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Structural Engineering

Structural Identification with Unknown Input Excitation

By Young Min Choi,* Hyo Nam Cho,** Youn Bok Kim,*** and Yoon Koog Hwang***

Abstract

In this paper, an improved MQRD{Multiple model based on QR Decomposition}-ILS(Iterative Least-Squares) method is
proposed to estimate the structural parameters at the element level using response data alone, without using any mformation
on excitation measurements for the assessment of local damages and deterioration in structural systems. The proposed
method uses a mulfiple model least-squares method based on the MQRD for estimating the least-squares parameters. A
MQRD-ILS technique that utilizes the assumed structural parameters estimated on the basis of the engineering drawings,
visual inspection, field measurements, and/or Nondestructive Test(NDTY) is proposed to identify local damages of structural
members using measured responses only. In example applications, it has been shown that the improved MQRD-ILS method
can precisely identify the structural parameters with high precision in most cases.
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1. Introduction

In the damage assessment of most civil structares, input
excitation is usually unknown, and thus a system identifica-
tion(SI) method without input measurement data is required
in most cases. Recently, an SI method, so called an ILS
(Tterative Least-Squares) method (Wang, 1994), that utilizes
only response data without information on input excitation
magnitude at fixed points was proposed and its effective-
ness and reliability of results was verified with numeri-
cal examples. But in the paper, an improved, generalized
MQRD (Multiple model QR Decomposition)-ILS method
is proposed to estimate the structural parameters at the
element level using response data alone without using
any information of excitation measurements for the
assessment of local damages and deterioration in com-
plex and large structural systems. Especially, it may be
noted that the proposed method does not require any
informations on positions as well as magnitude of excita-
tions, which means it allows temporal and spatial varia-
tions of unknown input excitation.

The proposed method uses a multiple model least-squares
method based on the QR decomposition (Niu ef al., 1996)

for estimating the least-squares parameters. This method is
more robust than the conventional ILS method when the
least-squares problemm with the system identification method
is mumerically ill-conditioned mainly due to noise-contarmi-
nated data of dynamic response measurement. The effi-
ciency and robustness of the proposed algorithm are proved
by numerical examples. For verification purposes, both
noise-free and contaminated output responses are consid-
ered for the sensitivity studies on convergence errors of the
nuamerical examples. In all of the tlree different example
applications, it is observed that the improved MQRD-ILS
method could invariably identify the structural parameters
very well with high precision.

2. Concept of MQRD-ILS Method

2.1 Time Domain Sl Techniques

In general, SI techniques can be classified into two major
approaches, i.e., time domain and frequency domain appro-
aches. In frequency domain approaches, the structures are
modeled in a global sense, and only a few lower modes of
vibration are usually estimated. However, since the appro-
ach fails to evaluate even a severe level of structural dam-

*Member, Senior Research, Korea Institute of Construction Technology (E-mail: jaram@kict.re kr}
**Member, Professor, Department of Civel and Environmental Engineering, Hanyang University (E-mail: ryfid@email hanyang.ac.kr}
***Member, Research Fellow, Korea Institute of Construction Technology (E-mail: ykhwangi@kict.re kr)

The manuscript for this paper was submitted for review on May 15, 2000.

Vol. 5, Ne. 3/September 2001

-207-



Young Min Choi, Hyo Nam Cho, Youn Bok Kim, and Yoon Koog Hwang

age especially for highly redundant structures, the fre-
quency hased SI technique is not suitable for local damage
assessment. In general, the time domain approach is well
suited for damage detection at the element level. Even
though various SI techniques using input information in
time domain have been studied, the approaches are not
applicable to real civil structures because input excitations
can not be measured even in an approximate way. There-
fore, a time domain-based SI technique without input infor-
mation is studied and a new improved, generalized method
is proposed in the paper.

2.2 Least-Squares Method

Without losing any generality, the governing equation of
motion of a linear structure can be written in matrix form
as:

MX()+ CX () +KX(1) = f(1) (1)

where M=mass matrix; C=damping coefficient matrix; K=
stiffness matrix; X(¢) =acceleration vector; X(7) =velocity
vector; X(7) =displacement vector; and flf)=input force
vector.

Assuming that M is a known matrix, Eq. (1) can be
rewritten as:

. X'(t) B -
C: = fl1)—MX| 2
[ K{ (t)} A0 (1) 2)

For an N dynamic-degree-of-freedom(DDOF), this equa-
tion can be rearranged as:

[AD ] iPira = {F (D Fxa (3)

where [A(f)JFresponse data matrix of velocity and displace-
ment; {P}=L unknown stractural pararmeter vector; {F(f)}=
input excitation and inertia force vector; N=the number of
DDOF; and Z=the number of structural parameters.
Assuming that the structural response due to unknown
excitations is measured for a duration of me- Af at all DDOFs,
where m is the total number of sample time points, and A7 is
a constant time increment, for a known value of m, the
(m=N) expanded form of Eq. (3), which is of the same form
given in the reference (Wang, 1995), can be rewritten as:

[A](me)xL{P}Lx] = {F}(me)xl )

The least-squares method is often used to find the solu-
tion that minimizes the sum of squares of the difference
between the observed data and their estimates. According
to the Gauss's least-squares theoremn, it may be given as:

(P = (AT ool Tomerys) TAT mens)-
F e )
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where {i’ }rx1= unknown predictor of the system parame-
ters, i.e., element-level stiffness or damping, which needs to
be evaluated.

In practice, however, if the least-squares problem is
solved using Eq. (5) as proposed in the previous study
(Wang, 1995), it often shows poor numerical performance
when the matrix [A(#)] is ill-conditioned. Thus, in this paper
a new multiple model least-squares method based on the
QRD(Niu ef al, 1996) is used to improve the convergence
of the least-squares method.

2.3 Multiple Model Least-Squares(MMLS) QR De-
composition Method

Many patameter estimation problems finally reduced to
the problem for solving a set of overdetermined linear
simultaneous equations. Generally, the least-squares method
based on Gauss's theorem as a numerical tool is used for a
solution. In case of structural parameter identification using
the measurement data obtained from real structure, how-
ever, the conventional method is very restricted in the
implementation with ill-conditoned problem. A multiple
model least-squares method based on QR decomposition
was proposed by Niu ef af. (1996), which provides more
simple and flexible in the application and produces over-
whelming implementation in convergence and numerical
application.

General least-squares method problem results in follow-
ing equation.

»1 € Xy Xz Xzl Xy &,
Yz € App KXoz Koz Koy &
VipTyes =9 X Xsp Xy Xy, ) & (6)
e €p Xp1 Xp2 Xp3--Xpg | | G
or in compact form
yte=X4 {7

where X € R”"!=coefficient matrix; y ¢ R”"' =observa-
tion vector; &e R **' = vector of the unknowns to be deter-
mined; and e € R”*' = error term.

The original least-squares problem defined in Eq. (7) can
be represented in an angmented form as:

[X—y]{lg}—eor X0=e (®)

where X e RV = qugmented response data matrix and
8= angmented structaral parameter vector.

The extension of the angmented least-squares problem
follows

KSCE Journal of Civil Engineering



Structural ldentification with Unknown Input Excitation

X@=E ®)

where &= a square solution/parameter matrix of dimension
(g+1)(g+1) and E=corresponding error/fresidual matrix.

Eq. (10) defines (g+1) sets of equations and is thus
referred to as the multiple model least-squares problem.
The least-squares estimates of the solution/parameter
mafrix is defined as:

u = atg min [¥ el (10)
a

where | |-=Frobenius norm.

Two special structures of the parameter matrix & are pro-
posed in the reference (Niu ef al., 1996). For the numerical
convenience purpose, the MMSL1-type structure is used in
the paper. The MMSL1-type parameter matrix are defined
as follows.

With X = [X,—y], € is assumed to be an upper triangu-
lar matrix with all its diagonal elements being unity

71 iy, U3 ... Mlq 917
1 oy ... Uy O
&
o= Loty 6 (11)
16,
L 14

MMLS then corresponds to solving the following (g+1)
sets of equations or (g+1) models

0 = Xt e
BypX, = —X,t e
Xy X, = —x;te,

+u teu = —
[LAPRS} 24%2 g Lg¥g 1 xq+eq 1
Oy +hx, 0%, Gox, = yte,

(12)

From Eq. (12), the last raw equation is the original
leastsquares problem defined in Eq. (7). In the reference
(Niu ef al., 1996), it was proved that all mafrix decomposi-
tion methods can be used for solving MMLS problems and
especially, the orthogonal decomiposition is more desirable
for solving MMLS problem. Therefore the Householder
QR decommposition method is used in the paper.

Let X e RZC™V p>q+1 . Then, there is an orthogonal
matrix @ € R”@Y such that

O'X=R=D-U (13)

where R=upper triangular with nomnegative diagonal ele-
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ments; D=diagonal with nonnegative diagonal elements;
and L= unit upper triangular.

By the orthogonality of @, the following equation is
obtained.

u= arg min|DUE, (14)
&

To solving MMLS1 with the QR decomposition, assume
that the augmented data matrix X is decomposed. Then,
|DUE is minimized by

@=u=U" (15)

A detailed presentation of the QRD algorithim is referred
to the text (Bjorck, 1996) and the proof of this theorem can
be found in the reference (Niu ef al., 1996).

3. The Proposed Iterative MQRD-ILS Algo-
rithm

In this study, the identification algorithm of the structural
parameters at the element level is proposed when the input
information is unknown. The proposed algorithm is an iter-
ative least-squares method using MQRD method, which
iteratively generates the unknown input forces and the
unknown parameters in doubly coupled iterations starting
with assumed stroctaral parameters. The basic concept of
the proposed algorithm can be described in the following
steps:

(1) Form the matrix [4] for all DDOFs at all sample time

points.

(2) Generate the input constraint (Wang, 1994) and the
input forces (£(z)) from Eq. (1) with a limited sample
data points, p<m, using the assumed or estimated sys-
tem parameters which are initially assumed but
should be improved successively.

(3) Form the matrix [Fly.gy.. Subsequently obtain the
estimated system parameters [ P | from MQRD algo-
rithm.

(4) Generate the unknown input forces at all s sample
times from Eq. (1) with the information on the system
parameters [ P] obtained in Step (3).

(5) Infroduce all generated constraints of the input forces
from Step (2) required to the estimated input forces
in Step (4).

(6) Estimate [f’] again using the input force mafrix
[F a1 Obtained in Step (5).

(7) Iterate Step (3) through (6) until the first p time points
of input forces converge at a level of the predeter-
mined accuracy.

(8) Once the input forces are converged, Step (2) through
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(7) need to be iterated again until system parameters
converge to a predetermined accuracy. For the next
global iteration, the initially assumed system parame-
ters are replaced by the last estimated [P] from Step
(7). If the algorithm converges, the updated [P] will
give the estimated system parameters which are un-
known element stiffness and damping parameters.

The flow chart of the above iterative MQRD-ILS proce-
dure with unknown excitation is shown in Fig. 1.

It may be noted that the above iterative procedure using
the MQRD-ILS technique with unknown input forces is
nonstationary since the generated input excitations in each
iteration are filtered with zero constraint imposed on the
negligible values. Then, the convergence of the proposed
MQRD-ILS algorithm may be proved by utilizing the con-
dition that the stationary iteration form of Eq. (5) corre-
sponds to an upper bound norm (Bjérck, 1996).

4. Application Examples
To demonstrate the efficiency and robustness of the pro-
posed method along with unknown input excitations with

temporal and spatial variations, numerical examples are
considered that incorporates the applications to the ideal-

Start

[ Formthe mawix [A] |

Initially assume system parameters and use the
estimated values after first iteration
]
Generate the input forces and constraints from governing
Eq. {f(t;)}, i=1~N, j=1~p
¥
r Estimate system parameter {P}using MQRD l‘—

\ Using the governing Eq., obtain (ft)}, i=1-N, j=1~m |

| Introduce the generated input constraints |

l Estimate system parameter{P}using MQRDJ o

’7 Using the governing Eq. obtain {f i(t].)}, i=1~N, j=1l~m J

P, j=1-L
Converged?

Fig. 1. Flowchart of the lterative MQRD-ILS Algorithm
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ized structures, i.e., shear-type building frames are consid-
ered. For the purposed of verification, both noise-free and
contaminated output responses are considered for the sensi-
tivity studies on convergence errors of the numerical exam-
ples. In the proposed method, its basic assumptions are: (1)
the mass matrix [M] to be known and (2) the response
quantities to be measured at all DDOFs in terms of dis-
placements, velocities, and accelerations.

4 1 Example 1: Two-story Shear-type Frame

To demonstrate the applicability of the proposed method
using unknown input excitations with temporal and spatial
variations, a shear-type frame with different stories as shown
in Fig. 2 is considered. At first, a simple two story frame
which has only two DDOFs (N=2) is considered in order to
demonstrate more generalized applicability and robustness
of the proposed iterative MQRD-ILS compared to the con-
ventional IS (Wang, 1994).

First of all, in order to compare with the Wang’s previous
study, the same structure is assumed to be excited by the
same sinusoidal force A1)=10000 Sin(20¢), applied horizon-
tally at the top floor level. The actual values of the parame-

m
ki, C
M
Ki-i, ©
m
kz C
m.
ki, C

Fig. 2. N-story Shear-Type Frame Model

Table 1. Actual and Initially Assumed Structural Parameters

Para. Actual Assumed
Mass | Damping | Stiffness | Damping | Stiffness
Story (M)} | coeff (C) (K) coeff. (C) (K)
1 1360| 3070 | 307000 (322%2) %;)2%%)0
2 660 | 2430 | 443000 éj‘}g) ?;2‘}%)0

Note : () is % error of the assumed to the actual
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and acceleration of the structure, the structural responses at
two DDOFs are calculated by using the finite element
method. Once all response quantities are known, the input
excitation information is completely ignored. The structural
parameters are estimated by considering three different
cases of the measured data, respectively, without any noise
and with 5% and 10% added noises of root-mean-square
values of the responses observed at the first story. The
response time history from 0.2 to 0.7 sec is considered. It is
assumed that the responses are available at 0.01 sec time
intervals. For comparative purposes, the same conditions
except the higher 10% noise are used in the numerical anal-
ysis as those considered by Wang (1994). The initial values
of structaral parameters used in the iterative MOQRD-ILS
algorithm are assumed as shown in Table 1. The estimation
of &; values for the three different noise levels are shown in
Table 2.

It may be observed from the table that the proposed
method provides relatively a lot more precise and reliable
results compared with those of the conventional TLS
method. But it may be noticed that larger iteration numbers

Table 2. % Error of Estimated Stiffness Parameters(K)

are required in the proposed algorithm.

Secondly, the structure is assumed to be excited simulta-
neously by two partial sinusoidal force f£)=10000Sin(207)
as shown in Fig. 3. The other conditions for the analysis are
the same as the previous ones except the response time his-
tory that considers the duration from 0.0 to 1.5 sec. The
estimated values of the structural parameters are shown in
Table 3.

It should be noted that the conventional [LS method
(Wang, 1994) could consider input forces with a temporal
variation only at fixed locations with the input constraints
of zero forces at all other DDOFs, but the proposed method
could handle any input forces without input constraints.
Thus, it may be important to realize that the arbitrary multi-
ple partial sinusoidal forces can not be solved by the con-
ventional ILS.

Note that in the case of no noise, the maximum error for
stiffness estimation is 0.003%, but with 5% added noise, it
becomes 0.805%, and even with 10% added noise, it in-
creases only to 1.406%. Thus, it may be argued that the pro-
posed algorithm invariably provides the converged solu-

Table 3. Estimated Stiffness Parameters (K)

Method| Conventional ILS
e by Wang Proposed method Story No noise 5% noise 10% noise
Noise % error | Iter. No. | % error Iter. No. 1 30698.79 30762.87 30758.09
(0.004) (0.205) {0.189)
0% 0.001 39 0.001 | 85531
44301.38 44656.60 4492297
5% 0.350 29 0.248 75523523 2 (0003) (0805) (1 406)
10% 0.843 28 0.343 | 57530537529 Note : { ) is % error of the assumed to the actual
12000 1
8000
4000
o 8
2 o + - S
2 £ U » 120 150 L .
400 Sampling point(At=0.01s)
Sampling point(At=0.01s) 004
8000
12000 - 12000 =
| . a) First sto
(a) First story (a) Ty
12000
12000
8000 -
2000 -
200
4000 ©
] S o
5 01 - S 2 18
o 80 % 150 o0
4000 i i Sampling point
Samp|ing point !
20004 (At=0.01s) 8000 - (At=0.01s)
12000 -
-12000 -

(b) Second story
Fig. 3. Partial Sinusoidal Forces
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(b) Second story
Fig. 4. Input Identification Using 10% Noise-included Responses
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tions with the errors within a tolerable limit. However, in
the case when the input constraints are not applicable it
should be noted that it is impossible to estimate the system
parameters by the conventional ILS. Moreover, although it
is not shown, the proposed iterative MORD-ILS always
provides the converged solutions in different iteration num-
bers when started even with wildly assumed initial parame-
ters such as those shown in Table 3. And it may be observ-
ed the same trend with different assmmed initial parameters.
To show the ability of input identification by the proposed
method, the identified input forces using 10% noise-includ-
ed responses are shown in Fig. 4. From the figure, it is clear
that the identified input forces are accurate enough.

4.2 Example 2 : Six-story Shear-type Frame

To demonstrate the applicability of the proposed method,
a six-story shear-type frame (N=6 in Fig. 2) is considered.
Main objectives of the example are to verify the precision

a multiple model least-squares(MMLS) method based on
the QR decomposition (Niu ef al, 1996). The structure is
assumed to be simultaneously excited by horizontally appli-
ed white noise input forces at the top and the third floor
level. The simulated input force of the white noise signal is
shown in Fig. 5. Response time varies from 0.0 to 1.5 sec,
at an interval 0.01, are used for the iterative MQRD-ILS
and the conventional procedure. The structural parameters
are estimated by considering the same noise levels. The
actual structural parameters are indicated in Table 4. In the
examiple, the initial values of structural parameters used in
the iterative MORD-ILS algorithm are assumed as shown
in Table 4. As shown in Table 5, it is noted that the struc-
tural stiffess parameters as initial values are roughly as-
sumed. For a similar condition, the estimation of k; values
using the proposed method and the conventional ILS

Table 4. Actual and Initially Assumed Structural Parameters

and efficiency of the proposed algorithm using the un- Parameter Actual Assumed
known excitation for the estimation of the unknown dam- “to Mass| Damping | Stiffness| Damping | Stiffness
age at the element level and to investigate the robustness of Y (M) | coeff (C) | (K) | coetl (C) | (K)
350.0 14000.0
1 75.0] 550.0 24000.0 (36.36) | (41.67)
40000
750.0 32000.0
2 650 850.0 22000.0 (11.77) | (45.46)
20000 +——7—1
550.0 25000.0
. 3 65.0| 450.0 21000.0 (22.22) | (19.05)
=4 04
& 600.0 | 15000.0
4 60.0| 500.0 19500.0 (20.00) | {20.51)
20000
450.0 28000.0
5 750 650.0 18000.0 (7.69) (5.56)
-40000 T T T T
0 30 60 %0 120 150 550.0 13000.0
6 80.0| 550.0 16000.0
Sampling point (At=0.01sec) (0.00) {18.75)

Fig. 5. Simulated Random Input Force

Table 5. Estimated Structural Parameters

Note : () is % error of the assumed to the actual

Parameter Conventional ILS Proposed method
K K C
Story No noise 5% noise No noise 5% noise No noise 5% noise
1 24001.1 238464 24017.65 23529.63 55041 539.33
{0.005) (0.640) (0.074) (1.960) (0.074) (1.941)
2 220014 217288 22016.83 2166646 850.50 841.57
{0.006) (1.230) (0.077) (1.516) (0.059) (0.992)
3 21001.9 208058 21017.19 20665.21 446 89 454.65
{0.009) (0.920) (0.082) (1.594) (0.025) (1.033)
4 19502.2 19369.3 19496.56 1949774 496.97 499.90
{0.011) (0.670) (0.018) (0.012) (0.007) (0.020)
5 18001.8 17865.1 17997.17 17998.73 649.86 649.83
(0.010) (0.580) (0.012) {0.007) (0.022) (0.027)
6 16000.8 159199 15997.50 15998.20 550.03 550.03
{0.500) (0.500) (0.016) (0.011) (0.006) (0.006)
Note : () i8 % error of the assumed to the actual
-212- KSCE Journal of Civil Engineering
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Table 6. Estimated Stiffness(K) According to Numerical Me-
thod with Conventional Input Constraint

Method NDC/lILS baseq on QR Gauss’s theorem
ecomposition
Sio Missing Missing Missing | Missing
i KO0 | OO | A0 | L0
23982.60 230940.58
1 0072) | (0.248) NA NA
21983.16 24942 87
2 ©077) | (©260) | NA | NA
20983.16 200942.02
3 (0.081) | (0.276) NA NA
19524.92 Not.
4 (0.128) reasonable N/A N/A
18029.62 18016.02
3 (0.165) | (0.089) NA NA
Not 16012.19
6 reasonable | (0.076) NA NA
Tteration No. 6182 861 = 100000 | = 100000

Note : { ) is % error of the assumed to the actual

method are comparatively shown in Table 5.

In the case of no noise, it may be seen that the maximum
error in the estimated stiffness is 0.500% under the conven-
tional ILS method, whereas 0.082% at the proposed me-
thod. And also, for the case of 5% noise included, observed
that the maximum error of the estimated stiffhess by the
ILS is 1.230%, while that by the proposed method is
1.960%. Thus it may be argued that even if structural stifi-
ness parameters as initial values are roughly assumed and
also without any input excitation, the structural parameters
estimated by the proposed method are about same and con-
servative as those by the conventional ILS method.

In order to investigate robustness of a multiple model
least-squares(MMILS) method based on the QR decomposi-
tion (Niu ef af., 1996) for estimating the least-squares para-
meters, the conventional ILS based on the proposed numer-
ical algorithm in lieu of Gauss’s theorem is considered. For
the cases of missing the input constraint £(£)=0 or £{(fF0,
the estimated stiffness parameters are shown in Table 6 in
conjunction with no noise.

For the case of Gauss’s theorem, it may be observed that
the any converged solutions can not be estimated. But in the
case of MMLS method based on the QR decomposition, it

Vol. 5,Ne. 3 / September 2001

may be realized that if the unreasonable results (the sixth
story stiffness for the case of missing (=0 and the fourth
story stiffness for missing £(f)=0) are not considered, the
maximum error is 0.165% for the case of missing £(f)=0
and 0.276% for missing f,(t)=0. Based on the results, the
proposed MMLS method based on QR decomposition
appears to be more robust for estimating the least-squares
parameters. Further, it may be observed that the conven-
tional IL.S with unknown input by Wang (1994) should not
be applied to the problem when the force constraints are not
given exactly.

5. Conclusion

An improved MORD-IT.S method using unknown excita-
tion for the assessment of local damages and deterioration
in structural system is proposed in the paper. Since any
information on positions as well as magnitude of excita-
tions are not required, the proposed method is well suited
for identifying structural damage of actual existing civil
structures. The proposed method seems more efficient and
robust for structural damage assessment than the conven-
tional ILS method since the proposed method provides
more precise and reliable results even with the ill-condi-
tioned response data.
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