
JN$
Wuhan University Journal of Natural Sciences

Vol.9 No.5 2004 828-834

Article ID:1007-1202(2004)05 0828-07

Design and Implementation of A Dynamic
Content Cache Module for Web Server

[] LIU Dan, GUO Cheng-cheng t ,
ZHANG Li
School of Electronic Information, Wuhan University,

Wuhan 430072, Hubei, China

Abstract : Web offers a very convenient way to access re-

mote information resources, an important measurement of
evaluating Web services quality is how long it takes to search

and get information. By caching the Web server' s dynamic

content, it can avoid repeated queries for database and reduce

the access frequency of original resources, thus to improve the
speed of server's response. This paper describes the concept,

advantages, principles and concrete realization procedure of a
dynamic content cache module for Web server.

Key words= dynamic content caching; network accelera

tion; apache module

CLC number: TP 393.09

Received date= 2004 (15 20
Foundation item: Supported by the Science Committee of Wuhan
Biography: LIU Dan(1980-), male, Master candidate, research di
rection: high speed computer network, high performance server clus-
ters system E mail:laudan@eyou, corn
"1" "Ib whom correspondence should be addressed. E-mail= netccg@
whu. edu. cn

828

0 Introduction

N owadays, more and more attention is paid to the client's
interactions with dynamic Web pages. In modern Web

applications, such as E-commerce, online auction, search en-
gine and etc. These applications must involve abundant data-
base queries, thus induce the server's cost and network delay.
Many studies have showed that the database query has become
the main bottleneck of Web servers E~j , so dynamic Web appli
cation is a severe limitation to Web site throughput. The serv-
er-side caching scheme allocates a block of memory in the
server, then stores those hot query objects(mainly dynamic
content) in the memory, consequently prevent repeated que-
ries of the hackend database. Cached objects are returned di-
rectly from the module after reconstruction when the same
subsequent incoming client requests arrive at the Web server,
which quickly improves the response time and the process ca-
pacity of the Web server.

Server-side dynamic content caching has many advanta
ges:

1) Prevent repeated database queries and improve the re-
sponse speed of the server.

2) Increase the throughput of the website and strengthen
the scalability of the server.

3) Reduce the time used through I/O and the system's
cost.

4) Easy implementation and management.
5) Excellent means of exploiting the server's potential

performance, which can reduce the expenditure of hardware
updates.

In the past, the research about caching is mainly focusing
on the client-side caching and the proxy caching. With the

rapid development of Internet, dynamic Web application
and the need for server-side high process ability, the fo-
cus is little by little shifting to the server-side caching.

The study of Web server logs shows that user's access
has a significant amount of temporal locality: that is, a
significant percentage of the queries have been submitted
more than once by the same or a different user. Although
Web services often get updated, compared to nowcaching
approach, it would be possible to get great performance
improvement by caching dynamic content, because recent
studies have shown that much of the dynamic content is
characterized as pseudo-dynamic [d , i. e., a dynamic
composition of stored or static data. Now this field is
limited within the discussion of the theory and lacks the
specific implementation model and framework. The mod-
ule in the paper is featured with easy implementation,
complete functions, low overhead and high performance.
The paper can provide some reference through the intro-
duction of the serverside caching module design.

1 Design and Implementation of The
Dynamic Content Cache Module

1.1 Design Goals of the Dynamic Content Cache
Module

The server-side dynamic content caching is imple-
mented with the module of Apache, a widely applied Web
server. There are two main design goals: @ It can cache
dynamic webpage objects and store them in memory, and
use them to reconstruct HTTP responses to answer in-
coming client requests. @ Basic caches management, in
cluding how to replace cached content and how to keep
cached responses consistent with the content residing on
the Web server.

Whenever any request for dynamic content arrives at
Apache, it will get transparently handled by the cache
module. The following will introduce the design and im-
plementation of above functions 5:~.
1.2 Simple Introduction to Implementation Platform

Fig. 1 presents the Apache's architectures. Apache
mainly consists of two parts: @ Apache core : Apache

core defines the rules and steps(Apache break the request
handling task into several phases) of how to handle re
quests and executes basic processing for each phase of re-
quest handling. @ Apache modules: a module is an ac
rive agent that can interact with Apache master or child
servers to perform an action on certain events, and it can

] ~ MPM]
CORE MODULE]

MODULE]
] APR [

OS
Fig. 1 Apache Architecture

customize how Apache functions at the certain phase
(here we customize content deliver phase). The module
is mostly composed with some init functions and han-
dlers. The handler is also a function that is registered for
some phase to add or overload Web server functionality.
The module can have several handlers that are the main
routines to cope with the real work. Our servepside dy
namic content cache is implemented as Apache mod-
ule L*':']. To add certain functionality, just need to load
the module into Apache server directly.
1.3 Architecture Design

The theory of the server-side cache module, to be
brief, is to cache the responses of previous requests and
use them to reply subsequent requests for the same con-
tent. It classifies requests into two categories'*~-, cache-
able requests and uncacheable requests.

The work going on in the following figure is all
about the cacheable requests, yet the uncacheable request
is straightly declined by the module immediately after be
ing judged. Fig. 2 illustrates the module's architecture
design.

1.4 Judgment Unit Design
This Unit has to make a judgment for two objects:

one is the incoming HTTP request, to judge whether to
rebuild a response from the caches directly; another is the
response from the Apache Web server, to judge if it can
be cached. HTTP/1. 1 offers several ways to mark an
object uncacheable or cacheable. Detailed technical rules
can be referenced by RFC 2616.

1.5 Storage Unit Design
The caches use in-memory hash table as its storage

data structure, and the number of hash buckets can be
customized. It works like this: firstly calculate the key
value in the hash table via a hash function according to
the URI, of the request, if there is no conflict, map the
caching object to a specific hash bucket. When conflict
happens, adopts the chain address rule to deal with this

829

HTTP Response

V&..2rom Apache

. i
: "r HTTP Request [... ~ \ [Apache Generates]

r Analysis] ... i . / [Response [

•
Judgement ~

\ A Unit ~ ~ ~ A
HTTP "1 / ' - - ~ ~ /I.

y ~ tJ~ - -
Response o~ _~ ,~ [Judgement] /

r ~ ni From Cache _ ~ q ~ U t ~- = / I \
A M~ [R e b u i l t I.,,t----~ "~ ~ ~ [

' l Resp~ = - -

Dynamic-content Cache Module

.

Fig. 2 Dynamic content cache module's architecture design

issue (firstly search along the conflict chain to find

whether there is the object having the same name. If ex-

ists, update the hash bucket; if none exists, insert a new

object at the end of the conflict chain). Such data strue

ture scheme improves the efficiency of update and search.
In Linux, Apache has two work modes, prefork

(multi-processing mode) and worker (hybrid multi pro-
cessing and multi threaded mode) E4~. If Apache is con-

figured with the prefork mode, taking the multi process

nature into account, we need a block of cache memory

that should be shareable between processes to store ob-
jects; if Apache is configured with multi-thread worker

mode, the threads themselves are featured with sharable
memory, and so the issue of making memory shareable
between processes can be out of consideration.

To simplify the implementation, we configure
Apache with the worker mode, which is the premise of
the implementation of the module.
1.6 Management Unit Design
1.6.1 Algorithm of consistency and replacement

Consistency is a complicated problem. Different

websites, different content and applications need different

algorithm of consistency. As a matter of fact, complete

consistency is impossibly implemented E7~. In the paper,

when a response generated for a dynamic content request
passes through the cache module, meanwhile the module
needs to set an expiry date for the request. In the event

that a document does not provide an expiry date but does

provide a last-modified date, an expiry date can be calcu

lated based on the time since the document was last modi-

fied. The cache module configuration file can specify a

factor to be used in the generation of this expiry date ac-

cording to the following formula:

expiry period= time-sincedast-modified-date ~ fac-
tor

expiry-date=current-date + expiry-period
For example, if the document was last modified 10 h

ago, and factor is 0.1 then the expiry-period will be set

to 10)< 0.1 = 1 h. If the current time was 3:00 pm then

the computed expiry-date would be 3:00 pm -- 1 h =
4:00 pm. If the expiry~period would be longer than that

set by CacheMaxExpire in the configuration file, then the

latter takes precedence. When a cacheable request arrives
after the expiration time, the cache module will hand the
request to Apache for response, instead of returning the
cached object.

Replacement is also a troubling issue; its implemen
tation is website-specific dependent. The cache module
implements two policies of replacement, LRU and

Greedy Dual Size, the latter is the default configuration.

Greedy Dual-Size calculates a priority for each cached ob-

ject according to its size and access frequency. When the

cache memory's usage exceed the configured volume, the

module replaces the content based on each object's prior-
ity value to load new objects.
1.6.2 Configuration management unit design

In order to achieve easy management and configura

tion of the module, the module defines many configura-

830

tion options, such as the default expiration time, last

modified factor, max expiration time, max object count,

max object size, min object size, replacement algorithm,

cache size etc. Just need to write these options into

Apache's configuration file and then restart the Apache

server, the options will take effect immediately.

2 Program Implementation

2.1 Logic Flow of the Program
The logic flow of implementation is illustrated in

Fig. 3, the following section gives a detailed description

of the work mechanism of the cache module.

The cache module analyzes the requests from the

Apache core.
If it is a GET (request method) request and is per-

mitted to return response from the caches (if not, the

module passes the request to another module registered

with the same phase to deal with), the module takes the

URL as the hash keyword and checks for a local copy.

If there is not a matched item, the response will be

fetched from Apache. Through the route of the response

returned to the client, the response content will pass

through the cachein filter of the module. At this point, if

the response is judged that it can be cached, the cachein

filter will keep a copy (including the headers information

of request/response, and the response entity) and update

the priority queue of cached objects at the same time.

Thus, when subsequent requests of the same URL ar

rive, the module can use the copy to reconstruct response

for the client.

If the matched item exists, the module needs to

fetch the header information of the copy to judge whether

the copy is fresh, meanwhile see if the copy satisfies the

client's requirements according to the header of the re-

quest.
If the copy is fresh and accords with the client's de

mand, the module will assemble the response with the

cached copy plus the header information and then return

it to the client through the cacheout filter;

But if the copy expires, the module don ' t simply

pass the client request to Apache Web server, it still has

to verify that if the request is a conditional one(request

that contain]gmodified-Since or If-Match or If-None

Match and etc HTTP headers)Validation may be per

formed by means of a conditional GET message to the or-

SA Request"x~

22
..<

[oe ,,oe]]
I YES

Conditional Filter

Cacheout Filter

~.(Client)

Decline

Fig. 3 Logic flow of program implementation

831

igin server, including a validator, such as the Last modi
fled time of the resource, that allows the origin server to
check whether the entity has changed Es''~ .

If it is conditional, put the cachein filter into output
filter chain, and then according to the returned status
code from the Apache server determine to update the cop
y entirely or just keep the copy entity but updating the
statistics of the copy.

If it is not conditional, forge a conditional request
and put the conditional filter into output filter chain, then
submit it to Apache server to revalidate the copy. If the
returned status code from Apache is 304(not modified),
pass the copy entity to the cacheout filter for assembling
response to the client; if the copy is modified,don't re
turn the response to the client until the cachein filter hav-
ing completely updated the copy.

In the above three output filters, the conditional fil-
ter is only a judgment unit, all the real work is done by
the cachein filter and cacheout filter. The cacheout
filter's work is also straightforward for it just assemblies
response using the copy and its statistics information.
Yet compared with the former two filters, the cachein ill-
ter's work mechanism is the most complicated. Because
it must strictly obey caching rules and has the duty to
maintain and update the statistics information of cached

copies. The next section gives the work flow figure of the
cachein filter.
2.2 Work Flow Figure of the Cachein Filter

The work flow of the cachein filter is shown in
Fig. 4, and the explanation of work mechanism is omitted
here.

2.3 Key Data Structures
There are two key data structures in this module:

cache server_ conf and cache_ request_ conf, which are
used for maintaining the control and statistics information
of the caches.

1) Cache server_conf is the global configuration da-
ta structure of the whole module, is used for maintaining
the control information of the caches, such as whether al-
lowed to cache, the types of URLs allowed or forbidden,
the default preserve time of the cached copy, the expira-
tion factor of the copy etc.

2) Cache request_conf is a data structure for the cli-
ent request. It records all kinds of information about the
resource requested by the client, including whether the
copy is fresh, the hash address that the copy stores in,
expiration time, last-modified time, ETAG identifier,
CONTENT_TYPE, the length, last request time and
last response time and etc, these options are used to
maintain the statistics information of each cached copy.

Pass data to next
filter

t q :

Delete cachein I
filter froITl output

fi ter cha n
Write response
into the caches

Delete cachein
filter from output

filter chain

Update cached 1 resporise's
header

information

Write updated
header

information Into
the caches

Read header important
information of

response

Delete response I ~ ~ Set CRC's
cntW, creat a ~ eacheability
new ennty

Set CRC's
cacheability

CRC-Cacho request cont:a data struchuro for the client request

Fig. 4 Logic flow of Caehein Filter Program Implementation

832

Utilize these information to construct the header of the
response and judge whether directly return the cached
copy to the client.

3 Experiments and Results

1) Experiment environment: The server machine
has an Intel 800 Mhz processor, 128 M SDRAM; the cli-
ent machine has an Intel 800 MHZ processor and 128 M
SDRAM. They are connected through 100Mbps Ethernet
LAN. Redhat 9.0 is the operation system.

2) Application software. We use Apache 2.0.47 as
our Web server configured with the worker MPM module
to share cache memory. PHP 4.3.4 is used to provide
server-side scripts for generating dynamic content.

MySQL 4.0. 16 is our database server.
3) Test software: We use httperf El~ as the test

software, the benchmark can measure many performance
values of the server.

Among the above test results, the most important
measurement is "response time".

In Table 1 you can see that the value of this meas-
urement is respectively 14.1 ms and 3.2 ms, 13.6 and 2.
9 ms, 15.0 and 3.7 ms; and the performance has been
improved by 77.3~. 78. 680/00 and 75.330/00 separately.

And Table 2 when circularly request 50 different pa-
ges, the value of this measurement is respectively 16.2
and 3.1 ms, 13.1 and 3.3 ms, 14.8 and 4.6 ms, and
the performance has been improved by 80.86~ ,74.81~
and 68.92% separately.

Table 1 Test results of requesting the same page repeatedly by varying ways (the page size is about 34 K)

Module Persistent Average Response Transfer
Test mode Connections/s Requests/s

loaded time/s responses/s time/ms time/ms

1000 : 1 No 53. 937 18.5 18.5 18.4 14.1 38.7

mode 1 YES 37.44 26.7 26.7 26. d 3.2 31.7

3000 : 1 NO 159. 299 18.8 18.8 18.8 13.6 38.6

mode 2 YES 105. 779 28.4 28.4 28.3 2.9 31.0

500 :10 N() 286.456 1.7 17.5 17.4 15.0X10 a 42.2

mode 3 YES 169. 918 2.9 29.4 29.5 3.7 30.2

In "test mode " column, the number ahead " ." " shows the connections that httperf initiates; and the number behind

" : "shows the requests sent through each connection. All the requests are sequentially sent(namely after the former re

quest is finished, just continues the neon request)

Table 2 Test results of requesting different 50 pages circularly by varying ways (the page size is about 34 K)

Module Persistent Average Response Transfer
Test mode Connections/s Requests/s

loaded time/s responses/s time/ms time/ms

1000 ." 1 No 53. 329 18.1 18.1 18.1 16.2 38.1

mode 1 YES 38. 150 26.2 26.2 26.1 3.1 33.6

3000 : 1 N() 155. 326 19.3 19.3 19.3 13.1 37.5

mode 2 YES 112. 934 26.6 26.6 26.6 3.3 33.0

500 : 10 NO 294.447 1.7 17.0 17.0 14.8X10 :~ 44.0

mode 3 YES 198. 829 2.5 25.1 25.3 4.6 35.0

In "test mode " column, the number ahead " : " shows the connections that httperf initiates; and the number behind

" : "shows the requests sent through each connection. All the requests are sequentially sent(namely after the former re

quest is finished, just continues the neon request)

4 Conclusion

This paper addresses the entire implementation of
the server-side dynamic content cache module and its de-
sign details. Through the test it is showing that because
the module tries its best to avoid repeated database que
ties, the server's performance increases a lot, especially
the server's response time differs from no cache module

nearly by a order of magnitude. This result approaches
what we expected, implements the dynamic content
cache, strengthens the scalability of the Web server. The
next work we should do is to make further exploration
and improvement to algorithm of consistency and replace
ment, optimize the structure of the procedure, thus to

advance the consistency and the hit rates of the cache

content as well as to excavate the performance of the
server more deeply.

833

References

~1~ Shawn. Does Your Server Needs Updating?. http:/ /z~=,.

yesky, eom/ServerhMea:/77132952596643840/20030305/

165528(3. shtml,2003 03-09(Ch).
[2~ Arun I,Jim C. Improving Web Server Perfomance by Caching

I)ynamic Data. USENIX Symposium on Imernet Teeh~lolo-

g ies aTld Systems, Monterey, California, 1997.49 (30.
~3~ Cory K J. Chi M. Apache HTTPD Architecture and Evolu-

tio~ ,htlp://apache hpi mfi potsdam, de/, 2002.

~4~ The Apache Software Foundation. Developer DoeumentatioT~

.[br Apache 2. O, htt p : / / htt pd. apache, org/ dos- 2. O / devel
oper,2003.

[SJ Kevin (). Apache Module Development Tutorials , ht tp:/ /

threebit, net~tutorials~. 2003-07-01.

~6~ Karthick R. A Simple and Effective Caching Scheme for Dy-
namic Content. Rice University Computer Sciem'e Technical

Report. TR 00 371, Houston,Texas 2002.

~7~ Jim C, Arun 1, Paul D. A Scalable System for Consistently
Caching Dynamic Web Data. Proceedings of the 18lh Ammal

Joint Colzferenee of the IEEE ('omputer ahd Communica-

tions Societies. IEEE Press, 1999.1:294-303.

[8~ David G, Brian T, Marjorie S, et al. HTTP: The Definitive

Guide, Sebastopol, California: ()'Reilly. 2002:7.8 : 150-200.
~9~ Fielding R, Gettys J, Mogul J, et al. RFC2616 : Hyperleat

Tra~s/er Prozocol - - H T T P / 1 . I. h ttp://ze~u.~,, zu3. org/

Protocols/HTTP/1.1 / rfc2616, pd f , 1999.

[10~ David M, Tai J. Httperf: A lbol for Measurin Web Server
Performance. Performance Evaluation Review, 1998,26 : 31-
37.

[]

834

