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Abstract 

In this paper, an improved MQRD(Multiple model based on QR Decomposition)-lLS(ltemtive Least-Squares) method is 
proposed to estimate the structural parameters at the element level using response data alone, without using any information 
on excitation measurements for the assessment of local damages and deterioration in structural systems. The proposed 
method uses a multiple model least-squares method based on the MQRD for estimating the least-squares parameters. A 
MQRD-ILS technique that utilizes the assumed structural parameters estimated on the basis of the enginee151ag drawings, 
visual inspection, field measurements, and/or Nondestructive Test(NDT) is proposed to identify local damages of stmcmral 
members using measured responses only. In example applications, it has been shown that the improved MQRD-ILS method 
can precisely identify the structural parameters with high precision in most cases. 
Koywords: system identification, time domain, iterative least-squares, element level 

1. Introduction 

In the damage assessment of  most civil smacmres, input 

excitation is usually tmknown, and thus a system identifica- 

tion(Sl) method without input meas~ement data is reqNred 

in most cases. Recently, an SI method, so called an IlLS 

(lterative Least-Sqtmres) method (Wang, 1994), that utilizes 

only response data without information on input excitation 

magnitude at fixed points was proposed and its effective- 

ness and reliability o f  results was verified with mrmeri- 

cal examples. But in the paper, an improved, generalized 

MQRD (Multiple model QR Decomposition)-lLS method 

is proposed to estimate the structural parameters at the 

element level using response data alone without using 

any information of  excitation measurements for the 

assessment of  local damages and deterioration in com- 

plex and large structural systems. Especially, it may be 

noted that the proposed method does not require any 

informations on positions as well as magnitude o f  excita- 

tions, which means it allows temporal and spatial varia- 
tions o f  unknown input excitation. 

The proposed method uses a mnltiple model least-squares 

method based on the QR decomposition (Niu eta/., 1996) 

for estimating the least-squares parameters. This method is 

more robust than the conventional ILS method when the 

least-sqtmres problem with the system identification method 

is mmaerically ill-conditioned mainly due to noise-contami- 

nated data of  dynamic response measurement. The effi- 

ciency and robnstness o f  the proposed algorithm are proved 

by mtmerical examples. For verification parposes, both 

noise-free and contaminated output responses are consid- 

ered for the sensitivity studies on convergence errors of  the 

narnerical examples. In all of  the three different example 

applications, it is observed that the improved MQRD-ILS 

method could invariably identify the structural parameters 

very well with high precision. 

2. Concept of MQRD-ILS Method 

2.1 Time Domain SI Techniques 
In general, SI techniques can be classified into two major 

approaches, i.e., time domain and frequency domain appro- 

aches, in frequency domain approaches, the smactures are 

modeled in a global sense, and only a few lower modes o f  

vibration are usually estimated. However, since the appro- 

ach fails to evaltmte even a severe level of  smacmral dam- 

*Member, Senior Research, Korea Institute of Consmaction Technology (E-marl: jaram@kict.re.kr) 
**Member, Professor, Deparlrnent of Civel and Environmental Engineering, Hanyang University (E-mail: ryfid@email.hanyang.ac.kr) 

* **Member, Research Fellow; Korea Institute of Consmlction Technology (E-marl: y!dawang@kict.re.kr) 

The mannscript for this paper was submitted for review on May 15, 2000. 

Vol. 5, No. 3/September 2001 - 2 0 7 -  



Young Min Choi, Hyo Narn Cho, Youn Bok Kim, and Yoon Koog Hwang 

age especially for highly redundant structures, the fre- 

quency based SI technique is not suitable for local damage 

assessment. In general, the time domain approach is well 

suited for damage detection at the element level�9 Even 

though various SI techniques using input intbrmation in 

time domain have been studied, the approaches are not 

applicable to real civil structures because input excitations 

can not be measured even in an approximate way. There- 

fore, a time domain-based SI technique without input infor- 

mation is studied and a new improved, generalized method 

is proposed in the paper. 

2.2 Least-Squares Method 
Without losing any generality, the governing equation o f  

motion of  a linear smactare can be written in matrix form 

as: 

M X ( t )  + C)((t) +KX( t )  = f ( t )  (1) 

where M-~nass matrix; C=damping coefficient matrix; K= 

stiffness matrix; J((t) =acceleration vector; J((t) =velocity 

vector; X (  t) =displacement vector; and ri0=input force 
vector. 

Assuming that M is a known matrix, Eq. (1) can be 

rewritten as: 

[c ! Isr(')l (2) 
Lm(t) J 

For an N dynamic-degree-of-freedom(DDOF), this equa- 

tion can be rearranged as: 

[A(t)]N•215 - {F(t) }N• 0 )  

where [A(0]-response data malrLx of  velocity and displace- 
ment; {P}-L unknown structural parameter vector; {F(t)}- 

input excitation and inertia force vector; N ~ h e  number o f  

DDOF; and L--the number o f  structural parameters. 

Assuming that the structural response due to unknown 

excitations is measured for a duration of  re.At at all DDOFs, 

where m is the total number of  sample time points, and At is 

a constant time increment, for a known value of  m, the 

(re• expanded form of  Eq. (3), which is of  the same form 

given in the reference (Wang, 1995), can be rewritten as: 

[A](,,,•215215 {F}(,,,•215 (4) 

The least-squares method is often used to find the solu- 

tion that minimizes the sum of squares of  the difference 

between the observed data and their estimates. According 

to the Gauss's least-squares theorem, it may be given as: 

{ir}(,,~•215 ~ (5) 

where {*g }• • 1 = unknown predictor o f  the system parame- 

ters, i.e., element-level stiffness or damping, which needs to 

be evaluated. 
In practice, however, if the least-squares problem is 

solved using Eq. (5) as proposed in the previous study 

(Wang, 1995), it often shows poor numerical performance 
when the mat,ix [A(t)] is ill-conditioned. Thus, in this paper 

a new multiple model least-squares method based on the 

QRD(Niu el al., 1996) is used to improve the convergence 

of  the least-squares method. 

2.3 Multiple Model Least-Squares(MMLS) QR De- 
composition Method 

Many parameter estimation problems finally reduced to 

the problem for solving a set of  overdetermined linear 

simultaneous equations. Generally, the least-squares method 

based on Gauss's theorem as a numerical tool is used for a 

solution. In case of  structural parameter identification using 

the measurement data obtained from real structure, how- 

ever, the conventional method is very restricted in the 

implementation with ill-conditoned problem. A multiple 

model least-squares method based on QR decomposition 

was proposed by Niu et al. (1996), which provides more 
simple and flexible in the application and produces over- 

whelming implementation in convergence and numerical 

application. 
General least-squares method problem results in follow- 

ing equation. 

Yl el 

Y2 e2 

Y3 '+~ e3 

YP G 

or m compact 

y + e  = X O  

> 

X l l  X12 X 1 3 . . . X l q  

X21 X22 X23 . . . X 2 q  

�9 - -  . X31 X32 X33 . . . X 3 q  

: .'. - - . . -  

x~l x~2 x~3-..x~q 

form 

"01" 

O2 

0~ (6) 

(7) 

where X cRP• matrix; y cRP• 

tion vector; 0 c R q• 1 = vector of  the unknowns to be deter- 
mined; and e c R P • 1 = error tenn. 

The original least-squares problem defined in Eq. (7) can 

be represented in an augmented form as: {0} 
- = e o r  X O =  e ( 8 )  [X y] 1 

where X e R P• @• 1) _ augmented response data matrLx and 

- augmented smacatml parameter vector. 
The extension of  the augmented least-squares problem 

follows 
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x o  = E (9) 

where 6}= a square solution/parameter matrix of dimension 
(q+ 1 )(q+ 1) and E=corresponding error/residual matrix. 

Eq. (10) defines (q+l) sets of equations and is thus 
referred to as the multiple model least-squares problem. 
The least-squares estimates of the solution/parameter 
matrix is defined as: 

u = arg min 112 lr (10) 
0 

where II IIF = Frobenius norm. 
Two special smactures of the parameter mat,Lx O are pro- 

posed in the reference (Niu el al., 1996). For the mtmerical 
convenience purpose, the MMSLl-type smacture is used in 
the paper. The MMSLl-type parameter matrix are defined 

as follows. 
With X = [X, y], O is assumed to be an upper triangu- 

lar matrix with all its diagonal elements being tmity 

1 u12 u]3 ... ulq 0: 

1 u23 ... u2q 02 

O=  1 ... u3q 03 (11) 

1 o 9 

1 

MMLS then corresponds to solving the following (q+l) 
sets of eqtmtions or (q+l) models 

0 = --X~ + e o 

g/12 x ]  = ~ 2  q- e 1 

~13Xl +b/23X2 = --X3 + C 2 

u~qx~ +ueqxe +"'uq ~,qx u ~ - -xq+eq 

01xl +02x2 +"'Oq ~,qxq 10~ xq - y+eq 

(12) 

From Eq. (12), the last raw equation is the original 
leastsquares problem defined in Eq. (7). In the reference 
(Niu et aL, 1996), it was proved that all matrix decomposi- 

tion methods can be used for solving MMLS problems and 
especially, the orthogonal decomposition is more desirable 
for solving MMLS problem. Therefore the Householder 
QR decomposition method is used in the paper. 

Let _~e R p• p > q +  1. Then, there is an orthogonal 
matrix Q e R p• suchthat 

Q r X -  R - D. U (13) 

where R=upper triangular with nonnegative diagonal ele- 

ments; /)=diagonal with nonnegative diagonal elements; 
and U= unit upper triangular. 

By the orthogonality of Q, the following equation is 
obtained. 

u = arg min IIOV~lF (14) 
O 

To solving MMLS1 with the QR decomposition, assume 
that the augmented data malxLx _~ is decomposed. Then, 

lid v lF is minimized by 

O = u = U 1 (15) 

A detailed presentation of the QRD algorithm is referred 
to the text (t3j6rck, 1996) and the proof of this theorem can 
be found in the reference (Nin et aL, 1996). 

3. The Proposed Iterative MQRD-ILS Algo- 
rithm 

In this study, the identification algorithm of the structural 
parameters at the element level is proposed when the input 
information is unknown. The proposed algorithm is an iter- 
ative least-squares method using MQRD method, which 
iteratively generates the tmknown input forces and the 
unknown parameters in doubly coupled iterations sta~ing 

with assumed sunctaral parameters. The basic concept of 
the proposed algorithm can be described in the following 
s t e p s :  

(1) Form the matrix [A] for all DDOFs at all sample time 
points. 

(2) Generate the input constraint (Wang, 1994) and the 
input forces ~(t,;)) from Eq. (1) with a limited sample 
data points, p<m, using the assumed or estimated sys- 
tem parameters which are initially assumed but 
should be improved successively. 

(3) Form the matrix [F]co•215 ]. Subsequently obtain the 
estimated system parameters [fi ] from MQRD algo- 
rithm. 

(4) Generate the unknown input forces at all m sample 
times from Eq. (1) with the information on the system 
parameters [fi] obtained in Step (3). 

(5) Introduce all generated conslxaints of the input forces 
from Step (2) reqttired to the estimated input forces 
in Step (4). 

(6) Estimate [l b] again using the input force matrix 
[F]<~•215 obtained in Step (5). 

(7) iterate Step (3) through (6) until the first/) time points 
of input forces converge at a level of the predeter- 
mined accuracy. 

(8) Once the input forces are converged, Step (2) through 

Vol. 5, No. 3 / September 2001 - 209 - 



Young Min Choi, Hyo Nam Cho, Youn Bok Kim, and Yoon Koog Hwang 

(7) need to be iterated again until system parameters 
converge to a predetermined accuracy. For the next 
global iteration, the initially assumed system parame- 
ters are replaced by the last estimated [P] from Step 

(7). I f  the algorithm converges, the updated [P] will 
give the estimated system parameters which are un- 
known element stiffness and damping parameters. 

The flow chart o f  the above iterative MQRD-ILS proce- 
dure with unknown excitation is shown in Fig. 1. 

It may be noted that the above iterafive procedure using 
the MQRD-ILS technique with unknown input forces is 
nonstationary since the generated input excitations in each 
iteration are filtered with zero constraint imposed on the 
negligible values. Then, the convergence of the proposed 
MQRD-ILS algorithm may be proved by utilizing the con- 

dition that the stationary iteration form of Eq. (5) corre- 
sponds to an upper bound norm (Bj6rck, 1996). 

4.  A p p l i c a t i o n  E x a m p l e s  

To demonstrate the efficiency and robustness of  the pro- 

posed method along with unknown input excitations with 
temporal and spatial variations, numerical examples are 
considered that incorporates the applications to the ideal- 

( Start ) 
r 

I Form the matrix iA] ] .... 
,I, 

Initially assume system parameters and use the 
estimated values after first iteration 

r 
Generate the input forces and constraints from governing 

Eq. {fi(tj )}, i=l~N,j=l~p 

[ Estimate system parameter {P}using MQRD 

Using the governing Eq., obtain {fi(tj)}, i=l-N,j=l~m 
r 

i 

Introduce the generated input constraints I 
I 

r 

[ Estimate system parameter{P}using MQRD [ 

the governing Eq. obtain { i = I~N, j= l~m Using fi(ti)}, 

Yo~ 

( End ) 

Fig. 1. Flowchart of the Iterative MQRD-ILS Algorithm 

ized structures, i.e., shear-type building frames are consid- 
ered. For the purposed of  verification, both noise-free and 
contaminated output responses are considered for the sensi- 
tivity studies on convergence errors of  the numerical exam- 

ples. In the proposed method, its basic assumptions are: (1) 
the mass matrix [M] to be known and (2) the response 
quantities to be measured at all DDOFs in terms of  dis- 

placements, velocities, and accelerations. 

4.1 Example 1: Two-story Shear-type Frame 

To demonstrate the applicability of  the proposed method 
using unknown input excitations with temporal and spatial 
variations, a shear-type frame with different stories as shown 
in Fig. 2 is considered. At first, a simple two story frame 
which has only two DDOFs (?7 2) is considered in order to 

demonstrate more generalized applicability and robustness 
of  the proposed iterafive MQRD-ILS compared to the con- 

ventional ILS (Wang, 1994). 
First of  all, in order to compare with the Wang's previous 

study, the same structure is assumed to be excited by the 

same sinusoidal forceflt) 10000 Sin(20t), applied horizon- 
tally at the top floor level. The actual values of  the parame- 

Table 1 

m ,~ 

kN, C, 

i 

k~, c~ 
m, 

Fig. 2. N-story Shear-Type Frame Model 

k:, 1, cH i 

Actual and Initially Assumed Structural Parameters 

Sto• 
~ a "  

1 

2 

Note : 

Actual 

Mass Damping Stiffness Damping 
(M) coefs (C) (K) coefE (C) 

200.0 136.0 307.0 30700.0 (34.85) 

550.0 66.0 443.0 44300.0 (24.15) 

) is % error of tile assumed to the actual 

Assumed 

Stiffness 
(K) 

20000.0 
(34.85) 

55000.0 
(24.15) 
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and acceleration of  the structure, the structural responses at 

two DDOFs are calculated by using the finite element 

method. Once all response quantities are known, the input 

excitation information is completely ignored. The structural 

parameters are estimated by considering three different 

cases of  the measured data, respectively, without any noise 

and with 5% and 10% added noises of  root-mean-square 

values of  the responses observed at the first story. The 

response time history from 0.2 to 0.7 sec is considered, it  is 

assumed that the responses are available at 0.01 sec time 

intervals. For comparative purposes, the same conditions 

except the higher 10% noise axe used in the numerical anal- 

ysis as those considered by Wang (1994). The initial values 

of  structural parameters used in the iterative MQRD-ILS 

algorithm axe assumed as shown in Table 1. The estimation 

ofk~ values for the three different noise levels are shown in 

Table 2. 

it  may be observed from the table that the proposed 

method provides relatively a lot more precise and reliable 

results compared with those of  the conventional ILS 

method. But it may be noticed that larger iteration numbers 

Table 2. % Error of Estimated Stiffness Parameters(K) 

N•od 
Noise " ~  

0% 

5% 

10% 

Conventional ILS 
by Wang 

% error Iten No. 

0.001 39 

0.350 29 

0.843 28 

Proposed method 

% error Iter. No. 

0.001 85>31 

0.248 75--->23--->23 

0.343 57 >30 >37~29 

are required in the proposed algorithm. 

Secondly, the structure is assumed to be excited simulta- 

neously by  two partial sinusoidal forceflt)=lOO00Sin(20 0 

as shown in Fig. 3. The other conditions for the analysis are 

the same as the previous ones except the response time his- 

tory that considers the duration from 0.0 to 1.5 sec. The 

estimated values of  the structural parameters are shown in 

Table 3. 

It should be noted that the conventional fLS method 

(Wang, 1994) could consider input forces with a temporal 

variation only at Gxed locations with the input constraints 

o f  zero forces at all other DDOFs, but the proposed method 

could handle any input forces without input constraints. 

Thus, it may be important to realize that the arbiWary multi- 

ple partial sinnsoidal forces can not be solved by the con- 

ventional ILK 

Note that in the case o f  no noise, the maximum error for 

stiffness estimation is 0.003%, but with 5% added noise, it 

becomes 0.805%, and even with 10% added noise, it in- 

creases only to 1.406%. Thus, it may be argued that the pro- 

posed algorithm invariably provides the converged solu- 

Table 3. Estimated Stiffness Parameters (1~ 

Story No nos 5% noise 10% nos 

30698.79 30762.87 30758.09 1 (0.004) (0.205) (0.189) 

44301.38 44656.60 44922.97 
2 (0.003) (0.805) (1.406) 

Note : ( ) s % error of the assumed to the actual 

8 
,9 

8 
,,o 

12000  �9 

~OgO" 
40OO 

0 
401~- 
-81~- 

I~N)- 
~0- 
41~0- 

0 
4~ 

-12800 

~ V ~a? p 80 120 150 

ling point(At=O.Ols) 

(a) First story 

~ ~S;~,~Tip{ in , oir}i i r 'q 

V 
(b) Second story 

Fig. 3. Partial Sinusoidal Forces 

-=l 'V" -" '? 2 , . , ,v  . . . .  V " ~ ' ~ '  " . . . .  ,v,. 
,30 ~ 1~,0 v 150 

Sampl ino point(At=O.Ols) 

(a) First  story 

12fl~1 - 

40~1"  

I1} 
O 

- 4 6 ~ -  

- a l l~  - 

(b) Second story 

Fig. 4. Input Identification Using 10% Noise-included Responses 
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tions with the errors within a tolerable limit. However, in 

the case when the input constraints are not applicable it 

should be noted that it is impossible to estimate the system 

parameters by the conventional ILS. Moreover, although it 

is not shown, the proposed iterative MQRD-ILS always 

provides the converged solutions in different iteration num- 

bers when s t a ~ d  even with wildly assumed initial parame- 

ters such as those shown in Table 3. And it may be observ- 

ed the same trend with different assumed initial parameters. 

To show the ability of  input identification by the proposed 

method, the identified input forces using 10% noise-includ- 

ed responses are shown in Fig. 4. From the figure, it is clear 

that the identified input forces are accurate enough. 

4.2 Example 2 : S ix - s to  W Shear-type Frame 
To demonstrate the applicability of  the proposed method, 

a six-story shear-type frame (N=6 in Fig. 2) is considered. 

Main objectives of  the example are to verify the precision 

and efficiency of  the proposed algorithm using the un- 

known excitation for the estimation of  the unknown dam- 

age at the element level and to investigate the robustness of  

40000- 

20000" 

0 

20000 

40000, 

i 1 

I '  
i i i i 

30 60 90 120 

SarnNing point (At=0 s 

Fig. 5. Simulated Random Input Force 

150 

a multiple model least-squares(MMLS) method based on 

the QR decomposition (Niu et al., 1996). The structure is 

assumed to be simultaneously excited by horizontally appli- 

ed white noise input forces at the top and the third floor 

level. The simulated input force of  the white noise signal is 

shown in Fig. 5. Response time varies from 0.0 to 1.5 sec, 

at an interval 0.01, are used for the iterative MQRD-ILS 

and the conventional procedure. The stmcawal parameters 

are estimated by  considering the same noise levels. The 

actual structural parameters are indicated in Table 4. In the 

example, the initial values o f  smactural parameters used in 

the iterative MQRD-ILS algorithm are assumed as shown 

in Table 4. As shown in Table 5, it is noted that the smac- 

mml stiffness parameters as initial values are roughly as- 

sumed. For a similar condition, the estimation of  k~ values 

using the proposed method and the conventional ILS 

Table 4. Actual and Initially Assumed Structural Parameters 

ter 

Stiffness 
(K) coeff. (C) 

350.0 
1 24000.0 (36.36) 

2 22000.0 750.0 
(11.77) 

550.0 3 21000.0 (22.22) 

600.0 
4 19500.0 (20.00) 

450.0 5 18000.0 (7.69) 

550.0 6 16000.0 (0.00) 

Note : ( ) is % error of the assumed to the actual 

Actual 

Mass Damping 
0v0 coeff (c) 

75.0 550.0 

65.0 850.0 

65.0 450.0 

60.0 500.0 

75.0 650.0 

80.0 550.0 

Assumed 

Damping Sti~mss 

Table 5. Estimated Structural Parameters 

~ neter Conventional ILS Proposed method 

K K C 
Story No noise 5% noise No noise 5% noise No noise 5% noise 

24001.1 23846.4 24017.65 23529.63 550.41 539.33 1 0.005) ((I.640) ((I.074) (1.960) ((I.074) (1.941) 

22001.4 21728.8 22016.83 21666.46 850.50 841.57 
2 (0.006) (1.230) (0.077) (1.516) (0.059) (0.992) 

21001.9 20805.8 21017.19 20665.21 449.89 454.65 
3 (0.009) (0.920) (0.082) (1.594) (0.025) (1.033) 

19502.2 19369.3 19496.56 19497.74 499.97 499.90 
4 (0.011) (0.670) (0.018) (0.012) (0.007) (0.020) 

18001.8 17895.1 17997.17 17998.73 649.86 649.83 5 (0.010) (0.580) (0.012) (0.007) (0.022) (0.027) 

16000.8 15919.9 15997.50 15998.20 55 O. 03 550.03 6 (0.500) (0.500) (0.016) (0.011) (0.006) (0.006) 

Note : () is % enor of the assumed to tile actual 

O:) 

14000.0 
(41.67) 

32000.0 
(45.46) 

25000.0 
(19.05) 

15000.0 
(20.51) 

28000.0 
(55.56) 

13000.0 
(18.75) 
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Table 6. Estimated Stiffness(K) According to Numerical Me- 
thod with Conventional Input Constraint 

d 

1 

2 

3 

4 

5 

6 

Iteration No. 

Note : ( ) is % error &the assumed to 

MMLS based on QR 
decomposition 

Missing Missing 
~(t)--0 j;(t)--0 

23982.60 23940.58 
(0.072) (0.248) 

21983.16 24942.87 
(0.077) (0.260) 

20983.16 20942.02 
(0.081) (0.276) 

19524.92 Not 
(0.128) reasonable 

18029.62 18016.02 
(0.165) (0.089) 

Not 16012.19 
reasonable (0.076) 

6182 861 

Gauss's theorem 

Missing Missing 
Z(t)-0 r 

N/A N/A 

N/A N/A 

N/A N/A 

N/A N/A 

N/A N/A 

N/A N/A 

> 100000 > 100000 

the actual 

method are comparatively shown in Table 5. 

In the case o f  no noise, it may be seen that the maximum 

error in the estimated stiffness is 0.500% under the conven- 

tional ILS method, whereas 0.082% at the proposed me- 

thod. And also, for the case of  5% noise included, observed 

that the maximum error of  the estimated stiffness by the 

ILS is 1.230%, while that by the proposed method is 

1.960%. Thus it may be argued that even if  structural stiff- 

ness parameters as initial values are roughly assumed and 

also without any input excitation, the stmctaral parameters 

estimated by the proposed method are about same and con- 

servative as those by the conventional ILS method. 

In order to investigate robustness of  a multiple model 

least-squares(MMLS) method based on the QR decomposi- 

tion (Niu et al., 1996) for estimating the least-squares para- 

meters, the conventional ILS based on the proposed numer- 

ical algorithm in lieu of  Gauss's theorem is considered. For 

the cases of  missing the input constraint fd t )=0 orfg(t)=0, 

the estimated stiffness parameters are shown in Table 6 in 

conjunction with no noise. 

For the case o f  @auss's theorem, it may be observed that 

the any converged solutions can not be estimated. But in the 

case of  MMLS method based on the QR decomposition, it 

may be realized that if  the unreasonable results (the sixth 

story stiffness for the case ofmissingfs(0=0 and the fourth 

story stiffness for missing f4(t)=0) are not considered, the 

maximum error is 0.165% for the case of  missingfs(t)=0 

and 0.276% for missingfg(t)=0. Based on the results, the 

proposed MMLS method based on QR decomposition 

appears to be more robust for estimating the least-squares 

parameters. Further, it may be observed that the conven- 

tional ILS with unknown input by  Wang (1994) should not 

be applied to the problem when the force constraints are not 

given exactly. 

5. Conclusion 

An improved MQRD-ILS method using unknown excita- 

tion for the assessment o f  local damages and deterioration 

in structural system is proposed in the paper. Since any 

information on positions as well as magnitude of  excita- 

tions are not required, the proposed method is well suited 

for identifying structural damage o f  actual existing civil 

structures. The proposed method seems more efficient and 

robust for structural damage assessment than the conven- 

tional ILS method since the proposed method provides 

more precise and reliable resalts even with the ill-condi- 

tioned response data. 
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