predi- 
cate variables, ranged over by X,Y,Z,. . . .  The syntax of 
the formula is defined by BNF as follows: 

A,B: ~ TI- AIA V BrOIAIBIA ;> BI  A31 



A@~I ~ |  iA OqIHr.AF Vx.APA(ffi 
A:: = X I ~ .  AI vX. A 
where, r/E VUtl. 
T is for true formulas, ~ A  is the negative formu- 

las, AvB is the conjunctive form, 0 is for empty formu- 

las, A IB is for formula composition, rIVAl is that formu- 
la A is the environment r], A @ rj is the adjunct to r~A-]. 
r j |  is for the revelation, that is u is restricted in A. A 
@q is the hiding operator, name n is hidden in tree P, A 
D B is for A guarantees B. V x. A deals with the univer- 

sal quantification while 112:. A deals with the fresh name 
quantification. A is the predicates, X is variable,~. A is 
abstraction while vX. A is the fixpoint. 

In formulas of the form V x. A, Hr. A, ~ .  A and 

vX. A,  the distinguished occurrences of x and X are hid- 
ing, with the scope of propositions A or predicate A. We 
define on formulas the relation -----~ of a-congruence in the 
standard way, that is, as the least congruence identifying 
formulas modulo renaming of bound (name and predi- 
cate) variables. We will consider formulas always modulo 
a-congruence. Note that for a formula, the notion of 
name substitution is extended to the function from VU N 
to N, i.e. we allow the name variables to be replaced by 

names. 
For any formula A,  we introduce the following sets 

in the common way, that is, the names in A, denoted by 
n(A), the free name variables in A, denoted by fv(A), 
and the free predicate variables in A, denoted fpv(A). 
Since their definitions are rather standard and we omit the 
formal presentation. 

Note that for convenience, we identify/?-equivalence 
formulas, that is, (,t..f. A)(O) and A(~I/X). A formula A 

is called name-closed if fv(A)= ~ and is called predica- 
ted-closed if fpv(A) = .~. A formula is closed if it has 
neither free name variables nor free predicate variables. 

In the tree logic, besides the unary operator - , ,  the 
operator D may also convey the same "negative" effect. 
Formally, for any formula A, we define -7- and - [;> A 
as two negative operators. We say that a predicate varia- 
ble X is positive (resp. negative) in A if it is under an 
even (resp. odd) number of negative operators. Note 
that a variable X can be both positive and negative in a 
formula A. We say that a formula A is monotonic in X 
whenever every occurrence of X in A is positive, other- 

wise we say A is anti-monotonic in X. 
A fixpoint predicate uX. A is well-formed if A is 

well-formed and n(A)f'] fv(A)= ~ and monotonic in X. 

Note that we require that A has no free name, thus n(A 

(~)) and fv(A(O)) are totally determined by the actual 

parameter ~j. Also, all free occurrences of X in A must 

occur just at positive position, which is used to ensure 

monotonicity of the denotation mapping associated with 

fixpoint formulas. A formula is well-formed if every fix- 

point subformula in it is well-formed. In the sequel, we 

only consider well-formed formulas. For application, es- 

pecially some interesting examples of our logic, see Ref. 
[-4]. 
1.3 Semantics 

The semantics of formula is defined by assigning to 

each formula A a set of trees FAIl, namely the set of all 

trees that satisfy the property denoted by A. Since A may 

contain free name variables and free occurrences of predi- 
cate variables, its denotation depends on the denotation of 

such variables, which is given by a valuation (name valu- 
ation and predicate valuation). A name valuation p is a 
mapping from VUN to N which is identity on N. We de- 

fine pin~x] as p [ n / x ] ( y ) = i f  x = y  then n else p(y). A 

predicate valuation ~ assigns to every predicate variable of 

arity k a function N~-,'::~(P), that is ~: X-~N~'-"2KP). 

As usual, the relation _~ can be extended point-wise to 

functional space as follows: for two function J*, ~/~ : N ~ 

---?/~P), define .ff_~g~ iff f(n)_~g(n) for any nEN*. 
Thus, the functional space N ~ : ~ ( P )  forms a complete 

lattice w. r. t. ~ .  The denotation of formulas is defined 
inductively in Fig. 1. 

[ TP3~,.+ = 

E ~ A ~]~,.+ = 

EA V B~p.+= 

~0~,,.+ = 

~A I t312,,.+ = 

[ A [> B+~,.~ -- 
~dA312,,.+- 
I rA@ r/Iq,,.+ = 

I- r] (~) A t],,,~ --  

~AQql],,.~ = 

~tlr .  A3~,.~ = 

[ V x. A~,,,~ = 

~A(~) ~p.~-- 
~X],,.~ = 

~ ~ . A ~2~,.~ = 
~ vX. A I]p,~ -- 

{P [ P ~ O }  

{ P I  P ~ P ~  ] P2 A P, E EAI3~.~ A P2 

/ P I Q E  ffAI3~,4~Q I P E [BI3~,.~) 
{PI  3 Q . P ~ p ( q ) ~ Q ]  A Q E  EAi],,,~/ 

IP  I p (q ) [P]  E ~A~,,.~I 

{PI  3 Q . P ~  (vp( r / ) )Q A Q E  ~AI]eq} 
{P I ( v p ( q ) ) P  E EAI]p.~} 

U ,,,~ N ( ~A~,,I ,, ,],~ } 
N,,+,, { ~A I~,~,, ,!,+ } 
[TA I]~,,+ (p(f/)) 

~(X) 

U { F : N  k -~ :J(P) I F ~  [Al~t,,d,~" x ] } 

Fig. 1 Interpretation of formula 

In the below, we devote to showing that the denota- 
tion map is well-defined. In particular, we show the se- 

109 



mantics of the fixpoint operation is the intended one, i. e. 

vX. A indeed denotes the greatest fixpoint. It is easy to 
see that the functional 2xI~A~aE,~xn is a monotonic oper- 

ator over the complete lattice Nk-+f?(P) w. r. t. G ,  since 
A is monotonic in X. By Tarski-Knaster theorem, we 
have: 

Lemma 2 Let A be monotonic in X, and for any 
name evaluation p and predicate evaluation ~:, then 

E vX. A~p,e = gfix(;txP'. ~A l~v.~ v,/ x ~ ) 
where gfix(;tW. ~A~p.Kv,/x2 ) denotes the greatest fixpoint 

of the functional X~. ~AI2p,Kwx?. 
For spatial logic, the properties concerning fresh 

names are important, especially when the modal opera- 
tors which are used to deal with restriction, such as 7]| 
A, A@ r] are introduced. Now, we devote to establishing 
some important results. 

Following Ref. [2], we use transposition as a useful 
tool to give some concise proof of properties concerning 
fresh names. The following definition extends the notion 

of transposition to predicate. 
Definition 1 Let r be a transposition. A function 

f .  Nk-~:~?(P) is r-preserving if ( f (n))r=f(nr)  for any 
n. A valuation ~: is r-preserving if ~(X) is r-preserving 
for any X. 

Lemma 3 Given a transposition r and a function f :  

Nk-~?(P), define f :  Nk~':r as f ( n ) = f ( n )  U (J  
(nr))r for any n, then the following properties hold: 

(i) f is vpreserving. 
(ii) If f Q g  and g is r-preserving, then f G g .  
The intuition of the following 1emma is obvious. Al- 

though the proof is rather long, it needs no new tech- 
niques, only case analysis and mutual induction on the 
structure of A and A. Due to space restriction, we omit 
the details. 

Lemma 4 Suppose ~ is r-preserving, then the fol- 
lowing properties hold: 

(i) (ITA~p.~)r= EAr~,., ; 
(ii) I~A~,,.~ is r-preserving. 
Freshness plays a central role in our logic system and 

maybe is the most subtle operator. A fundamental conse- 
quence of above lemma is the following characterization of 
fresh name quantification. As in Ref. [2], the semantics 
definition of it is stated in "existential" style, indeed, it al- 
so can be stated in "universal" style, that is, if some prop- 
erty holds of a fresh name, it holds of all fresh names. 

Lemma S The following statements are equivalent: 
(i) Pff ~H,. AI]~,~ 

110 

(ii) There exists a name n~: fn(P)Urn(A),  s.t. P 

E [A~,c,,/,~, ~. 
(iii) For every name n (~ fn (P)  U fn (A) ,  P ff 

EA3,<,,/,~.~. 

2 Model Checking Algorithm 

In this section, we devote to providing a model 
checking algorithm for the logic presented in this paper. 
Note that we have investigated the problem of model 

checking tree against formulas that may contain composi- 
tion adjunct D. It is now a rather standard result (see 
Ref. [5])  that such a problem is undecidable, which 
might result from the coexistence of the existential quan- 
tification and the composition adjunct ( i;> ). A novel re- 
sult of ours lies in that we prove that even the logic con- 
tains only fresh name quantification (but no existential 
quantification!) and the composition adjunct, the model 
checking problem for logic formulas is undecidable all the 

same. Due to space restriction, the proof is not presented 
here, and we refer the interested reader to Ref. [4]. Un- 

der such circumstance, we have to turn to design the 
model checking algorithm for formula without D. 

Since our logic system subsumes the recursion (via 
fixpoint) constructor, one of the notable features of such 
algorithm is the mechanism used to keep track of unfol- 
ding fixpoint formulae. We adopt the latter of the meth- 
ods, due to Winskel [:~J , and generalize it to the predicate 
case. In our algorithm, the tag sets will contain pairs (;q, 

P) of name vector and the tree. Formally, let T = { (~ ,  

P1 ) , ' " , ( n t ,P~ ) t ,  where, ni ( 1 4  i~ l )  are vectors of 
the same length, say k and for V i , j ,  i~  j ,  we have fi, 
:~fij. For any tag set T, we use AT to denote a function 
N ~ : K P )  defined as follows: 

(;tT)0q) = / (P} , i f  ( f i ,P)ff  T 
, if o. w. 

Now, the fixpoint predicate vX. A can be generalized to 
vX. [T]A, note that the X must have the same arity as T 
and the usage of T lies in recording which points of the 

model have been visited before thus is only a bookkeeping 
device. 

The definition of n(vX. [T]A),  fv(vX. [T]A) and 
fpv( ,X. IT]A) are the same as the corresponding defini- 
tion for vX. A. 

The denotation of vX. [T]A is a simple extension 
for ~vX. A~,.e as follows: 

[vX. [g]At],,~ = U  { f  : Nk --" :?~(P)} ] 



F c  (l~AIJe.+l~-/x U ~T 
It is easy to see that the functional ;tg t. (~AI]~,.+l~/x 

U,l T) is also a monotonic operator over the complete lat- 

tice Nk~s w. r. t. C ,  since A is monotonic in X. 

Thus, we can use gifx ag r. (~AI]~,,+lv.,./x UitT) to denote 
the greatest fixpoint of the functional a~. (~AI]o.+l~/x U 
,~T). 

There now follows a technical Lemma which is a 

generalization of the so-called Reduction Lemma of Ref. 

[6~, the essence of the tag set method. 

Lemma 6 Let L=Nk~2~(P) be a complete lattice 

w. r. t. ~ and r be a monotonic functional. Then 

for any f C L, 
f _  gfix(Xg~,r iff f ~  r162 U f ) )  

So, using Lemma 6, the following lemma can be easily 

proved. 

Lemma 7 If, (fi,P) ~ T, then 

P ~ ~vX. [T]A~,,+<,,+ iff 

P ~ ~A[vX. IT U {(~,P)}]A/X]~e,+(,,, 
To deal with name restriction, as in Ref. [51, we 

fix the representation of the tree: using a-renaming of re- 

stricted names and the rules of the congruence relation, 

we group together all name-restriction operators by 

transforming every tree to one of the form (vnl "'" vne )P 
and separate bounded names by the following function 

sep. Note that all bounded names are renamed apart so 

that they are different. 

Definition 2 

sep(0) de~(r  if P ~ 0 

sep((zn)P) &2(N U {n},P'), if sep(P) = (N,P") 
a~r(N,n[P'}), = sep(n[P~) if sep(P) (N,P') 

sep(P [ Q) d~r(N U N',P' I Q'),if sep(P) = (N,P ' )  

sep(Q) = (N',Q') 

Now, we are ready to present our model-checking 
algorithm. It is an extension of the algorithms from Ref. 
~5~. It is well known from the result of Ref. ~5~, for any 

tree P, the sets {P[ P ~ 0 } ,  {(Q,R)] P =~QIR} and 

{(n,Q) l P~n[Q~} are decidable. For notation, we use 

0 for disjoint union, that is, A=BOC if A=BUC and 
BNC=;~. We recalled that all bound names in the trees 

are renamed apart so that they are all different from each 

other and different from all free names occurring in the 

trees and the formulas. Since N is countable, we can as- 

sume it is ordered. For a set of names W, the function 

new(W) returns the least name in N\W. The model 

checking algorithm is presented in Fig. 2. 

Now, we devote to proving the correctness of our al- 

gorithm. To establish the termination property of the algo- 

rithm, we need to bound on the number of names for mod- 

el checking process. First, recall that since we adopt the a- 

equivalence for formula, we can assume that both bound 

names in P and the bound name variables in a formula A 

are different. Then we write Nr, for the number of names 

(including free and bound names) contained in the tree P 

and NA for the number of names and name variables con- 

tained in A. Note that names in tag set of the formula are 

not included, since it only contributes as a bookkeeping. 

The following lemma is important, by which we can con- 

clude that provided that each term only appears once in 

each tag set (just as in our algorithm), the size of tag set is 

bounded since the tree P we consider is finite. 

check ( N , P ,  T) ~ true; 

check ( N , P , ~ A )  +~"f~check(N,P,A) ; 

check ( N , P , A V B ) d~r check ( N , P , A ) V check( N , P , B ) ; 

Itrue if P ~ 0  
'check (N,P,O)d,~ I false o.w. 

check ( N, P,  A ] B) +r g ,~- 5 o,% V 1, r t i~, e check ( Nj , Pi , A) 

A check (Nz ,P2 ,A) 

A fn(P, ) n Na = ~  A f n ( P z ) n  N~ - - ~ ;  

check (N,P,nEA~)'J~rn~ N A P  

--n~Q~ V check(N,Q,A) ; 

check ( N , P , A @ n )  d+rcheck ( N , n [ P ] , A ) ;  

check ( N , P , n @ A )  u~'r V,,,~N check (N~{m},P[:,+/m~,A); 

V (ng: fn(P) A check ( N , P , A ) )  

check (N,P,A�9 (NU {n} , P , A ) ;  

check ( N, P,  Na. A) d~,r check ( N, P,  A[new( fn( N, P) 

U fn(A) )/a'~) ; 

check ( N , P ,  V a. A) ~ A,~r,~N,vw+~ check ( N , P , A [ n / . r ] )  

A check ( N, P,A[new(fn( N, P) 

O fn(A) )/a-] ) ; 
check ( N , P , ( v X .  ~T~A(~)) 

= f true if (r~,P) C- T 
check ( N , P , A [ v X .  ~TU {(e,P)}]a/X](~)) o.w. 

Fig. 2 The model checking algorithm 

Lemma 8 For each recursive call of check, with 

caller parameter (N,P,A) and the callee parameter (N' ,  

P',A'), Nv'+NA'<~Np+NA. 
We now use this fact to give a well-founded ordering 

to formulae. We write A<<pA" iff A' is not a fixpoint 

formula and A is a proper sub-formula of A',  otherwise 

A is the form k i rK .  ~TU {(~,P)}~A/X~(~) and A' is 

vX. ET~A (~) where (~, P) ~: T and T contains only 

nodes from P. We aim to show that the transitive closure 

< ~ , +  of this relation is a well-founded order whenever 

P is finite. 

111 



Lemma 9 For any tree P,  < < e  + is well-founded 
order. 

Lemma 10 Let p be name evaluation and ~ be pred- 
icate evaluation for Vx. A, and assume n q~ fn (P)  U 
n(A), then 

P E ~A~p,~iff P E NkEfn(P) Un(A)U{n)~A~k/x]~,,~ 
Theorem 1 For any tree P and closed l)-ffee for- 

mula A, the following properties hold: 
(i) check (sep(P),A) terminates; 
(ii) check (sep(P) ,A) =true iff pE  ~AI]. 

3 Conclusion 

This paper deals with semi-structured data model 
and related logic system, i.e. tree logic system. We ex- 
tend existing work such as Ref. [1] with recursion. Be- 
cause of the subtle interactions between recursion and 
first-order quantification, especially the "fresh" quantifi- 
cation 1/I, such task is challenging and in which one of our 
contribution lies. We solve such a problem by making a 
distinction between proposition and predicate. A concise 
semantics interpretation for the modal logic formula is 
given. Based on it, since as we point out in the introduc- 
tion, model-checking algorithm plays a curial role in the 
research of corresponding programming language and 
type system and we focus on devising such an algorithm. 
Unfortunately, it can be shown that model checking the 
full logic system is not decidable. Alternatively, we pres- 
ent a model checking algorithm for D-free sublogic sys- 
tem. We adapt the well-known Winskel's tag set method 
to predicate case to deal with fixpoint operator, note that 
our tag set construction is different from Winskel's. The 
correctness of the algorithm is shown. 

The ambient logic has been developed step by step 
for a few years. A spatial logic for an asynchronous 
calculus was introduced and studied in Ref. ]-2], which 
has both fresh name quantification and recursion. The 
tree logic can be seen as the adaptation of above work to 
the research of semi-structured data processing language 
and related type systems. Its development follows similar 
lines. Ref. [1] has a good introduction. However, our 
work follows Ref./-7], in which hidden information is 

studied. However, in Ref. [7] ,  the transposition is ex- 
plicitly in the data model and logic system while we fol- 
low the more traditional approach and transposition is on- 
ly a proof tool. Comparing to Ref. [2 ] ,  besides the 
difference in the data (process) model, the syntax and 
the semantics are also very different. Ref. [2] does not 
make a distinction between proposition and predicate, 
however, it conveys difficulties when interpreting the 
fresh name quantification. As a remedy, the notion of 
PSets is introduced. The advantage of our solution lies in 
that the semantics of our logic is clearer and more con- 
cise. Moreover, it is more favorable (at least) for model 
checking purpose. However, some useful tools, such as 
transposition, come from Ref. [2]. We believe our meth- 
od can also be applied to ambient calculus and spatial log- 
ic (with recursive), we leave it as our future work. 

There are several directions for further research. 
First of all, how to improve efficiency of our algorithm is 
an interesting problem. At the same time, the tree logic 
lacks so called somewhere modality ~ ,  we think it is im- 
portant for the description of the static structure of the 
tree, which is another direction of our further research. 

References 

[-1] Calcagno C, CaMelli L, Gordon A. Deciding Validity in a 
Spatial Logic for Trees. Proc TLDI'03,  ACM Press, 2003. 
62-73. 

[-2] Caires I., Cardelli L. A Spatical Logic for Concurrency (Part 
I). Proc TACS '2001, Lecture Notes in Computer Science, 
2001, 2215:1- 30. 

[3] Milner R, Parrow J, Walker D. A Calculus of Mobile 
Process, part I/II. Journal o f  Information and Computa- 
tion, 1992,100 .. 1-77. 

[4] Chen T, Han T, Lu J. Tree I.ogic with Recursion and Mod- 
el Checking Algorithm. http://moon, nju. edu. c n / ~  ctl/ 
docs/treeLogic, pd f , September 2004. 

[5] Charatonik W, Talbot J. The Decidability of Model Checking 
Mobile Ambient. Proc CSL '01. Lecture Notes in Computer 
Science, 2001, 2142:339-354. 

[-61 Winskel G. A Note on Model Checking the Modal-calculus. 
Theoretical Computer Science, 1991,83:157-167. 

[7] Cardelli I., Gardner P, Ghelli G. Manipulating Trees with 
Hidden Labels. Proc FOSSACS '03, Lecture .Notes in Com- 

puter Scienc, New York:Springer, 2003. 

[] 

112 


