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Summary. - -  The aim of this paper is to outline a mathematical scheme 
for the description of the overall behaviour of infinite nuclear matter: it has 
been conceived with the pragmatic purpose of providing simple tools for 
carrying out realistic numerical calculations. To this end we shall revive 
some insufficiently explored aspects of vintage theories, which seem to have 
been by-passed by recent theoretical developments. 

l .  - I n t r o d u c t i o n .  

We begin by  briefly summarizing the problem. Let  p ~< u be the momentum 
of a nucleon inside a sphere having in m o m e n t u m  space radius 

(1.1) ~ -- (9~/8)~ (A~/R), 

where A is the mass number  and R the corresponding radius of the sphere in 

co-ordinate space. The kinetic energy of a single nucleon is 

(1.2) t(p) - -  p V 2 M ;  

then,  the internal  kinetic energy of nuclear ma t te r  is 

(i.~) T(u) : (3A/4~u3) f t ( p )  dp  -~ ( 3 A / I O M )  ~2. 
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If  V(u) indicates the  potent ia l  energy of the system, the  to ta l  energy is 

(1.4) 

1r 

W(u) = T(u) + V(u) = (3A/ua)f(t(p) + �89 u)}p~dp,  
0 

where v(p, ~) is the  potent ia l  energy of a single nucleon in the  Fermi  sea; the  
factor  �89 in the  last t e rm underlies the  assumption tha t  the whole potent ia l  
energy is due to  interact ions between pairs of nucleons. The saturat ion prop- 
ert ies of nuclear forces are expressed by  the  conditions 

(1.5) {dW(z)/dz}~_x~ = 0 ,  W(~F) = b A ,  

where b v = --  (15.0 -I- 1.0) Meg  is the  observed volume energy per nucleon and  
~F-----(9~)�89 is the  Fe rmi  m o m e n t u m  obta ined from (1.1) by  pu t t ing  
R = roA~ at  the  min imum of W(~). In  the  following we shall explore the  in terval  

(1.6) 0.9.10 -~a em~< ro <1 .4 .10  -~3 c m .  

The compressibil i ty C of infinite nuclear ma t t e r  is defined at the  equil ibrium 

densi ty  by  the  relation 

(1.7) C = r162 

and the  compressibil i ty modulus is defined as K : 9C. Taking into account  
t h a t  r A/ff2----2~/3z 2, f rom eq. (1.7) one obtains 

(1.S) K = ( ~ / A )  {a~ W(~)/d~}~_~ . 

At present  there  is no direct  empirical evidence of the  value of K and the  
theoret ical  est imates are controversial.  The value of K is crucially dependent  
on the  behaviour  of v(p, ~) as a funct ion of the  l imit ing momen tum ~; in fact ,  
taking into account  t ha t  the  necessary condition for nuclear saturat ion implies 

t ha t  

(1.9) ~-~FJ [ ~ J~-~F p 2 d p - - 2 ( b v - s F ) - v ( ~ F ' ~ F ) '  
0 

where %---- t(~F) is the  Fe rmi  energy, it  is found tha t  

(1.1o) 
~F 

0 
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The energy of a particle on the Fermi surface is the extra energy which 
would be obtained by adding one particle to the nuclear-matter  system without  
changing its volume [2, while the average energy is the extra energy which would 
be obtained by  adding one particle to the system without  changing its densi ty ~: 
these two quantit ies must  be equal if the system is in equilibrium at zero pres- 
sure. The proof is straightforward. Let  us define the single-particle energy w F 
at the Fermi surface to be the lowest-energy state of a single particle in interac- 
t ion with the system, namely 

(1.11) wF= (~W/~A)a= (~W/~A)Q, 

where account has been taken of the fact tha t  the system is in equilibrium with 
its surrounding, i.e. (~ W/SQ)~----O. Since the saturat ion implies tha t  

( 1 . 1 2 )  

it  follows tha t  

(1.13) 

(aW/aA)q = W / A  , 

w F :  W(zF)/A = b ; 

relation (1.13) is trivial and its physical content  rather  poor. A conceptually 
remarkable result is achieved by defining the tota l  energy of a single nucleon 
in nuclear ma t t e r  as 

(1.i4) w(p, u) = t(p) § v(p, z); 

indeed, the separation energy theorem due to IIvG]~HOLTZ and VA~ HOVE (~) 
expresses the remarkable property 

(~.15) w~ --~ w(~F, ~ )  ---- by, 

namely,  at the density minimizing the total energy o] nuclear matter, the average 
volume energy is equal to the total energy o/ the most energetic nucleon. From 
eqs. (1.14) and (1.15) one has 

(1.16) v(uF, uF) = b,--  eF; 

then,  from eqs. (1.9) and (1.16) one can infer tha t  the dependence of v(p, ~) on 
the momenta  p and ~ must  fulfil the condition 

(1.17) [~v(p, ~)] p~ dp = .~v(~F, ~F). 
f L ~ j ~ - ~ F  
o 

(1) N. H. HUOENHOLTZ and L. VAN HOVe: Physica (The Hague), 24, 363 (1958). 
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A convincing theory of nuclear matter  must simultaneously account for 
eqs. (1.5) and (1.15) consistently with the phenomenological information on 
the energy dependence of the optical potential (2) extracted from the experi- 
mental data concerning nucleons scattered from heavy nuclei. The optical 
potential of a nucleon in motion in the field of a nucleus with energy E = k~/2M 
is taken of the form 

(1.18) ~(:E, %) = ~: (E ,  %) -- i~ , (E,  %), 

where ~UR(E , %) and r %) are the real and the imaginary parts, respectively. 
We define the real optical potential as the optical transform of the potential 
energy of a single nucleon embedded in the Fermi sea, i.e. 

(1.19a) ~R(E, %) ---- V(p(~), %} = Vo(%)I(E, %), 

where momentum p(E) of the incident nucleon is 

(1.19b) p(E) = k[1-  {~(~,  %)IE}]~; 

we shall assume that  the target nucleus is infinitely heavy, so that  E is the 
kinetic energy in the laboratory system of reference. A test of the validity of 
the ol~tical description is provided by the comparison of the measured nucleon- 
nucleus total and elastic-scattering differential cross-sections with those pre- 
dicted using qYR(E, %) and the imaginary optical potential 

(1.20) ~,(V,  .~) = C~(E - ~ ( E ,  %)} g(E, %). 

Our purpose is to discuss all these matters according to a unified theoretical 
scheme. In such a scheme there is no room for many of the dissertations which 
so far have but contributed to shattering the nuclear-matter problem into 
innumerable aspects generally contradicting one another. 

2. - Remarks  on Brueckner's  theory o f  infinitely extended nuclear matter.  

2"1. Assessing the validity of the picture of nuclear matter as it evolved 
in the past is rather difficult. This is due to the practical impossibility of 
disentangling the validity or failures of the adopted physical assumptions 
from the merits or inadequacies of the mathematical techniques used in 

handling them. 

(2) P. E. HODGS0N: The Optical Model o/ Elastic Scattering (Oxford, 1963); Nuclear 
Reactions and Nuclear Structure (Oxford, 1971). 
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The capability of Brueekner's theory of infinitely extended nuclear matter 
to explain the observed value of b, according to the prescriptions in (1.5) has not 
been proved with the limpidity that  such a remarkable theory deserves. I t  is 
not clear whether the unsatisfactory results so far obtained are due to intrinsic 
faults concealed in the theory or whether they are brought about by the ap- 
proximations adopted with the purpose of obtaining numerical results. The 
fundamental assumption of the theory is that  the saturation properties of 
nuclear forces can be explained in terms of the parameters characterizing the 
nucleon-nucleon elastic-scattering collisions, provided the effects of the other 
nucleons on the elastic scattering of two nucleons in nuclear matter are properly 
evaluated. A clear-cut proof that  this assumption is correct (or wrong) has 
not yet been reached: in general, two-nucleon potentials sufficiently strong 
to give the correct volume energy cause the nucleons to collapse to a much 
smaller radius than that  observed, whereas potentials which account for 
stability at approximately the observed radius do not give the correct vol- 
ume energy. 

The use of phenomenological potentials has led to the discrepancy noted 
by BRUECKNER and MASTERSON (3) and by I~AZAVY (4). Many quodlibetic 
suggestions have been put forward in order to clarify the origin of such a 
discrepancy (for example, there has been speculation about the possibility that  
the two-body forces between nucleons should be changed in such a way as to 
preserve the agreement with the nucleon-nucleon scattering data, but increase 
the volume energy of nuclear matter, etc.). A blow to the whole problem 
has been given by the doubts concerning the validity of the description of the 
forces existing within nuclear matter through nucleon-nucleon potentials derived 
from experiments on the energy shell. This conceptual impasse becomes even 
worse if one takes into account eq. (1.15). Brueckner's theory has been made 
formally consistent with the Hungeholtz and Van Hove theorem by BRUECKNER 
and GOLD~AN (5): the implications of the assumption that  the K-matrix for 
the ground-state energy has to be expressed as a function of the occupation 
numbers of the Fermi gas have not been investigated in detail. In the 
Brueckner and Goldman treatment the consistency of the separation energy 
theorem with the first of equations (1.5) is still an open problem. 

2"2. The conjectured role of the nucleon-nucleon interactions in determining 
the properties of infinite nuclear matter can be simply understood by resorting 
to a modification of the Hartree-Fock theory which consists in expressing the 

(a) K . t .  BRUECKNER and K. S. )/~AST'E.RSON: Phys..~ev., 128, 2267 (1963); see also 
R. RAJARAMAN and H. A. BETHE: ~ev..~o(~. Phys., 39, 249, 745 (1967). 
(4) M. RAZAVY: Phys. Rev., 130, 1091 (1963). 
(5) K. A. BRUECKNER and T. D. GOLDMAn: Phys. Rev., 117, 207 (1960); see also 
K. A. BRUECKNER, J. L. G'AMMEL and J. T. KUBIS: Phys. Rev. 118, 1438 (1960). 
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ordinary and exchange K-matr ix  elements in terms of the nucleon-nucleon 
elastic-scattering amplitudes ("); the potential  energy of a single nucleon is 
found to be 

~_~ ( q / q ~ d q + ~  (q/{~'-(2q-p/~} qa~ , p<~ ,  
o �89 

�89 

(2.1b) v(p, n) = 1 f.E 2~Mn (q){n ~ -  (2q ~p)~}qdq, p>~,  
�89 

where if(q) is a complicated function of the nucleon momentum.  Since in nuclear 
ma t t e r  elastic collisions can occur only in the forward and backward directions, 
and  the  scattering amplitudes related to the  lat ter  si tuation can be simply 
expressed in terms of those related to the former one, it  follows tha t  ~(q) is 
constructed as a sum of forward scattering amplitudes, classified according to 
spin and isobaric spin substates for the two-nucleon system: 

(2.2) 2'(q) = ~8(q) -[- 32' ,(q) q- 3]ts(q) -F 9F,~(q); 

function /~(q) can then  be evaluated using the asymptot ic  phase shifts 
determined from the analyses of the nucleon-nucleon elastic-scattering data. 
The tota l  potent ial  energy is obtained from eq. (2.1a), i.e. 

(2.3) V(n) = (3A/8zz3) f v(p, ~) alp; 

from the saturation prescriptions in (1.5) one determines the quantities b and 
rc: the separation energy theorem requires tha t  a t  the minimum of the tota l  en- 
ergy the following relation be valid: 

(2.4) 
$r 

b,-~ %-- (2]~Mu~) f qF(q)(g F -  q)d~l. 
0 

We shall not  go into numerical details, but  rather  use the description (2.1) 
as a heuristic paradigm. 

In  first-order perturbation theory the potential  energy of nuclear mat te r  is 

9A(A -- 1) ~'G(2.P) 
(2.5) Y(~) - -  32~u~ J dp de/, 

(6) K.A. BRUECKNER, C. A. LEVlNSON and H. M. •AHMOUD : Phys. l~ev., 95,219 (1954); 
K. A. BRUECXNER: Phys. t~ev., 96, 1558 (1956); N. FUKUDA and R. G. NEWTON: Phys. 
2~ev., 103, 1558 (1956). 
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where P = �89 (p- -  q) is the relative momentum of a pair of nucleons and G(2P) 
is the three-dimensional Fourier transform of the two-body potential: this 
function is independent of the limiting momentum u. Equation (2.5) becomes 
conceptually more significant by inverting the order of integrations; performing 
very carefully the required trivial manipu]ations, it is found that  

(2.6a) V(u)/A = / G ( 2 P ) / / ( P ,  z) d 2 ,  
0 

- ~ - ~  ~ +~ , 

(2.6e) //(0, x) = / / ( z ,  z) = 0 ,  f I I (P,  ~) dP = 1.  
0 

I t  is readily established that  function II(P, ~) plays the role of the distri- 
bution of the probabilities that  a pair of nucleons have relative momentum P;  
thus, the meaning of eq. (2.6) is: in ]irst-order perturbation theory the x-dependence 
o/ the average potential energy o/ nuclear matter is given by the three-dimensional 
Fourier trans]orm o/ the two-body potential averaged over the relative-momentum 
distribution o/ pairs o/ noninteracting nucleons. 

This result corresponds to the absolute zero of temperature of the degenerate 
Fermi gas of nucleons. The distribution of the momenta of the single nucleons 
is simply described by saying that  all the lower states are occupied up to the 
limiting momentum ~, fixed by the total number of nucleons confined in the 
nuclear sphere of radius R, according to tile saturation prescriptions (1.15). 
The effect of the nucleon-nucleon interactions, by causing virtual transitions 
from occupied states into unoccupied ones, is to spread the momentum distri- 
bution of the single nucleons in the neighbourhood of the limiting momentum ~: 
lowering the density in momentum space below ~ and giving rise to a tail in 
the distribution above this value. The modification of the momentum distri- 
bution of single nucleons also alters 11(1', ~): these effects can be conceived 
qualitatively as being of the same kind as those due to thermal agitation, and 
are responsible for the discontinuity of the momentum distribution at p = us, 
which--in turn--also implies a discontinuity of the energy spectrum w(p, ~F) 
at the Fermi surface (incidentally the latter discontinuity is in no way related 
to the energy gap of superconductivity). The physical content of the nuclear- 
matter  description based on eqs. (2.1) now becomes clear: the experimental 
momentum dependence of function ~(q) implicitly accounts for the un- 
known two-body potential and for many of the theoretical intricacies due to 
the nonuniform momentum distribution of the single nucleons in the Fermi 
sea. The potential energy (2.3) calculated with the single-particle potential 
energy (2.1a) is far more realistic than that  predicted by eq. (2.6). The Iunc- 



4 4  C. VILLI 

tion/~(q) also accounts for the effects due to tensor interactions, which in per- 
turbation theory contribute to the potential energy of nuclear matter only 
in second-order and in higher-order approximations. From a conceptual point 
of view the theoretical scheme according to which eqs. (2.1) have been deduced 
is intermediate between perturbation theory and Brueckner's theory. 

2"3. Brueckner's theory is a mathematical model invented either for 
meeting the requirements with the theoretical scenery of infinite nuclear matter, 
mentioned in subsect. 2"2, or for circumventing the drawbacks of the conven- 
tional perturbation theory. Its fundamental goal is to determine elements 
K~j,~ of the aatisymmetrized K-matrix, calculated on the basis of a precon- 
ceived choice of the nucleon-nucleon potential. By using the standard notation, 
the basic aspect of Brueckner~s theory is expressed by the equations 

(2.7a) K~,,7:~ ~ v~j,k~ ~ ~, e Vi~,~,~K,~,,kl 
m,n k ~ e~- -  e m - -  en ' 

where the self-consistent single-particle energies are given by 

(2.7b) ei ~ t(Pi) -{- ~ (Ki~,i~-- Kid,j,) �9 

The exact solutions of the nonlinear system (2.7) are unknown and the approxi- 
mations used to obtain numerical results give rise to complications and ambi- 
guities which outweigh the heuristic value of the theory. For this reason, the 
att i tude of laying all the blames for the unsatisfactory results thus obtained 
on the choice of the two-body potential seems objectionable. This opinion is 
also supported by the remark of Brueckner and Masterson that  two-body po- 
tentiMs which give supposedly equally good fit to the scattering data do not 
lead necessarily to identical nuclear properties. Unfortunately, a stringent 
critical analysis of the approximations~ corrections and modifications of Brueck- 
ner's theory cannot be carried out because the major part of the available results 
has been obtained by means of calculations which are neither transparent 
nor controllable on numerical ground. Several results, usually quoted in the 
literature, can be proved to be wrong. I t  is indeed discouraging to realize that  
misleading conclusions have often been taken for granted out of faith or mental 
indolence. Substantiating this statement properly would be too pedantic. 
Suffice it to point out, as an example, that  the modification of Brueckner's 
theory (7), developed for removing the discrepancy discovered by BRtrECK~R 
and MASTERSON~ implies a strong violation of the separation energy theorem 
and conflicts with the first of eqs. (1.5) : the uncritical acceptance of the eonjee- 

(7) H. A. BETm~: Phys. -~ev. B, 4, 804 (1965). 
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tu red  role of th ree-body  correlations in nuclear m a t t e r  has led to conclusions 
which are completely ungrounded (s). 

All those who feel d isenchanted enough in f ront  of theories adjus ted ad hoe 
by  sudden flashes of wit (the therapeut ica l  role ascribed to the  th ree-body  
correlations in order to  make  up for the  failure of Brueckner ' s  theory  is bu t  
an example) may  also feel the  lack of a reliable, analyt ical ly simple and numeri-  
cally manageable  tool which allows t hem to deal wi th  the  nuclear-mat ter  
problem. For  this reason we have to lay aside the  ambitious aim of developing 
a formally rigorous t r ea tmen t  (systematically spoilt by  approximations whose 
val id i ty  cannot  be assessed a priori and are often found a posteriori to be 
disastrous) and t r y  ins tead to approach the  problem along a different pa thway.  
Our program is to ex t rac t  the  max imum of theoret ical  informat ion f rom the  
saturat ion prescriptions (1.5) and f rom the  Hugenhol tz  and Van Hove  theorem 
(1.15) with a min imum of physical  assumptions.  More specifically, our p r imary  
aim is the  explicit  de te rminat ion  of the  dependence of funct ion v(p, u) on 
p and u wi thout  resort ing to preconceived choices of the  nucleon-nucleon 
potent ia l  or to  sophist icated nuclear many-body  procedures.  This note  in- 

tends to show tha t  even in the  realm of theoretical  physics one can t r y  to 
be fai thful  to Newton 's  s t a tement  (( hypotheses non /ingo ~. 

3. - The  n u c l e o n  effect ive  m a s s .  

3"1. The concept of nucleon effective mass is not  so tr ivial  as i t  appears 
f rom m a n y  nuclear-mat ter  calculations: a deeper insight into its meaning can 
be achieved with the  help of e lementary  quan tum mechanics. Resort ing to  
the correspondence principle and requiring t h a t  the  following classical relat ion 

(3.1) ~(P, ~r) = F . v  

between the  force F act ing on a nucleon having veloci ty  v in the Fermi  sea 
and its to ta l  energy w(p, gr) remains valid for the  mean  values of the  quan tum 
theory  is consistent with the  idealized conception of infinite nuclear mat ter .  
The group veloci ty  v(p) of the  packet  and the  to ta l  energy w(p, ~ )  satisfy the  
relat ion 

(3.2) v(p) : Vp w(p, ~F) ; 

consequently,  one has 

(3.3) </,> = < V p F . v >  ~-- <F.  Tw(p, ~F)>,  

(s) D.W. :L. SPRUNG, P. C. BHARGAVA and T. K. DAHLBLOM: Phys. Lett., 21,538 (1966) ; 
the quoted results are wrong also because based on an incorrect application of Bethe's 
three-body theory (see D. B. DAY: t~ev. Mod. Phys., 39, 719, 743 (1967)). 
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where T =  VpVp is a differential  tensor operator  of rank  2. Equa t ion  (3.3) 
corresponds to the  classical relat ion ~ - - - -F /M provided one introduces the 
mass tensor  

(3.4) l / M *  = T w ( p ,  uF) " 

Rela t ion  (3.3) had  previously been obta ined by  SEITZ (9) in a different con- 
tex t .  Since nuclear ma t t e r  is conceived as a spherically symmetr ic  system, 
the  mass tensor  (3.4) reduces to the  scalar nucleon effective mass 

(3.5) M/M*(p) = M{d2w(p, =F)/dp 2} = 1 -~ M{d2v(p, uF)/dp~ } . 

I t  is indeed astonishing tha t  eq. (3.5), which is undoubted ly  well known to 
various individuals, should not  have ye t  achieved the  dignity of a specific 
ment ion  in the l i tera ture  concerning the  nuclear -mat ter  problem. I t  is cus- 
t o m a r y  (10) to define a pa ramete r  M**, homogeneous to a mass, f rom the slope 

of v(p, ~r) a t  p = ~r through the  relat ion 

(3.6) M/M** : M[(1/p){dw(p, ~)dp}],ffi~ r : 1 d- M[(1/p){dr(p, s~)/dp}],_~,; 

definitions (3.5) and (3.6) lead to identical  results only if v(p, uF) depends 
quadrat ical ly  on the  momen tum p. Although definition (3.6) is completely 
unre la ted  to the  concept of mass tensor,  i t  is nevertheless used to express 
the  nuclear effective mass in infinite nuclear m a t t e r  also when the momen tum 
dependence o~ v(p~ uF) is not  quadrat ic  in p :  this is the  cause of several mislead- 
ing conclusions drawn from nuclear-mat ter  calculations. 

3"2. - One of the  most  impor tan t  goals of a nuclear-mat ter  theory  is to 
provide reliable values of the compressibili ty parameter  K, consistently with 
eqs. (1.5) and  (1.15) and wi th  the  phenomenological  informat ion on the  energy 
dependence of the  optical potent ia l  (1.18). Definition (3.5) of the nucleon 
effective mass, reached independent ly  of any  detai l  concerning the  nuclear 
mat te r ,  s t imulates curiosity about  the  possible existence of a general relat ion 
between the  compressibil i ty modulus and the  effective mass. To satisfy such 
a curiosity, we shall resort  to our imaginat ion and prove, as a purely intellec- 

(9) F. SV.ITZ: The Modern Theory o/ Solids (New York, N.Y.,  1940). 
(lo) K. A. BRU~CKNER: The Many Body Problem, Vol. I (Paris, 1959), p. 169; M. A. 
PRESTON: Physics o] the Nucleus (Reading, Mass., 1962), p. 202. A rather queer crite- 
rion for calculating M** has been suggested by L. C. GOMES, 5. D. W~L~.CKA and V. 
F. W~ISSXOPF: Ann. Phys. (N. Y.), 3, 241, 252 (1958). Recently, definition (3.6) has 
been adopted also by J. 1 ). B~)aZOT in his review paper on nuclear compressibilities 
(Phys. Rep., 64, 171 (1980), formula (7.1), p. 234). See also K. A. BRUECKNER and 
J. L. GAM~:EL: Phys. Rev., 109, 1840 (1958), formula (21). 
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tua l  divertissement, the following theo rem:  i / the  in/initely extended nuclear matter 
is conceived as a nonviscous and incompressible ]luid and the relation R ~- teA ~ 
is assumed to be valid, then the e/]eetive mass ol a nucleon plunged into it is 

(3.7) M * / ~  = 1 .  

I t  is a m a t t e r  of common  experience t h a t  the  appa ren t  iner t ia  of a body  of 
mass  M, moving  in a fluid, is grea t ly  increased b y  the  fluid around it. The 
inereused iner t ia  is called the  effective mass  M* of the  body,  and  the  difference 
be tween  the  effective mass  and  the  real  mass  is called the  induced mass  Mi (11). 
According to  classical hydrodynamics ,  the  mot ion  of a body  in a fluid is 

dynamica l ly  equivalent  to  the  mot ion  of a heavier body  in vacuo,  whose ef- 
fect ive  mass  is 

(3.8) M* : M ~- M I . 

I t  is easily realized t h a t  this  result ,  which was first g iven an exact  m a t h e m a t i c a l  

fo rmula t ion  b y  G~n~,N and  S~OKES well over  ~ cen tu ry  ago (z~), has  to be  changed 
if one a t t e m p t s  to describe, along the  same line, the  mot ion  of a nucleon in nu- 

clear ma t t e r ,  because of the  peculiar  p r o p e r t y  of the  nuclear  fluid of exer t ing  
a t t r ac t ive  forces upon the  moving  part icle.  Since in this  case the  increase of 
the  kinet ic  energy of the  fluid m u s t  be  t hough t  of as due to nuclear  interact ions,  

an  e l emen ta ry  energy  balance  shows t h a t  the  mot ion  of a nucleon in nuclear  
m a t t e r  is dynamica l ly  equivalent  to the  mot ion  of a free nucleon having  a 
lighter mass  

(3.9) M * :  M - -  M l ,  

i.e. the  effect of the  a t t r ac t ive  interact ions be tween  the  nuclear  body  and the  
nuclear  fluid is dynamica l ly  equivalent  to a negat ive  induced mass ,  con t ra ry  
to  what  is to be expected  in connect ion wi th  the  mot ion  of an  ord inary  body  
in an  o rd inary  fluid. 

According to hydrodynamics ,  the  induced mass  M i can be regarded  as the 
mass  of a v i r tua l  par t ic le  hav ing  a kinet ic  energy equal  to the  addi t ional  
kinet ic  energy ~T(uF) gained b y  the  fluid. I n  order to evalua te  ~T(u~) we con- 

sider a single body  of muss M and  ~ v i r tua l  ~ radius re in mot ion  wi th  veloci ty  v 

th rough  a nonviscous and  incompressible fluid, ex tended  over  the  whole space:  

the  theoret ical  a m u s e m e n t  lies in the  identif ication of the  single body  wi th  a 

nucleon and  the  nuclear  m a t t e r  wi th  a perfec t  fluid. We sh~ll assume Dirichlet  

(zz) The idea of induced mass was originally expressed in a very crude way by DVBUi~ 
in 1786 (see L. G. DU]3UXT: Principles d'hydraulic, Vol. I I  (Paris, 1816), p. 222). 
(z2) G. GREEN: Mathematical Papers, Vol. I (London, 1833), p. 315; G. STO~S: 
Mathematical and Philosophical Papers, Vol. I (London, 1834), p. 17. 
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flow and neglect, also in the adopted classical scheme, the effects of the intrinsic 
angular momentum of the nucleon on the surrounding nuclear fluid. Without 
loss of generality, we may choose the axis of spherical co-ordinates as the direc- 
tion of motion. With respect to the fluid at infinity, the interaction body- 
fluid is expressed by the dipole-velocity potential (18) 

(3.10) U -~ - -  r~ v cos O / 2 r  2 . 

At any point of the fluid the radial and angular components of the velocity are 

(3.11a) v ~ : 8 U / S r  -~ r~ v cos O /r  ~ , 

(3.11b) v o : (l/r)(8 U / 8 0 )  = r~v  sin O/2r 8 . 

The additional kinetic energy is 

(3.12)  T(uF) = ife(r)(v  + dr; 
t'~ro 

assuming for r < ~ R  a uniform density distribution of nuclear matter, from 
eq. (3.12) it is found that  

(3.13) ~T(uF) = (g~or~/2)  v 8 =-- (M1/2) v s . 

Since the packing of A nucleons satisfies the relation R----roA t ,  one has 

(3.14) ~o ~ 3 M / 4 z r ~  for r < R , ~o -~ 0 for r ~ R; 

then, from eq. (3.13) it is found that  M , =  M / 2  and from eq. (3.9) M*~- 
~- 0.SM, which proves the theorem. 

4. - A mathematical property of  the single-particle potential energy in the 
Fermi sea. 

Conditions (1.5) are necessary, but not sufficient, for testing the validity 
of a nuclear-matter theory. The u-dependence of the single-particle potential 
energy has never been investigated in detail and, therefore, the calculation of 
V(~) by means of eq. (2.3) makes also the p-dependence of v(p, ~) rather elusive: 
the separation energy theorem (1.15) provides crucial information on the value 

(18) G. BIRKHOFF: Hy(~rodynamics (Princeton, N. J., 1950); see also H. LAMB: Hy~ro- 
d y n a m i c s  (New York, N. u 1945), p. 123. 
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of v(p, ~) at  p = ~ = ~ .  Addit ional  information on v(p, ~) can be obtained 
by direct or indirect comparison with  the data  of the  predicted values of the 
compressibility modulus (dependent on the  second-order derivatives of V(u) 
evaluated at  the min imum of W(u)) and with those concerning the real part  
of the optical potent ial  (deduced as optical t ransform of v(p, zr) for p > zr) : 
from this information one can derive the required sufficient conditions. For  
these reasons we shall concentrate primarily on the  two-variable function v(p, ~). 

The necessary condition for nuclear saturation, expressed by  the first of 
eqs. (1.5), means physically tha t  there exists a value zr of the limiting momen- 
t um u at  which the pressure P(z) of the Fermi gas is zero, i.e. 

(4.1) P(xr) = (2xr~/9z2A) {d W ( x ) / d u } . = .  r = O . 

Let  us work out eq. (4.1) using the integral form of W(x) given in eq. (1.4); 
taking into account definition (1.14), one obtains 

(4.2a) 

(4.2b) 

b v : W(xr) /A : w(uz, g v ) -  {Q(ur)/2x~}, 

- -  -fp  j , , - * ,  dp. 
0 

Clearly, the separation energy theorem (1.15) follows from eq. (4.2a) pro- 
vide4 tha t  

(&3) Q(%)=O; 

note tha t  conditions (4.3) and (1.17) are identical. I t  is interesting to compare 
relations (4.2) with those obtained by BETn~E (14) and then  simplified by  as- 
suming tha t  a quan t i ty  playing the role of our Q(nv)/2~ ~ is (~ negligible ~. 

Le t  us introduce the function 

(4.4) Q(~) = ~ v(z, ~) - f p '  {av(p, z)/Sz} dp.  
0 

A lengthy calculation shows tha t  v(p, ~), calculated in first-order perturbation 
theory,  possesses the proper ty  

(4.5) Q(z) --= 0; 

the proof will be given in subsect. 5"2. I t  is readily verified tha t  also the single- 
particle potent ial  energy (2.1a) is characterized by property  (4.5). In  fact, 

(14) I~. A. BETHE: P h y s .  R e v . ,  103, 1353 (1956); see formulae from (9.17) to (9.25). 

4 - I I  N u o v o  Cimento A .  
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one has 

(4.6a) u~ v(u, ~) = - -  (2u/~M)fF(q)(u- q)q2 dq ~-- I(~), 
o 

�89 

(4.6b) ~v(p, z) z f F  O ~  - -  ~ M p  (q) qdq  ' 
�89 

z u �89 

f,  x f d fF(q)qdq J( ); (4.60) ~ dp - -  ~.M 

0 0 �89 

invert ing the order of integration,  eq. (4.6e) becomes 

(4.6d) 

u/2 g g u 

=f (q)qdqf, d, +f (q)qaqf, d, 
0 g--2q g]2 2q--X 

I n  conclusion, one finds Q(u)-- - - I (~)-  J(u) ------ 0. Since Q ( u ) ~  0 holds for 
any  value of ~, it is necessarily valid also for the value u = uF corresponding 

to the min imum of the tota l  energy W(u): we have thus verified with striking 

simplicity the val idi ty  of the Hugenhol tz  and Van Hove theorem. 

In  nuclear-mat ter  calculations the Hugenhol tz  and Van Hove theorem 

consti tutes a dark  corner around which there is much confusion (15). Using 

our notat ion,  such a theorem can be expressed by  the exact  relation, which 
has a well-defined meaning for large systems, 

A[wlell  
(4.7) w(e, e) = d e [  Q j ,  

where e ~-- 2~/3n~; eq. (4.7) is by  no means a trivial one: in fact,  w(e , e) is 

defined in terms of diagrams with an external line at  both  ends, whereas W(e ) 

is obtained from ground-state  diagrams. In  Brueckner 's  theory  the difference 

(lb) The disconcert created by the suspicion that equality (1.15) could be true was well 
expressed by BETHS. about two years before the discovery of the separation energy 
theorem by HUGENHOLTZ and VAN tIov]~ (H. A. B~THE: Phys. l~ev., 103, 1353, 
1372 (1956)): (~It is perhaps somewhat surprising that one calculate in one case an 
average energy and in the other one a maximum energy, and that these two should be 
equal. This is made possible by the factor �89 in the potential energy when the average W 
is calculated in eq. (9.17) ; this should just compensate for the difference between average 
and maximum ~). The theoretical background of this problem will be examined in 
sect. 5: we shall see that the (~ magic ~) role attributed by BETHE to the factor �89 does 
not work because conceptually irrelevant. 
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between w(uF, uF) and W(~%)/A is called the re-arrangement energy (le): this 
energy can be identified with quanti ty Q(~)/2u 2. Thus, we have previously 
given a general argument for concluding that  the validity o/the Hugenholtz and 
Van Hove theorem implies that the re-arrangement energy is equal to zero because 
it must be Q(~eF)~ O. 

The single-particle potential (2.1a) is intrinsically consistent with the 
Hugenholtz and Van Hove theorem, although the numerical results obtained 
from eq. (2.4) exhibit a discrepancy quantitatively similar to that  noted by 
:BRUECKNER and MAST~SO~r Energy Q(~)/2~ ~ has been evaluated accord- 
ing to Bethels treatment of the nuclear many-body problem (,4): it has been 
ascertained that  Bethe's integral equation obeyed by the scattering matrix 
leads to results intrinsically inconsistent with the separation energy theorem. 
This also occurs in the older formulation of Brueckner's theory: for example, 
the results obtained by BRUECKNER and GA~MEL (~7) disclose a large discrep- 
ancy between the values of w(u~, ~F) and b which can only be partially ex- 
plained by taking into account the contribution of cluster terms underestimated 
by the authors. The re-arrangement energy is conceived as a contribution (not 
necessarily additive) to the single-particle potential energy due to the density 
dependence of the K-matrix, which also includes some of the effects of correla- 
tions between particles: when the density changes, the particles re-arrange 
themselves, and the K-matrix also changes. This justification is unsatisfactory 
because it ignores the fact that  the appearance of the re-arrangement energies 
is strictly bound to the criterion adopted in the application of variationul 
methods, which---in turn--influence the choice of the definition of the single- 
particle potential energy (~8). We do not share the opinion according to which 
the nonzero magnitude of the re-arrangement energy is a characteristic many- 
body effect which manifests itself through high-order effects in the K-matrix. 
There are very good reasons to retain that  the re-arrangement energy question 
is a false problem, originated by objectionable mathematical approximations 
used in handling the nuclear-matter problem: no re-arrangement energy would 
probably appear in an exact formulation of Brueckner's theory. 

The most conceptually troublesome aspect of any nuclear-matter theory 
of Brueckner's type arises from the somewhat frantic theoretical justifications 
of the appearance of (~ theoretical energies ~, which (like the re-arrangement 
energy) are (, created )) by the adopted approximations and/or by the techniques 
used to handle the nuclear-matter problem (model energies, single-particle 

(16) K. A. BRUECKNER: The Many Body Problem, Vol. I (Paris, 1959), p. 160. 
(iv) K. A. BRUECKNEIr and J. L. GAMMEL: Phys. ICev., 105, 1679 (1957). 
(is) Suggestions concerning the application of variational methods in such a way that 
the re-arrangement energy should not occur have been given by R. J. EDEN V. J. EMERY 
and S. SAMPA~CTHAR: Proc. t~. Soc. London Set. A, 253, 177, 186 (1959); see also D. 
J. THOULESS: The Quantum Mechanics o] Many-Body Systems (New York, N. Y., 1961). 
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energies included in self-consistent energy denominators,  etc.). All these ghost 
energies, which in some cases depend even on the  par t icular  ar rangement  of 
the  terms of series expansions, are exper imental ly  unobservable.  We shall 
not  waste t ime with unfrui t ful  theoret ical  subtleties and t ry  instead to outline 
a descript ion of nuclear ma t t e r  rigorously based on the  p roper ty  Q(u) - - 0 .  
This heurist ic  f ront ier  has never  been explored before: we shall call i t  the Hu- 
genholtz and Van Hove approximation o] in]initely extended nuclear matter. 

5. - The  differential  equat ion  o f  inf inite  nuc lear  matter .  

5"1. - The kinetic and potent ia l  energies of nuclear mat ter ,  and the po- 
tent ia l  energy of a single nucleon plunged into it, t end  to zero at  the  l imit  of 
zero nuclear densi ty.  This tr ivial  s t a tement  follows from the  fact  t ha t  for 

-+ 0 the  average distance (19) 

(5.1) d(n) _~ (-~)�89 

between the  nearest  neighbours of the A nucleons, uniformly dis t r ibuted in 
the  inter ior  of the  nuclear sphere, tends to infinity and, consequently,  the  
nucleon-nucleon interact ions vanish.  I t  follows tha t  it  mus t  be V(0) ~-- 0 and 

(5.2) v(p, o) = o; 

an obvious implication of p rope r ty  (5.1) is 

(5.3) v(0, 0) = 0 .  

The following theorem holds: the necessary and su]licient condition ]or the 
validity of the physically obvious property v(0, 0) ~ 0 is given by 

Q(u) = x ~ v(u, ~) - - fp~{Sv(p,  u)/cqx} dp - -  O, (5.4) 
0 

provided the potential energy o /a  single nucleon in the Eermi sea obeys the partial 
di//erential equation 

(5.5) - ~ p ~ p  ~ + ~  v ( p , ~ ) = o .  

(19) J. ]VL :BLATT and V. F. W]~ISSKO~F: Theoretical ~Vuclear Physics (New York, 
N.Y.,  1952), p. 129. 
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The proof of the theorem is straightforward. Let  us evaluate the first-order 
derivative of the function 0(u)/u ~ given by eq. (4.4). Taking into account tha t  
for p --~ u the following relation exists: 

(5.6) dv(~, ~ ) -  [(_~ 8 )  ] du Jr- ~ v(p, ~) , 

one obtains 

(5.7) 

0 

The differential equation (5.5) can be wri t ten as 

8 8 

subst i tut ing (5.8) into (5.7) it  is found tha t  

du L ~2 j ~p ~=0 ' 

where it has been taken  into account tha t  the invariance prescription of the 
potential  under  t ime reflection implies t ha t  for small momenta  ~v(p, u)/Sp 
varies l inearly with p. From eq. (5.9) one gets 

(5.10) Q(u) ~ Cu ~ , 

where C is an arbi t rary  constant  of integration. Subst i tut ing eq. (4.4) into 
(5.10) and performing the t ransformat ion x .~-p/u, one has 

1 

(5.11) v(u, ~) - zfx={ev(zx, u)/~.} dx = e.  
@ 

At the l imit  ~ - ~  0 eq. (5.11) becomes v(0, 0) ~-- C; i t  follows tha t  property 
(5.4) is satisfied if C ~ 0, which proves the theorem. We shall denominate 
eq. (5.5) as the differential equation o] infinite nuclear matter. Taking the impli- 
cations of condition (4.3) into account, the theorem proved in this subsection 
can also be formulated in the following way:  solutions v(p, ~) of the differential 
equation of infinite nuclear matter automatically satisfy the Hugenholtz and Van 
Hove theorem. The nuclear-matter  description constructed on the basis of these 
solutions consti tutes the ]~ugenholtz and Van Hove approximation of infinite 
nuclear mat ter ,  ment ioned at  the end of sect. 4. 
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Equation (5.5) is a special case of the general second-order partial dif- 

ferential equation in two variables 

d ~  22~,L+v~ ~ e~ + = o  (5.12) { ~, + + + + ~}v (p ,  ,)  ~ , 

where ~ ,  ~ ,  ~, ~ ,  @, ~" and ~ are real functions of p and u (or possibly real 
constants), and ~ -- ~/~p, ~,, ~ ~/~p ~ ,  etc. The characteristic curves of 
eq. (5.12) are given by the equation 

(5.13) d~ = d 

Since in our case d ~ - -  ~--~ I and ~ = 0, eq. (5.5) turns out to be of hy- 
perbolic type ( ~ - -  ~r > 0): its hyperbolic nature can ~lso be exhibited in 
normal form by using the transformation 

(5.14) ,~ = (~ -4- p ) / 2  , /~ = ( ~ -  p ) / 2  . 

The characteristic curves are given by the straight lines 

( 5 . 1 5 )  u ~ c -4- p ,  

where e is an arbitrary integration constant. The physical meaning of the 
variables p and g implies p > 0  and ~>0;  the Hugenholtz and Van Hove 
theorem requires c ~ 0, because v(p, ~) must obey prescription (1.16) at 
point p --~ ~ ---- ur lying on the characteristic line passing through the origin 
of the reference system chosen in the positive region of the (~, p)-plane. The 
fundamental role played by eq. (5.5) arises from the fact that  it provides a 
remarkable clue for disentangling the mathematical aspects of the nuclear- 
matter problem from the physical ones. In fact, the analytic structure of the 
equation is (~ universal ~) in the sense that  it is entirely independent of any 
detail concerning the nucleon-nucleon interactions as well as the nuclear sphere, 
where the interactions occur (s0): this stimulating circumstance implies that  
all physical properties have a crucial role only in the specification of the 
Cauchy problem associated with the equation itself. These considerations are 
restricted to the saturation properties of nuclear matter:  indeed, they open a 
new path also for a deeper insight into the optical model outlined in sect. 1. 
The optical transform (1.19) operates on the tail of the single-particle potential 
energy v(p, uF); it should be evident tha t  the optical-model analyses do not 
give any information on v(p, uF) at the Fermi sphere (p ---- ur)" In fact, the 
closest approach (in momentum space) of the probe neutron to the Fermi 

(~o) This circumstance justifies the attitude expressed at the end of subsect. 2"3. 
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sphere occurs at the zero-energy limit~ putting E--~ 0 in eq. (1.19b) one has 

(5.16) p(0) : [--2MCUR(0, uF)] t = [ - -2My (p(0), uF}]~. 

According to the ttugenholtz and Van Hove theorem it is 

(5.17a) ~ / 2 M  ~ v(~F, ~F) : b, , 

whereas from eq. (5.16) one has 

(5.17b) {p(O)}2/2M -~ v{p(0), uF} ---- 0; 

it follows that  the equality p ( 0 ) = u F  would imply b~= 0: since v(p, uF) is 
a decreasing function of p, eq. (5.17b) shows that  it must be 

(5.1s) p(0) > ~ .  

The optical-model analyses determine, through transformation (1.19), the 
p-dependence of function v(p, uF) along the straight line u ---- u~, parallel to 
the p-axis and for p>~p(O) ~ ~ crossing the characteristic curves of eq. (5.5): 
this situation is summarized in fig. 1. I t  is evident that  the phenomenological 

X 

O\ / \  : p 

Fig. 1. - The saturation of nuclear matter and the optical model. 

information extracted from the optical-model analyses contributes to the spec- 
ification of the Cauehy problem associated with the differential equation of 
nuclear matter. This is the motivation of our efforts to link the description of 
the saturation properties of infinite nuclear matter with the gross properties 
churacterizing the scattering of neutrons from heavy nuclei within the frame 
of a consistent theoretical scheme. 

The hyperbolic partial differential equation (5.5) is indeed remarkable. 
One may speculate whether it expresses in a differential form the Pauli prin- 
ciple, whose role in the description of nuclear matter prevails upon the partic- 



$ 6  C. VILLI 

ular fea ture  of any  realistic two-body potent ia l  (~1). In  fact ,  i t  seems plausible 
to re ta in  tha t  the  p-dependence of v(p, ~) arises pr imari ly  f rom the  to ta l  anti-  
s y m m e t r y  of the nuclear wave function,  a l though it  can also include other  
effects (for instance,  those brought  about  by  the conjectured veloci ty dependence 
of the  nucleon-nucleon interact ions and/or  by  thei r  nonlocal nature~ etc.). 
Equa t ion  (5.5) seems to reconcile, in a surprisingly simple manner ,  the  inde- 
pendent-par t ic le  and  collective liquidlike aspects of nuclear mat te r ,  so tha t  the  
propert ies  of a Fermi  liquid at not  too high densities and those of a diluted 
Fermi  gas are not  mutua l ly  exclusive and must  not  be regarded as opposite 
ext remes (~). These considerations are s t r ic t ly  based on the  fact  t h a t  the  
mathemat ica l  s t ruc ture  of the  nuclear-mat ter  equations is inextr icably linked 
to the  Hugenhol tz  and Van Hove  theorem.  A piece of corroborat ive evidence 
is given in the  following. Le t  us express eq. (4.7) in terms of the  energy per 

part icle instead of the  energy per unit  volume; one has 

(5.19) w(e) + e w(e) + 1_ P(e). 
w(e,e)- A de l. A J--  A e 

In  a liquid the  pressure is 

(5.20a) P(e) : e 2 ~ - -  
----0 

and,  therefore,  f rom eq. (5.19) one obtains 

(5.20b) w(e, e) -~ W(e)/A;  

condit ion (5.20a) is the  first of the  saturat ion prescriptions (1.5) valid a t  
e ---- 2u~/3z2, where eq. (5.20b) mus t  be equal to the  average volume energy b v. 
Thus the  differential equat ion of nuclear mat te r ,  which conceals within its 
mathemat ica l  s t ruc ture  the  Hugenhol tz  and  Van Hove  theorem,  governs the  
behaviour  on p and u of the  potent ia l  energy of a single nucleon embedded in 
a ve ry  peculiar medium, the  Fermi  sea, which is described as a degenerate gas 
of nucleons, bu t  nevertheless a t  equilibrium densi ty  exhibits propert ies which 
are typical  of a liquid. The fall-out of this s i tuat ion on the  compressibili ty mod- 
ulus is par t icular ly  interesting. To highlight this point  we re-write eq. (5.5) 

(2~) This idea has been suggested to the author by L. ]~0SENFELD; see also L. ROSEN- 
FELD: Interactions nucl~aires aux basses energies et structure des noyaux (Paris, 1959), 
p. 330; C. VILLI: Nucl. Phys., 9, 306 (1959). I recall with gratitude ~r BORN, W. HEISEN- 
BERG, R. E. PEIERLS, L. ROSENFELD and V. F. WEISSKOeF for the stimulating discus- 
sions I had with them long ago: they have influenced, directly or indirectly, whatcver 
is good in this paper, but are not responsible for its shortcomings. 
(22) C. VILLI: Atti dell'Istituto Veneto di Scienze, Zettere ed Arti, Tomo CXXXVIII, 1 
(1979-1980). 
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in the form 

(5.2]) ( ) ~ 2 ~ _ 1 ~ P ~ v(p,~); 
~ ~ ~ v(p, ~) P~ ~p 

replacing eq. (5.21) into eq. (1.10) one finds 

(5.22a) 

(5.22b) 

3 

/( = 6e~ + (3xF/2) ~qgi(u~) , 
i = 1  

~ ( x , , )  = {dv(~, ~)/d~}~:~ . 

If we take into account eqs. (1.16) and (5.6), the compressibility modulus 
becomes 

(5.23a) K = 6% -~  3(b -- zF) ~(UF), 

where (apart from factor nF) ~P(nF) is the first-order logarithmic derivative 

(5.23b) 

The parameter ~(uF) is a crucial one for testing the validity of a nuclear-matter 
theory. So far it has been ignored because of the lack of reliable information 
on K: such information can be extracted from the data only by means of a 
unified theoretical scheme suitable to match the saturation prescriptions of 
nuclear matter with the phenomenological information concerning the scat- 
tering of neutrons from heavy nuclei. Equation (5.5), combined with the optical 
transformation (1.19), opens the way towards the achievement of this goal. 

As already stressed, the importance of eq. (5.5) in the construction of a 
realistic description of nuclear matter is centred upon its intrinsic capability 
to account rigorously for the Hugenholtz and Van Hove theorem. A similar 
central role in solid-state physics is possessed by Koopmans' theorem (~3), which 
is essential to the interpretation of solids in terms of energy band structures (24). 
Both theorems, although proved along substantially different theoretical lines, 
lead to the same conclusion: this circumstance seems to reveal a common 
conceptual background. Serious mathematical complexities discourage any 
attempt to summarize the proof of the Hugenholtz and Van Hove theorem. 
We shall limit ourselves to recalling the most significant stages of the proof: 

(2a) T. KOOP:~A~S: Physica (The ttague), 1, 104 (1933); see also W. JoN~s and N. H. 
MARe~: Theoretical Solid State Physics (London, 1973). 
(~4) W. A. HARRISON: Solid State Theory (New York, N.Y., 1970). 
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a) in a Fermi  gas with in teract ion at  the absolute zero of tempera ture ,  
the single-particle to ta l  energy has a physical  meaning only for particles of 
m ome n tum  p close to the Fermi  momentum sF; b) the single-particle energy 
states are metas table  with a l ifet ime approaching to infinity at  the limit 
p --> xF; c) the  l imit ing value w r of the single-particle to ta l  energy is the  pole 
on the  real axis of a complicated analyt ic  function,  defined as the sum of con- 
t r ibut ions  of all connected diagrams with one ingoing and one outgoing par- 
ticle line: quan t i ty  wF, consistent  with eq. (1.13), becomes physically more 
significant by  v i r tue  of definition (1.14). We recall t ha t  Koopmans '  theorem 
proves t ha t  the energy required to remove f rom a solid one electron in a Har t rec-  
Fock  s ta te  g]~ is the eigenvalue ws of the  Har t ree -Fock  equat ion for ~s.  More 
specifically, the difference in the  to ta l  energies calculated by  using Slater 
de terminants  with h r and with h r -- 1 wave functions (trader the  assumption 
t ha t  in bo th  cases the individual  one-electron wave functions are the  same) 
is found to be equal to the I la r t ree -Fock  pa ramete r  w~ corresponding to the state  
which has been omit ted:  at the  top  of the Fermi  sphere this is just  the  con- 
clusion reached by  the  Hugenhol tz  and Van Hove  theorem,  expressed for large 
systems by  eq. (4.7) with w(~, ~) -= w~. Fur the rmore ,  under  the  assumption 
tha t  the  electron wave functions do not  change as an electron is removed,  the  
ionization energy of a crystal  with respect  to any  given electron state  is simply 
the  Har t ree -Fock  paramete r  w~. Since the removal  of one electron changes the 
poten t ia l  of only one par t  in 5 r, one may  neglect  this change and conclude tha t  
the  Vgartree-Fock pa rame te r  in a solid is the  negative of the  ionization energy 
for the  corresponding s ta te  in a crystal  computed  in the  Har t ree -Fock  approxi- 
mation.  According to Koopmans '  theorem the  change in energy of the  system 
when one electron is t ransfer red  f rom one s ta te  to ano ther  is s imply the  dif- 
ference between the two Har t ree -Fock  parameters ,  because bo th  the  initial- 
and final-state energies m a y  be direct ly re la ted to the same ionization s ta te :  
it  follows tha t  the  calculated energy bands can be conceived as one-electron 
energy eigenvalues. Since the  effects of the  electron-electron in teract ion do 
not  change much in going f rom the  free a tom to the  solid, one m ay  argue t h a t  
Koopmans '  theorem is valid for a crystal  only if it  is val id for the  free atoms 
t ha t  const i tu te  the crystal.  Translat ing all this into nuclear-mat ter  language 
is indeed intriguing. Two questions t hen  arise: a) do the  Hugenhol tz  and Van 

Hove  theorem and Koopman 's  theorem provide the theoret ical  clue for describ- 
ing mult inucleon and, respectively,  mult ieleetron systems as (( independent-  
part icle  systems ~?; b) does the  in terpre ta t ion  of a solid in te rms of energy 
band  s t ructures  correspond--mutatis mutandis---to the  description of a nucleus 
in terms of energy shell s t ructures? Finally,  is eq. (5.5) also valid in solid-state 
physics? Alas, I have no exact  mathemat ica l  answer to these questions. 

5"2. - The single-particle potent ia l  energy v(p, ~), calculated in the  frame- 
work of Brueckner ' s  theory,  is incompatible with eq. (5.5): this circumstance 
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makes it  difficult to assess all the  merits  of Brueckner ' s  work, whose importance 
can be judged only f rom its overall  impact  on our unders tanding of nuclear 
mat te r .  

We have already verified in sect. 4 t ha t  v(p, ~), given by  eq. (2.1a), posses- 
ses p rope r ty  (4.5): therefore,  i t  also fulfils eq. (5.5). We shall now ver i fy  tha t  
also v(p, n), expressed by  eq. (2.1b) for p > n ,  is a par t icular  solution of the  dif- 
ferent ial  equat ion of nuclear mat ter .  One has 

(5.24a) ~, v(p, 

(5.24b) ~ v(p, 

(5.2@) ~, v(p, 

(5.24a) ~ v ( p ,  

u)  ---- - -  ( l / p ) v ( p ,  ~ ) -  y~(p, ~ ) ,  

~) = - (2/p) ~, v(p, ~) + to(p,  ~) - F(p ,  ~) , 

z )  = - XTo(p,  ~) , 

~) = -- (l/n) 3~ v(p, ~:) -- F(p,  ~) , 

where functions v,(p, ~) (v ---- 0, 1) and F(p, ~:) are defined as follows: 

(5.25a) 

(5.25b) 

�89215 

el .  ~(P' ~:) --  ~M p  (q)(2q - -  p ) ' d q ,  
�89 

r(p, ~1 = (~/4~p)[(p + ~)f{(p + ~1/2} + (p - ~ ) ~ { ( p -  ~)/2}]; 

using relations (5.24) it  is t r ivial ly checked t h a t  eq. (5.5) is satisfied. I t  has 
to be stressed tha t  the  differential  equat ion of nuclear m a t t e r  governs the 
p-dependence of v(p, ~r also for p >~p(0) ~ uv consis tent ly  with the separation 
energy theorem valid at p ~ • this is the  most  remarkable  feuture of the 
Hugenhol tz  and Van Hove  approximat ion  of infinitely ex tended nuclear ma t t e r  
as far  as the  optical  model is concerned. 

We shall now prove t ha t  unother  par t icular  solution of eq. (5.5) is provided 
by  v(p, ~) calculated in first-order pe r tu rba t ion  theory.  To this end we con- 
s t ruct  the nuclear wave funct ion,  an t i symmetr ic  with the interchange of all 
the  co-ordinates of any pair  of nucleons, in Slater 's de te rminanta l  form from 
different individual wave functions for single particles. To represent  the ground 
state  of the bound system idealized as ((infinitely ex tended nueleur ma t t e r  ~) 
composed by  A interact ing nucleons, one has to take  into account  t ha t  the  A/4  
spatial  wave functions of lower momen tum are associated, each in turn,  with 
all four spins and isobaric spin wave functions.  The potenti.fl energy of nuclear 
ma t t e r  in first-order per tu rba t ion  turns  out  to be 

(5.26) V(x) = �89 S {{~zfl]VcJa/~, x - -  {~/~lVc, I/~>)r , 

where the  symbol S indicates the operations of in tegrat ion and summat ion 
over the nucleon states In} and [fl} in co-ordinate,  m o m en tu m  spin and isobaric 
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spin spaces. We assume tha t  the centra l  nucleon-nucleon potent ia l  Vc is a 
regular funct ion of r~ so tha t  we do not  have to  c i rcumvent  the well-known 
problems arising from the  conjectured existence of a hard  core. More specifi- 
cally, we assume tha t  Vc ~ Vc(r) is a second-order two-nucleon central poten- 
tial deduced from the  PS-PV Yukawa theory  with an extended source, suitable 
for simulating core effects (suggested by  the  low-energy nucleon-nucleon elastic- 
scat ter ing data  and by  the  description of the deuteron S-state) wi thout  the  
necessi ty of resort ing to unphysical  discontinuities introduced ad hoe in the 
radial  behaviour  of Vo(r). Using s tandard  notat ion,  the two-nucleon potent ia l  
we have in mind reads 

(5.27a) Vc(r) = Vo Dove(r),  

(5.27b) Vo = (#e~/3)(ff/2M)2g ~ , 0 o  : (a~'a~)(%.%), 

where the  radial  behaviour  of the  regular  funct ion vc(r) need not  be specified 
in view of our  fu r ther  considerations; fur thermore,  we assume tha t  Vo(r) pos- 
sesses the p roper ty  (,5) 

(5.27e) f Vc(r) dr  = 0 . 

The ordinary and exchange contributions to (5.26) are 

(5.28a) 

(5.28b) 

(5.28c) 

V(~) =Vd(x ) -V  ,,(~), 

Vo,a(u ) : (Vo/2)[ ~ (ij[Oc, Iij>][Ib(abIvo]ab>], 
i , j= l  

4 

~:o~(~) = (Vo/2)[ 2 <OlO~lJi>] [la<ablvclba>], 
i , j~l  

where symbol | indicates the operations of integrat ion over all the  occupied 

states [a) ~ Irl; p l ~ p )  and Ibm= I r ~ ; p 2 - - q ) .  Since 

4 

(5.29) [ (ablvc[ab = O, ~ ( i j lOol j i  ~ : 36,  
i , j~ l  

(25) A one-pion nucleon-nucleon exchange potential of type (5.27) has recently been 
deduced in the framework of the static PS-PV theory of nuclear forces with an ex- 
tended meson source density, which accounts for the presumptive spatial dimensions 
of the quark confinement region. For our purposes it is relevant to remark that such 
a potential possesses realistic physical features without resorting to the ad hoc intro- 
duction of the hard core and to cutting-off procedures at short distances (C. VILLI: 
Nuovo Cimento A, 67, 178 (1982)). 
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where the  first of (5.29) arises f rom p rope r ty  (5.27c) (~6); the  po ten t ia l  energy 

of nuclear  m a t t e r  becomes 

(5.30) V ( u )  = - -  1 8  Vol b<ab [ v c l b a >  . 

Let  Cp(rl) be the  p lane-wave  funct ions describing the  generic nucleon (~ 1 ~) 

of m o m e n t u m  pl  ~ p < u ,  etc. ; one has  

(5.31) [<ab[vc[ba> 9A(A  --  1) 1H/" .~ - -  2 5 6 ~ x  ~ j (lP--ql)dpdq' 

(5.32) 
$ $ H(Ip -- ql) = -~  l Op(rl)r162162 drl dr~ , 

~ d - J  

where ~2 = ( 4 ~ / 3 ) R a =  3~r~A/2n a. We now pe r fo rm the  co-ordinate  t rans-  
fo rmat ion  

(5.33) r = r 1 -  r ~ ,  s = 1@1 - ~  r~) ;  

since the  J acob ian  is equal  to 1, the  in tegra t ion  over  the  var iable  s gives the  

volume fac tor  ~2 and,  a f t e r  two angular  integrat ions,  i t  is found tha% 

(5.34a) 

(5.34b) 

2 7 A V o / ' K  
V(x)-- - f f ~ J  ( j p - - q l l  d p d q  , 

co 

K(lp-- ql) =frvc(r){sin (IP-- q[r)/lp-- ql}dr ~ K ( 2 P ) .  
o 

Finally,  compar ing  eq. (5.34) wi th  eq. (2.3), one has 

(5.35) v(p, ~) ---- --  (qVo/2~) fK( Ip  -- ql) dq . 

The G(2P) funct ion  appear ing  in eq. (2.5) is 

(5.36) G(2P) = - -  {6Vo/(A --  1)~r) K ( 2 P ) .  

(~6) This is also true for the central potential deduced from the old PS-PV theory 
with a pointlike source, provided one takes into account the contact interaction term 
expressed by the delta-singularity. In the older literature it was customary to omit 
this term, because for r >  0 it does not influence the wave function of the two interacting 
nucleons. Also in this case, however, it was generally assumed, in first-order perturba- 
t ion calculations, that  the ordinary part  of the total energy of nuclear matter be equal 
to zero (L. ]~0SENFELD: Nuclear 2'orees, Part  I I I  (Amsterdam, 1948); see also R. HUBY: 
Pvoe. Phys. Soe. London Sect. A, 62, 62 (1949)). 
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Equat ion (5.35) can easily be worked out and one obtains 

(5.37) 

c9 

v(p,  u) = - -  (18V0/z)u2frvc(r)jo(pr)j~(ur) d r ,  
0 

where jo(x) and j~(x) are spherical Bessel functions 

(5.3s) jo(x) = sin x / x  , j l ( x )  -~ sin x / x  ~ - -  cos x / x  . 

Since re(r) is supposed to be a continuous function of r, we can derive eq. (5.37) 
under the integral sign. I t  is found tha t  

(5.39) ( ~  + (2/p) ~ - -  ~ + (2/z) ~ )  (z~jo(pr)j~(• : 0; 

thus the single-particle potential  energy (5.37) satisfies the differential 
equation of nuclear mat te r  and, consequently, it  possesses property (4.5) (~7). 
In  conclusion, the Hugenholtz and Van Hove theorem is formally fulfilled 
in first-order perturbat ion theory,  but  the  observed value of b v cannot be 
obtained for any  reasonable value of the length ro and the PS-PV pion-nucleon 
coupling constant  g~. Funct ion v(p,  z), calculated in first-order perturbat ion 
theory on the basis of a nucleon-nucleon potential  characterized by  a repul- 
sive hard core at  short distances, does not fulfil eq. (5.5); the conventional 
t r ea tment  of the hard  core in a many-body system leads to results which violnte 
the t tungenholtz and Van Hove theorem, thus simulating the existence of the 
so-called re-arrangement energies, already discussed in sect. 4: this is generally 
t rue if the preceding calculations are carried out by  taking into account the 
concept of (( healing distance ~, introduced by GorEs,  WALECKA and Wmss-  
x o r r  (~). 

6. - Solutions of  the differential equation of  nuclear matter. 

6"1. - We shall seek for solutions of eq. (5.5) by expanding v(p,  ~) in power 

series of p, i.e. 

(6.1) v(p, u) = ~ A.(u)p" , 
n = 0  

(~7) A. L. F~T~R and J. D. WALECKA: Quanium Theory o] Many-Par t ide  Systems 
(New York, N. Y., 1971): it is readily verified that the single-particle potential energies 
given in formula (40.17), p. 355, in formula (40.18), p. 356, in formula (41.51), p. 369, etc. 
are particular solutions of the differential equation of nuclear matter. 
(28) L. C. Go~.s, J .D.  WALv.CKA and V. F. WEISSKOPF: Ann.  Phys. (N. Y.), 3, 241 
(1958). 



A M A T H E M A T I C A L  A P P R O A C H  TO THE N U C L E A R - M A T T E R  P R O B L E M  6 3  

where  A,(u) are  u n k n o w n  func t ions  of the  l imi t ing  m o m e n t u m  u. Subs t i t u t i ng  

eq. (6.1) in to  eq. (5.5) i t  is f o u n d  t h a t  

(6.2) ~ n(n --  1) A,(~)p *-2 + 2 ~ nA~(~)p ~-~ : ~ (~A,(~)} p~,  
n~2 n= t  ~=0 

where  we have  i n t r o d u c e d  t he  different ial  ope ra to r  (D--~ d/du) 

(6.3) ~ = D 2 -  (2 /n)O.  

Replac ing  n - - 2  wi th  n in t he  s u m m a t i o n s  on the  l e f t -hand  side of eq. (6.2), 

one has  

(6.4) 
c o  

(2/p)A~(=) -F ~, [(n -~ 2)(n -F 3)A,,+~(x)-  ~A. (u ) ]p"  =-- O; 

consequen t ly ,  i t  n m s t  be 

(6.5a) 

(6.55) (n -~ 2)(n ~- 3) An+2(x) = ~An(x) . 

F r o m  cond i t ion  (6.5a) i t  follows t h a t  only even powers o] the nucleon momen- 
tum p appear in expansion (6.]) (29,~o). 

(29) The expansion of v(p, ~) in even powers of p has been used previously, without 
any mathematical justification, with the purpose of describing the p-dependence only 
near p = 0. Originally it was privately suggested to K. A. BRUEC~NE~ by J. A. 
WHEELER (see K. A. ]~RUECKNER: Phys. Rev., 97, 1353 (1955)). The drawbacks of va- 
rious attempts to describe, even approximately, the nuclear-matter behaviour by using 
such an expansion were due to the fact that  the n-dependence of v(p, ~) was completely 
unknown: we now know that  the n-dependence of the single-particle potential energy 
is governed (to a very high degree of approximation) by eq. (5.5). 
(ao) The ignorance of the existence of eq. (5.5) (and of its mathematical implications) 
has led--even on an approximate ground-- to  serious misunderstandings of the funda- 
mental properties of infinitely extended nuclear matter. For example, the theoretical 
credibility of its claimed superiiuid character is largely spoiled by such misunderstandings. 
A disconcerting proof in support of this opinion is given in a note by K. L. MILL, 
A. M. SESSLER, S. A. MOSKOWSKI and D. G. SttAUKLAND (Phys. Rev. Lett., 3, 383 (1959)): 
apart from several other critical remarks, it has to be pointed out that  a) the single- 
body potential energy, given by their formula (9), does not fulfil eq. (5.5) and, therefore, 
conflicts with the saturation prescriptions (1.5) (for instance, for uF = 1.4 fm -1 it is 
found that  by= 0.15 MeV(!) instead of b v = - -  15.5 MeV as assumed by the authors); 
b) the calculation of the effective mass is incorrect and c) the interpolation formula, 
given in note (5), is wrong because the cubic power of the nucleon momentum is not 
allowed 
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Let  N be the max imum v~lue of n in expaRsion (6.1), which we re-write in 
the form 

2 z  

~(~v) X 2n (6.6) v<m(p, u) ---- ~ ,, ( )p 

this means t ha t  all te rms corresponding to n ~ N are assumed to  be zero, i.e. 

(6.7) 13 (~) tu~ = 0 N + v x  s 

for ~ = 1, 2, ...; The functions B~)(x) satisfy the recurrence relations 

(6.8) (2n + 2)(2n Jr 3)/3 c~ t~r = ~B~)(x) 
n+l\ / 

I t  follows tha t  the  de terminat ion  of the functions lT($)(u) can be carried out  by  
solving the  system of differential equations 

(6.9) 
2;v(2N + 1) B~">(x) 

�9 . , . ~ �9 . ~ �9 

�9 ~ ~ ~ . . . . �9 

0 = I B ~ ( ~ ) .  

The solutions of the  system are 

(6.10) 

- - 2 2 7 - 1 - 1  ~ - - 2 ~  ' 

�9 ~ ~ �9 ~ �9 �9 �9 ~ ~ 

�9 ~ ~ ~ �9 ~ �9 �9 �9 �9 

where (7 (~) -227+1 are 2N -t- 1 a rb i t ra ry  integrat ion constants.  Taking into account  
conditions (5.2) and (5.3), we must  pu t  equal to zero all the  constants which are 
not  mult iplied by  the  l imit ing momen tum u, thus reducing thei r  number  to 
N ~- 1 ; in conclusion, functions (6.10) are physically significant provided 

(6.11) C ( • ) =  ( (~ )  = 0 
2 N  - - 2 N - - 2 =  . . . .  

I t  is worthwhile to remark  tha t ,  owing to conditions (6.11), /unction v(p, ~) 
depends only on the odd powers of ~ ( ~  with n > 3). 
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6"2. - We shall now solve eq. (5.5) assuming that the single-particle po- 

tential energy v(p, ~) is a separable function of p and ~, i.e. 

(6.32) v(p,  ,~) = vx(p) v2(;z); 

the  ana ly t ic  fo rm (6.12) has never  been used before in nuc lea r -mat te r  calcula- 
t ions (31). Subs t i tu t ing  (6.12) into eq. (5.5) one has 

(6.1:}) v~ v,(p)/vl(p) = ~v~(~)/v~(~), 

where V~ = d~/dp ~ -F (2/p)(d/dp) is the  <~ radial  ~> p a r t  of the  Laplac ian  oper- 

a tor  in m o m e n t u m  space. Bo th  t e rms  of eq. (6.13) m u s t  be equal  to  a real  con- 

s t an t  c0; one has 

(6.14) (V~-  co)v,(p) = O,  ( ~ -  co)vs(~) = O . 

I t  is a priori unknown whether  co is a real,  negat ive  quan t i t y  (co = - -  ~2) or a 
posi t ive one (co = f12); thus the  differential  equat ions to  be  examined  are 

(6.15a) (V~ -~ ~c 2) v~(p) : O ,  (~  Jr- ~2) v2(~) : O ,  

(6.15b) (V~-/~2) vl(p) : O, ( ~ _ / ~ 2 )  v2(~) = O. 

The solutions of eqs. (6.15) mus t  be sought  for b y  requir ing t h a t  the  following 
conditions be  satisfied: 

(6.16) vt(0) = c o n s t ,  vl(oo) = 0 ,  v~(0) = 0 .  

I t  follows t h a t  a) the  first of eqs. (6.15a) for p < u possesses the  general  integral  

(6.17) Vl(p) = Cl{sin (~p)/p} , 

where C~ is an  a rb i t r a ry  cons tant ,  whereas  the  solution for p > u has to be 

re jec ted  because a sympto t i ca l ly  oscil latory;  b) the  first of eqs. (6.15b) is a 

Klein-Gordon equat ion  in m o m e n t u m  space:  for  p < u its solution is g iven b y  

a Hul th6n  funct ion,  which turns  out  to  be  incompat ib le  wi th  the  sa tura t ion  

prescript ions (1.5), and  for p > u is expressed b y  the  Yukawa  funct ion 

(6.18) Vl(p) = r [ - -~p] /p},  

(3x) Only two-body factorable potentials have been used so far in nuclear-matter cal- 
culations, following a suggestion of K. M. WATSO~ to K. A. BRUV.Cx~v.~ (see K. A. 
BRUECKN~.R and W. WAZ)A: Phys. Rev., 103, 1008 (1956)). 

5 - I t  N u o v o  C i m e n t o  A .  
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where C~ is a new arbi t rary  integration constant.  Thus the p-dependence of 
the factorable single-particle potential  energy (6.12) in the interval  0~<p~<oo 
is obtained by linking by cont inui ty  at p = u : -uF functions (6.17) and (6.18) 
and their  first derivatives: this is ensured provided 

(6.19) C1 = 1 ,  C~ -- C~(uF) = exp [fluF] sin (aur) 

and  the  parameters  ~ :-- :r and fl -- fl(~F) satisfy the equation 

(6.20) (1 -~- f lgv) jo(O~gv)  : Or , 

where jo(X) and j l ( x )  are the spherical Bessel functions specified in eqs. (5.38). 
In  conclusion, the factorable single-particle potential  energy (6.12) reads 

(6.21a) v(p, u) = v2(u)(sin (~p) /p}  , p < ~ ,  

(6.215) v(p,  u) : v~(u) C2(ur) (exp [-- flp]/p} , p > ~ . 

From the preceding considerations it follows tha t  v2(~) is the solution of the 

equation 

(6.22) ( ~  Jr- o~2)v~(u) : -  0 .  

By means of the t ransformation 

(6.23) v2(u) : xz(u) 

we eliminate the first-order derivative appearing in ~ and obtain the equation 

(6.24) D ' z ( u )  ~- {:d--(2/u2)z(u)} = 0 .  

A solution of eq. (6.22), vanishing at  the origin as required by conditions (5.2) 

and (5.3), is 

(6.25) v~(u) = Ca{sin (au) - -  (<zu) cos (~u)} , 

where Ca is an integration constant.  In  the forthcoming discussion we shall 
examine the  single-particle potential  energy (6.21) with v~(u) expressed by 

eq. (6.25)(as). 

(s~) General solutions of the differential equation of nuclear matter have been searched 
for by T. A. MINF.LT.I: A t t i e  Memorie dell 'Aeeademia Patavina di Scienze, Lettere ed Art i ,  
Vol. LXXXV, Part. II (1972-1973). 
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7. - Constraints imposed by the saturation prescriptions on the solutions of  
the differential equation o f  nuclear matter. 

As is well known, the  saturat ion prescriptions (1.5) and the separation 
energy theorem (1.15) are necessary, bu t  not  sufficient, conditions for proving 
the capabil i ty of a theory  to  outl ine a realistic description of nuclear mat te r :  
any  theory  const ructed  for this goal only deserves l imited credit  a pr ior i  

(actually such a goal has not  ye t  been achieved satisfactorily). For  this reason 
we shall regard b and ro as input  parameters .  Our aim is to build up a nuclear- 
ma t t e r  description which, by  construct ion,  fulfils eqs. (1.5) and (1.15), and then  
use such a description in order to de termine  parameters  b., ro and K, con- 
sis tently with the phenomenological  evidence on the energy dependence of the 
real pa r t  of the optical  potential .  

We shall adopt  the  following notat ion:  

(7.1a) w(~)(zF, x~) = ~ § v~)(~, z,) ,  

(7.1b) V(~'(~) = (3A/S~)fv~)(p,  ~) dp , 

(7.1c) Kc~) = (6/5)% + (llA) (u~DVr 

where 2r indicates the order  of approximat ion  on solutions (6.6), obtained 
by  series in tegrat ion of eq. (5.5). We shall indicate with the  nota t ion 
w(gF, ~%), V(u) and K the  same quant i t ies  calculated with the solutions of 
eq. (5.5), obta ined by  variable separation. 

For  the reader 's  convenience we give in table I the values of the Fermi  
momentum and those of the Fermi  energy as functions of the nuclear length to. 

TABLE I. -- The ~ermi  momentum ~F (in units 1/fm) and the _~ermi energy e F (in MeV) 
calculated as ]unctions o] the nuclear length r o (in fm units). 

ro gF ~F ro uF eF 

0.9 1.6925 59.38 1.2 1.2693 33.40 

1.0 1.5232 48.09 1.3 1.1718 28.46 

1.1 1.3848 39.75 1.4 1.0880 24.54 

7"1. - The _~ -~ 0 approximatiol l  is not  significant. 
the  differential equat ion 

Func t ion  8(o~)(~) obeys 
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the  mom e n tum dependence of v(p, ~) is lost and one has 

(7.2b) 3 ~ 1  "~ 

where we have pu t  (-(o)= 0. Equa t ion  (7.2b) represents  a potent ia l  weil in - -1  

mom e n tum space: this description of the  single-particle potenti,~l energy is 
not  compatible with nuclear stabili ty.  

The N ---- 1 approximat ion is obta ined by  solving the system of differential 

equat ions 

(7.3) 

it  is found 

(7.4a) 

(7.4b) 

~8:,,(~) = 6sil,(~), ~B?,(~) = 0; 

vC,(p, ~) = ~(~'(~) -k B~/(~)P ~ , 

= C 1 ,~ B(~'(z) = C~("~,~ , 5 "'3 ~' 

where we have pu t  C~)= 0; note  tha t  an unessential  factor  �89 has been 
included in the  integrat ion constants  C (~) and (-(1) I t  is readily verified tha t  - -3  ~ 1  " 

the  funct ion Q(u), calculated with (7.4), is identically zero. The u-dependence 
found for V(1)(u) shows tha t  the  interpolat ion formula repor ted  by  BETttE (as) 
is wrong. The to ta l  energy of a single nucleon having momentum p in the 

Fermi  sea is 

(7.5a) 

(7.5b) 

= B0 (z~), w~1)(p, :%) ---- (p~/2M) -f- v~l~(p, • (p~/2M*) -t- (1~ 

M/M* = 1 -k 2MB~I)(uF); 

in the  considered approximat ion both  definitions (3.5) and (3.6) lead to the 
analyt ical  expression (7.5b) for the  nucleon effective mass. According to 
eqs. (7.5), the nucleon is described as a free part icle in motion in the  potent ia l  

Well ~(oll(ur) with momen tum p <uF and constant  effective mass M*: as is well 

known, this is the  e//ective-mass approximation. 
The two unknown constants  g(1) and (:(~) arc de termined from the saturat ion - -3  - -1  

prescriptions (1.5). The following system of linear equat ion is found:  

(7.6) 6 5 if(l) + 5u~ C (1~ ---- lOb  - -  6e~ ,  lOx~ C (11 ~- 15~r. 3 ~1r'(1) __ - -  4 % ,  
• F  - -3  - -1  3 

the  solutions of which are 

(7.7) u5 f c l )~  ( % _  5b,)/2,  .3 t-(l)_ ( 2 5 b -  9er)/5 ; 
F %'3 ~ F  %'1 - -  

(aa) H. A. B~,THE: Anna. Rev. 2Vucl. Sci., 21, 93 (1971); see also W. KUNDT and E. T. 
N~.WMAN: J. Math. Phys. (hr. lr.), 9, 2193 (1967). 
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therefore, the coefficients of the single-particle potential energy (7A) read 

(7.8) (~) : xFB~ (xF) ---- (%-- 5b)/2 . Bo (~F) ( 7 b -  38F)/2 , ~ (~) 

Using eqs. (7.7) one has 

(7.9) 

(7.10) 

M*IM = ~/{~.  § r~ Cl ~>} = 5 b ) ,  

K m (6/5)%_ t_ 12~,C(a~) l_ .3r-(1) ---- 3~,~.~ ---- (3/5)(3%-- 2 5 b ) .  

The to ta l  energy of a single nucleon at  the  Fe rmi  surface is 

(7.11a) w(1)C%, ~p) ---- s F ~ (8 /5 )~  C(1) -I- " 3 r-(1) --3 ' ~ F  ~"i " 

Subst i tu t ing parameters  (7.7) in eq. (7.11a) i t  is found t h a t  

(7.11b) w(1)(~F, ~F) ---- b,; 

thus  the saturation prescriptions (1.5) are consistent with the Hugenholtz and 
Van Hove theorem (1.15), because the single-particle potential energy (7.4), although 
expressed in N - ~  1 approximation, is nevertheless an exact solution o] the di/- 
]erential equation o] nuclear matter. 

The numerical  results of the  5 r = 1 approximat ion are given in table I I  
as functions of the  input  parameters  ro and b v. The values of the  ratio M*/M 
and those of the  compressibil i ty modulus express the  ul t imate  result  of the 
effective-mass approximat ion:  to the  author ' s  knowledge they  have never  been 
evaluated  before by  taking exact ly  into account  the saturat ion prescript ion 
and the  separat ion energy theorem (34). The most  appealing pecul iar i ty  is t ha t  
bo th  the  effective mass and the  compressibili ty modulus increase as % de- 
creases: this fact  has s t imulated the  considerations developed in sect. 4. 

7"2. - The N---- 2 approximat ion  is obta ined by  solving the system of dif- 
ferent ial  equations 

(7.12) ~B(o2)(u) : 6B~)(~), ~B~)(x) ~- 20B(221(u), ~B~)(u) ~- O ; 

(34) The effective-mass approximation without the knowledge of the k-dependence of 
v(p, u) has been extensively used by K. A. BRV]~CK~ER and W. WADA: Phys. Rev., 
103, 1008 (1958): it can be readily proved that the quoted results do not fulfil the first 
of equations (1.5) and the separation energy theorem (1.15). 
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TABLE I I a .  - N = 1 
of t h e  s ing le -par t i c le  

C. VILLI  

a p p r o x i m a t i o n .  N u m e r i c a l  va lues  (in MeV) of t h e  coefficients 
p o t e n t i a l  ene rgy  (7.4) as f u n c t i o n s  of r o (in fm un i t s )  a n d  b~. 

r o b v = - -  14.0 MeV by : - -  15.0 MeV b,, = - -  16.0 MeV 

0.9 - -  134.53 63.51 - -  138.03 66.01 - -  141.53 68.51 

1.0 - -  118.27 58.09 - -  121.77 60.59 - -  125.27 63.09 

1.1 - -  106.25 54.08 - -  109.75 56.58 - -  113.25 59.08 

1.2 - -  97.10 51.03 - - 1 0 0 . 0 6  52.99 - - 1 0 4 . 1 0  56.03 

1.3 ~ 89.99 48.66 - -  93.49 51.16 - -  96.99 53.66 

1.4 - -  84.34 46.78 - -  87.84 49.28 - -  91.34 51.78 

TABLE I I b . -  N = 1 a p p r o x i m a t i o n .  N u m e r i c a l  va lues  of t he  r a t io  M * / M  a n d  t h e  
compres s ib i l i t y  m o d u l u s  K a) (in MeV) as func t ions  of r o (in fm un i t s )  a n d  b~. 

r o b ,  ~ - -  14.0 MeV b, : - -  15.0 MeV b~ : - -  16.0 MeV 

M*/M K (1) ~(I*/M K (1) M*/M K (1) 

0.9 0.473 312.63 0.463 327.63 0.454 342,64 

1.0 0.443 293.12 0.432 308.12 0.423 323.12 

1.1 0.414 278.71 0.401 293.71 0.392 308.70 

1.2 0.386 267.73 0.375 282.73 0.364 297.73 

1.3 0.360 259.19 0.348 274.19 0.337 289.19 

1.4 0.335 252.41 0.323 267.41 0.313 282.40 

i t  is  f o u n d  t h a t  

(7 .13a )  

(7 .13b)  

= C~ ~ + ~ , - ~  ~ +  

C3 ~ ~)(~) = 2C~2)~ + t~) 

/3~ ( ~ ) =  Q~)~ ,  

w h e r e  w e  h a v e  p u t  C ( 2 ) :  (:~2~= 0 as  r e q u i r e d  b y  c o n d i t i o n s  (6 .11)  ( n o t e  v2 --4 

t h a t  a n  u n e s s e n t i a l  f a c t o r  �89 h a s  b e e n  i n c l u d e d  i n  t h e  i n t e g r a t i o n  c o n s t a n t s  -5 C(2~ 

a n d  C ~ ) .  W e  s h a l l  n o w  b r i n g  t o  l i g h t  o n c e  m o r e  t h e  s u b t l e  l i n k  e x i s t i n g  

b e t w e e n  s o l u t i o n  (7.13)  of  t h e  d i f f e r e n t i a l  e q u a . t i o n  (5.5) a n d  t h e  H u g e n h o l t z  

a n d  V a n  H o v e  t h e o r e m .  T o  t h i s  e n d ,  w e  u s e  t h e  s i n g l e - p a r t i c l e  p o t e n t i a l  

e n e r g i e s  (7 .13)  i n  o r d e r  t o  d e d u c e  f r o m  eqs .  (1.5) t w o  e q u a t i o n s  i n  t h e  u n -  
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known parameters  C~ 5), -3 C(~) and ~r-(5)', t hey  are 

(7.14) 
72~ F C 5 2 r- 42u~ (-(2) : 70b,-- 42% 

--3 --i ' 

, ( 5 )  + - ~ F  i = - - 1 2 e , ;  72x F C 3 + 30u~-5 C(2) 15- 3 5(5) 

( '(5) the  solutions -3 C5~ and _~C (5) of system (7.14), expressed as functions of ~5, are 

(7.15) 
{ .~r(5)__ (I/2)sF-- (5 /2)b- -  7 (~) (24/7) ~ Q , 

C (2)- 5 b  (63/35) % + ~ (5) - -  (72/35) ~F Cs ~ F  --1 - -  

The single-particle to ta l  energy at  the  Fermi surface is 

(7.16a) w(5)(u~, xF) = sF + (24/7)" '~ ~'5r(2)1-" (8/5) u~ Ca(5) -~ - ur3 -~(-(5)', 

subst i tut ing eqs. (7.15) into eq. (7.16a) it  is found Chat 

(7.16b) w(5)(uF, uF) = b ,  

thus the Hugenholtz and Van Hove theorem is fulfilled for any  value of 
u~ C (2). Let  us suppose we ignore the interlacement existing among the solutions 
of the differential equation of nuclear ma t t e r  and the separation energy 
theoreni. Then, one could be tempted  to determine the three unknown par- 
ameters C~ 5~, C (5~ and (:(2) as solutions of the system of three linear equations --3 --1 

composed by eqs. (7.14) and eq. (7.16), which reads 

(7.17) 120u~(:(2)-~ �9 5 (2) 56z FC~ + .3r(5) -5 35~F ~l --~ 3 5 ( b -  %) 

To reach this goal one needs to evaluate determinant  A(uF) of the system, 
which must  be different from zero; it  is found tha t  

(7.18) A(zF) = 

35# 

30 I 

35z  

= 0 .  

The result expressed in eq. (7.18) is self-explanatory: saturation prescriptions 
(1.5) are consistent with the Hugenholtz and Van Hove theorem (1.15), because 
the single-particle potential energy (7.13), although expressed in .N ~- 2 approxi- 
mation, is nevertheless an exact solution o/ the di]]erential equation o] nuclear 
matter. 

As a thi rd  equation we choose the analytic form of the single-particle 
potential  energy of zero momentum at  the Fermi sphere. From eq. (7.13) 
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it is found tha t  

(7.19) ---- (3/7)u~C~ + (3/5)u~C(2>+ ~C~ ~, --3 

where v(2)(0, nF) ~ v(0, ~ )  is supposed to be a known parameter .  The system 
of linear equations required for the  determinat ion of the parameters  C~ 2), C~ 2) 
~nd C~ ~) is 

7 [~) - ~ .  8 r{2) 

72zF C~ ~ 30u~ C (2) + -- 12z~, (7.20) 7 (2) ~ . 3 r(2) 

7 (2) -8 35z~ C~ ~ 35v(0, u~); 

the solutions are 

(7.21) 

~7 f(2) _ (7/2) ~ - -  (49/6) b + (7/3) v(0, z)F , 
F ~ 5  - -  

~5 r(2)_ (51/2)b -- (23/2) %--  8v(0, u~,), 
F ~ 3  - -  

4 (-(2)_ (27/5) e F -  (59/5)b, + (24/5)v(0, uF) 

A check tha t  solutions (7.21) are exact  can be carried out by  replacing 
them into eq. (7.16a): then  eq. (7.16b) is found! The coefficients of the single- 
particle potent ial  energy (7.13) are 

(7.22) 

{ B~>(~) = v(o,~), 

u~ b(~2)(uF) ---- (55i6)b -- (9/2) e F -  (10/3) v(0, uF), 

~F' B(2)C~2,F)= (7/2)~F-- (49/6)b~ + (7/3)v(0, ~F) 

A check tha t  coefficients (7.22) are exact can be carried o u t  by  put t ing 
B~2){uF)-~ 0; i t  is found tha t  

(7.23) v(0, gF) = (7i2)b -- (3/2) % ~ B(o~)(gF), 

whereas, subst i tut ing eq. (7.23) into the second of eqs. (7.22), one finds the coef- 
B o (~),  characterizes the effective-mass ficient B~II(~F) which, together with (~) 

approximation. The compressibility modulus turns out to be 

(7.24) 
12~FC8 + .8r(2) (216/5)~F c5 + K(~)=-(6/5)~F+ ~ (2~ 5 (2) 3 ~ 1  , 

[ K<2) = (15315) ~ F -  (41115) b + (96/5) v(0, uF); 

subst i tu t ing eq. (7.23) (C(521-~ 0) into eqs. (7.24) one finds /<(1) given by 
eqs. (7.10). The nucleon effective mass, calculated for p ~ 0 and p ---- ~F aC- 
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cording to the quantum-mechanical  definition (3.5), and the parameter  M** 
defined in (3.6) are, respectively, 

(7.25a) 

(7.25b) 

(7.26) 

M*(O)/M -~ 6%/(55b -- 21e F -  20v(0, uF)}, 

M*(u~)/M : 6%/(105%-- 239b~ ~- 64v(0, ~F)}, 

M**/M = 6%/{21e F -  435 ~- 8v(0, uF)} �9 

The preceding relations provide a useful tool for test ing the val idi ty of 
nuclear-matter  calculations. As an example, let us extract  the physical content  
of the empirical formul~ for the single-particle potential  energy used by 
B R U E C K N E R  ($5) 

(7.27) V(p) : - -  119 - ] -  57.3(p/~F) ~ -  7.18(p/~) 4 . 

The identification of V(p) with vU')(p, ~F), expressed by cq. (7.13a), leads to the 
system of equations 

(7.28) 

[ B(os~(SF) --~ - -  119 MeV , 

2 B(2) z~ 1 (zF) ---- 57.3 MeV, 

4 B(~) z F ~ (~.) z -- 7.18 MeV, 

2~B~)(u F) (n 0, 1, 2) are given by  eqs. (7.22). I t  is where the coefficients ~F --- 
found Chat v(~>(0, ~F) ~ v(0, ~F) ---- -- 119 MeV and 

(7.29a) b v ~ -- 6.28 MeV, % --~ 62.61 MeV, ro --~ 0.86.10 -1~ c m ,  

(7.29b) M*(O)/M : 0.522, M*(u,) /M : 0.817, M**/M : 0.593; 

the compressibility modulus is found to be K(~): 147.47 MeV. The values 
of b v and ro do not  correspond with those given by :BRUECKNER: thus,  the 
quoted paper is numerically erroneous and conceptually misleading. 

Let  us evaluate parameter  v(0, uF) by taking the limit for p - ,  0 of v(p, ~.) 
given by  eq. (2.1a), i.e. 

~FI2 

(7.30) v(0, xr) --~ -- (4/z~M)fB(q) q2 dq.  
0 

According to the classification (2.2) forward scattering amplitudes, involved 
in the  construction of ~'(q), must  be separated into even and odd nucleon- 

(35) K. A. ]~RUECKNER: Phys. Rev., 97, 1353 (1955). 



~4 C. VILLI 

nucleon spatial states;  the calculation was numerical ly performed taking 
into account  S, P and  D waves. We used the  asymptot ic  phase shifts 
determined from the analyses of the nucleon-nucleon elastic-scattering data  
by ~r MORAVCSIK and NoYES (36), ~nd by  CLEMENTEL and myself. 
Extens ive  use has been made of singlet and tr iplet  scattering lengths and ef- 
fect ive ranges. The dominant  contr ibut ion to the  integral  appearing in (7.30) 
arises f rom the t r iplet  and singlet S-wave phase shifts. The  major  difficulties 
in evaluat ing v(0, ~F) come a) f rom uncertMatics concerning the slope of the 
singlet S-wave phase shift, which possesses a max imum at about  10 MeV 
(in the l~boratory system);  b) from the fourfold t r ip le t -P  ambigui ty ,  and c) 
f rom the  insufficient knowledge in the  considered energy in terval  of the  coupl- 
ing parameters  of S and D waves. As is well known, the phase shifts can be 
var ied by  few degrees in a correlated way wi thout  using undue violence to the  
data:  the stabil i ty of v(0, • against such variat ions has not  been investigated.  
This is a weak point ,  because small variat ions of v(0, ~F) could change the sign 

of the  coefficient ~2) B~ (rF). The numericM results are given in table I I I ;  I am 

unable to assess their  degree of reliability. 

TABL]~ I I I . -  Numerical values (in MeV) o] the single-particle potential energy v(O, • 
as ]unctions o/ ~'o (in fm units). 

r o v(0, ~ )  ro v(0, ~F) 

0.9 --  141.29 1.2 --  107.31 

1.0 --  126.24 1.3 --  100.59 

1.1 --115.67 1.4 --  95.00 

The numericM results characterizing the I ~ 2 approximat ion are given 
in t~ble IV as functions of the input  parameters  r6 and b .  The values of 
~FB1 (~F) at  1.0 fm probably  be t ray  the lack of accuracy in the calculation 

of the  integral  appearing in eq. (7.30). Rat io  M*(p) /M possesses a sin- 
gular i ty  at  the Fermi  sphere: it  is seen tha t  the  singulari ty moves towards 

higher  values of ro and disappears for b v ----- -- 16.0 MeV. While in the h r = 1 
approximai ion the  concept of momentum-independent  nucleon effective mass 
has a clear-cut physical meaning, in the N =  2 approximat ion M/M*(p)  is signif- 
icant  only because it is a linear funct ion of the second-order derivat ive of the  

single-particle potent ia l  energy. The paramete r  M**/M turns  out  to be a 
slowly varying funct ion of r6 and b ;  its vMues ~re not  very  different f rom those 
charactei izing the  N = 1 approximat ion:  thus,  not  only is definition (3.6) 

(36) Use has been made of the information contained in the following reports issued 
by the Lawrence Radiation Laboratory of the University of CMifornia : UCRL 4947 (1957), 
UCRL 5348 (1958), UCRL 5566 (1959) and UCRL 6108-T (1960). 
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TABLE IV. - N = 2 approximation. NumericM vMues (in MeV) of t h e  coefficients of 
the  s ingle-par t ic le  po ten t i a l  energy  y(2)(p, u~) and  the  compress ib i l i ty  modulus  K (~) as 
funct ions  of r o (in fm units)  and  b,.. The  mass  ra t ios  M*(p)/M (p = O, p ~-uF) 
and  M**/M h a v e  been  eva lua ted  according  to eqs. (7.25) and,  respect ive ly ,  (7.26). 

b, = - -  14.0 MeV 

ZF61 (~:F) ~ B(~2)(:~F) M*(O)/M M*(uF)/M M**/M K <2) 

0.9 - -  141.29 86.04 - -  15.77 0.398 1.177 0.519 182.84 

1.0 - -  126.24 84.66 - -  18.60 0.353 2.398 0.493 140.10 

1.1 - -  115.67 85.47 - -21 .97  0.309 - -4 .671  0.479 97.94 

1.2 - -  107.31 85.05 - -23 .81  0.274 - -  1.249 0.461 71.79 

1.3 - -  100.59 83.98 - -24 .72  0.245 - -0 .738  0.442 55.77 

1.4 - -  95.00 82.31 - -24 .87  0.222 - -0 .543  0.420 47.73 

b~ = - -  15.0 MeV 

ro B(o2)(~F) ~ (2~ 4 (2) z~B1 (:~F) ~FB2 (~i,') M*(O)/M M*(uF)/M M**/M K (2) 

0.9 - -  141.29 76.87 - -  7.60 0.426 0.645 0.480 265.04 

1.0 - -  126.24 75.49 - -  10.43 0.379 0.780 0.458 222.30 

1.1 - -  115.67 76.30 - -  13.80 0.333 1.202 0.439 180.14 

1.2 - -  107.31 75.88 - -  15.64 0.297 2.251 0.418 153.99 

1.3 - -  100.59 74.81 - -  16.55 0.267 9.429 0.396 137.97 

1.4 - -  95.00 73.14 - -16 .70  0.244 - -6 .828  0.372 129.93 

b, = - -  16.0 MeV 

zFal (~F) uFB~ (z F) M*(O)/M M*(:~)/M M**/M K (~> 

0.9 - -  141.29 67.71 0.56 0.457 0.445 0.453 347.24 

1.0 - -  126.24 66.32 - -  2.26 0.410 0.467 0.428 304.50 

1.1 - -115 .67  67.13 - -  5.63 0.362 0.534 0.406 262.34 

1.2 - -107 .31  66.72 - -  7.48 0.325 0.594 0.382 236.19 

1.3 - -  100.59 65.65 - -  8.39 0.294 0.641 0.358 220.17 

1.4 - -  95.00 63.98 - -  8.54 0.269 0.649 0.334 212.14 

d e p r i v e d  of  a n y  t h e o r e t i c a l  b a c k g r o u n d ,  b u t  i t  is a l so  h e u r i s t i c a l l y  u s e l e s s .  

I t  is i n t e r e s t i n g  t o  c o m p a r e  t h e  p r e d i c t e d  v a l u e s  of  t h e  c o m p r e s s i b i l i t y  m o d -  

u l u s  K ~ w i t h  t h o s e  q u o t e d  i n  t h e  l i t e r a t u r e :  a) CHEID, LIGENSA ~ n d  GREI- 

NER (aT) h a v e  s u g g e s t e d  v a l u e  K _~ 1 0 0 M e V  in a r e s e a r c h  o n  h e a v y - i o n  

(3~) W. CHEID, R. LIGENSA and  W. GREINER: Phys. Rev. Lett., 21, 1479 (1968). 
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react ions;  b) BOH~ and MOTTELSON(3s) and BETHE(39) have es t imated 
K __~ 117 MeV and, respectively,  K ~,~ 135 MeV; e) the  values calculated by  
BRUECKNER ~nd GAM,~tEL (4o), using different two-body potentials,  v~ry from 

K~__167MeV to K, -~187MeV;  d) value K~__(210 :t:30) McV has been re- 
por ted  by  BLAIZ0T (41); e) the investigation of Mach and head shock waves, 
occurring in the  collisions of light high-energetic nuclei with heavy ones, has 
allowed the deduct ion of value K ,-~ 300 MeV (42) ; ]) according to the  Zamick 
formula (43) K varies from ~__ 95 MeV to "" 379 ~r the compressibili ty mod- 
ulus evaluated  by  using potentials  of the Skyrme type  (44) turns  out  to be 
_~ 370 MeV. The conclusion to  be drawn is obvious: the spread of the  values 
of K is so large tha t  none of t hem can be considered to be reliable. The cri- 
terion for the de terminat ion  of K, outl ined in sect. 9, is an a t t em p t  to over- 
come such a discouraging situation. 

The to ta l  energies of infinite nuclear m a t t e r  in the 2~----1 and iV = 2 

approximat ion  ~re 

(7.31a) 

(7.31b) 

W(~)(z)IA = (3%/5) z 3 + (11~)~ ~ Q(1) Z~ + (3/5) ~ C~z,(1).~ 

= C1 Z -J-(3/5)u~,C3 Z + W(3'(~)IA (3~,/5) Z ~ § (1/2)~ (3, .~ ~ (~).~ 

N[ - 6 (3) 7 (36/35)z FC 5 Z , 

where Z =  u/xr.: clearly, functions (7.31) satisfy exact ly  eqs. (1.5), provided 
the parameters  are evaluated according to eqs. (7.7) and, respectively,  
eqs. (7.21). The u-dependence of W(1)(x) and W(2)(n) is s t rongly affected by  the  
na ture  (real or conjugate complex) and by  the  localization of the  roots of the 
fifth- and, respectively,  seventh-degree equations W(~)(x~)= 0 and W(2)(~ ) = 0: 
in bo th  cases there  exists at  the origin a root K 0 = 0 of mult ipl ici ty  2, while 
another  root  is localized within the  interval  (0, 1). In  fig. 2a we have plot- 
ted functions (7.31) assuming as input  parameters  t o =  1.2 fm and b =  
= -- 15.0 MeV. For  ~ > ur. the behaviour  of W(2)(u) is governed by  two complex 
conjugate roots having real par ts  slightly larger t han  the  considered Fermi  

(as) A. BOHR and B. R. ~OTT]~LSON: Nuclear Structure, Vol. I (New York, N. Y., 1969), 
p. 257. 
(ag) }t. A. BETHE: Proceedings o/ the International Nzeelear Physics Con/erence, Gat- 
linburg (New York, N. Y., 1967), p. 625. 
(4o) K. A. BRUECI;N~ and J. L. CaAMMEL: Phys. ~ev., 109, 1023 (1958). 
(41) j . p .  BLAIZOT: Phys. Rep., 64, 171 (1980); I thank Dr. A. VITTUnI for having brought 
this paper to my attention. 
(42) H. G. BAUMGARDT, J .  V .  SCOTT, Y.  SAKAMOTO, E .  SCHOPPF, R, H .  STOECKER, 

J. HOFMA~N, W. CHEID and W. GREINER: Z. Phys. A, 273, 359 (1975). 
(43) L. ZAMICK: Phys. Zett. B, 45, 313 (1973); see also the paper by BLAIZOT (41). 
(44) T. H.  R. SKYRME: Nucl. Phys., 9, 615 (1959); see also D. VANTHERIN and D. M. 
BRINK: Phys. Zett. B, 32, 149 (1970). 
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Fig. 2a. Fig. 2b. 

Fig. 2a. - The saturation of infinitely extended nuclear matter described in N ---- 1 and 
At=2 approximations, by  assuming as input parameters ro=l .2  fm and b~= --15.0 iV[eV. 
The ordinate is expressed in MeV. Continuous lines: 1) T(u)/A, 2) V(2)(~:)/A and 
3) W(~)(u)/A; dotted line: W(1)(~:)/A. 

Fig. 2b. - Visualization of the Hugenholtz and Van Hove theorem in N = 1 and 
N = 2 approximations, assuming as input parameters % = 1.2 fm and b~ = - -  15.0 MeV. 
The ordinate is expressed in MeV. Continuous lines: l) t(p), 2) y(2)(p, uF) and 3) w(-~)(p, XF) ; 
dotted lines: 2) v(1)(p, uF) and 3) w(~)(p, xF). 

m o m e n t u m  (~F---- 1.5232/ro). I n  fig. 2b we visual ize  the  H u g e n h o l t z  a n d  V a n  

H o v e  t h e o r e m ;  more  specifically, we p lo t  t he  s ingle-par t ic le  t o t a l  energies 

e v a l u a t e d  in the  N ---- 1 a n d  N ---- 2 a p p r o x i m a t i o n  at  t he  m i n i m u m  of func-  
t ions  (7.31): 

(7.32a) w(1)(P, ~F ) : ~0{I) (~F) J~ {~F 7[- ~F2 ~{I1)(~F)}(p/~,~F)2 ' 

(7.32b) w(2)(P, uF)---- B$2'(~F) -~ {%-~ UFB1 ~ '5)(XF)}(p/XF )~ nL ~4B$~)(XF)(p/~F) 4 . 

I n  fig. 2b we have  also p l o t t e d  t he  p - d e p e n d e n c e  of v(1)(p, ~F) and  v(~)(p, uF) 

for  p > u  F. The  i m p o r t a n c e  of the  m o m e n t u m  dependence  of v(p, ~ )  ou ts ide  
t he  F e r m i  sphere  will be discussed in sect.  9. 
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7"3. - We shall now determine,  as functions of the input  parameters  ro 
and b ,  the  constraints  imposed by  the saturat ion prescriptions on the single- 
part icle potent ia l  energy (6.21a). Recalling eq. (6.25), one has 

(7.33) v(p, n) = Ca{sin (an) -- an cos (~n)} {sin (otp)/p} ; 

then,  taking into account  eqs. (1.4) and (2.3), one finds tha t  the  analytic  expres- 
sion of the  to ta l  energy of infinite nuclear matter~ brought  about  by  the single- 
part icle potent ia l  energy (7.33), reads 

(7.34) W(n)/A : (3/10M)~r ~ + (3C3/2a2n ~) {sin (an) -- :on cos (an)} ~ . 

Func t ion  (7.34) must  satisfy conditions (1.5) for a certain value uF of the lim- 
i t ing mom e n tum u. F rom eq. (7.33) one finds 

(7.35) 

where the  spherical Bessel functions jo(X) and j~(x) arc defined in eqs. (5.38). 
F rom both  saturat ion prescriptions (1.5) one deduces tha t ,  for given values 
of ~o and b ,  the  length ~ is determined by  the equation 

(7.36) t-g (anF) = 
15(b,-- s~)~nr 

15(b~--eF)--2(5b~--3eF)g~u~ " 

The nucleon effective masses calculated at  p ---- O and at  p = nr according to 
the  quantum-mechanical  definition (3.5) read 

M*(0) 6st jo(gnF) 
(7.37a) M --  6sr~0(gxF) - -  (b~ - -  sF)zr162 ~ ' 

(7.37b) 
M 2eF ~o(~nF) - -  ~nF(bv - -  st) {ant ~o(ZCnF) - -  2~1(~n~)}' 

the  analyt ical  expression of the  rat io M * * / M  evaluated according to definition 

(3.6) turns  out to be 

(7.38) 
M --  e~.{1 + 2~xF~o(ccn~)} - -  by" 

The compressibili ty modulus implied by  the to ta l  energy (7.34) can be readily 
calculated using eq. (5.23); in the considered case the first-order logarithmic 

derivat ive is 

(7.39) ~v(z~) = -- 1 + 2 (jl(2otn~)/jo(o~x~)jl(o~• 
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I t  is t r ivial ly verified tha t  the saturation prescript ions (1.5) are consistent with 

the Hugenhol tz  and  Van  Hove theorem (1.15), because the ]actorable single-particle 

potential  energy (7.33) is an exact solution o] the di]ferential equation o] nuclear 

matter (5.5). 
The solutions of eq. (7.36) ~re to be searched for in the  in terval  

(7.40a) 

(7.40b) f12= 15(b- %)/2(5b -- 3t~).  

The numerical  values of a%, as functions of r.  and b are given in table V, 
together  with the  values of the  parameters  defined by  eqs. (6.19), (6.20) and 
(7.35), which characterize the factorable single-particle potent ia l  energy (6.21) 
inside and outside the  Fermi  sphere: it  is needless to say tha t  all tabula ted  
values fulfil exac t ly  the saturat ion requirements  of nuclear mat ter .  The role 
of t~ble V is auxil iary to the construct ion of table VI, which refers only to the 
single-particle potent ia l  energy (6.21a), brought  about  by  the saturat ion pre- 
scriptions, conceived as inextr icably connected with the  separation energy 
theorem:  we stress ag~in tha t  such a connection is made mathemat ica l ly  pos- 
sible by  vi r tue  of eq. (5.5). The comparison of the  results l isted in table VI 
and in table IV discloses the  origin of several misleading conclusions 4rawn from 
nuclear-mat ter  calculations and uncrit ically reported in the  l i terature.  We 
shall l imit ourselves to point ing out  tha t  a) the  single-particle potential  energy 
at zero momentum,  

(7.41) v(0, %.) -~ (b - %)/jo(~u7) , 

is a funct ion of the  Fermi  momen tum which also depends slightly on b v (in 
contras t  with the  results obta ined from the  direct  calculation of eq. (7.26), 
l isted in table I I I ;  i t  has been ascertained tha t  ~ self-consistent calculation of 
eq. (7.30) does not  improve the 5: ~ 2 approximat ion  discussed in subsect. 7"2) ; 
b) the pathological  behaviour ,  exhibited in table IV, of the nucleon effective 
mass at  the Fermi  surface for b ~ -- 14.0 MeV and b - ~  -- 15.0 MeV disap- 
pears;  as already noted,  pa rame te r  M** is completely unrela ted to the 
quantum-mechanical  concept of effective mass: table VI gives an addit ional  
evidence of its heurist ic uselessness in nuclear physics, since it turns out  to be 
practical ly independent  of bo th  the input  parameters  ro and b ;  c) the most  

significant differences between the  predictions contained in table IV and in 
table VI concern the dependence on ro and b of the compressibility modulus K. 

In  conclusion, the  factorable single-particle potent ia l  energy (6.21) at the 
Fermi  surface reads 

(7.42a) v(p, ~r) =- (by-- %) {Jo(~ , P < ~r ,  

(7.425) v(p, %.) = ( b  - -  %) {exp [--/~%.(~ -- 1)]/~}, P ~> ~F, 
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TABLE V .  - Numerical values o] the parameters o] the ]actovable single-particle potential 
energy (6.21) as ]unctions o] r o (in fm units) and b~. Quanti ty Ca(u~)/u F is expressed 
m MeV. For  the reader ' s  convenience we have also tabula ted  the spherical Bessel 
functions io(a~F) and ~l(axF). 

b v ~ - - 1 4 . 0 M e V  

w~ ~F C~(~)  C~(~F)I~ ~ ( ~ )  h(w~) 
0.9 1.8830 0.6077 1.7475 --48.78 0.5054 0.4315 

1.0 1.9293 0.7230 1.9295 --39.82 0.4854 0.4335 

1.1 1.9698 0.8304 2.1139 --33.57 0.4678 0.4347 

1.2 2.0000 0.9155 2.2714 --29.09 0.4546 0.4354 

1.3 2.0489 1.0617 2.5671 i 2 5 . 4 3  0.4333 0.4360 

1.4 2.0765 1.1499 2.7625 --22.83 0.4213 0.4362 

b v = - - 1 5 . 0 M e V  

ro ~x~ ~ C~(~)  C~(~)l~ ~(w~) h ( ~ )  
0.9 1.8950 0.6366 1.7915 --48.97 0.5002 0.4320 

1.0 1.9418 0.7552 1.9831 --40.14 0.4799 0.4338 

1.1 1.9846 0.8714 2.1885 --33.90 0.4613 0.4350 

1.2 2.0252 0.9891 2.4158 --29.32 0.4436 0.4357 

1.3 2.0621 1.1031 2.6570 --25.90 0.4275 0.4360 

1.4 2.0949 1.2110 2.9060 --23.26 0.4133 0.4362 

b v : - - 1 6 . 0 M e V  

0.9 1.9080 0.6688 1.8420 --49.13 0.4946 0.4326 

1.0 1.9573 0.7963 2.0537 --40.35 0.4732 0.4343 

1.1 2.0000 0.9151 2.2705 --34.21 0.4546 0.4353 

1.2 2.0403 1.0352 2.5110 --29.71 0.4370 0.4359 

1.3 2.0766 1.1501 2.7631 --26.34 0.4212 0.4361 

1.4 2.1102 1.2633 3.0348 --23.74 0.4066 0.4361 

w h e r e  ~ ---- p l zF :  i t  s h o u l d  be  e v i d e n t  t h a t  f r o m  eq.  (7.42a) one  can  c o n s t r u c t  

a v a r i e t y  of d e s c r i p t i o n s  of n u c l e a r  m a t t e r  w h i c h  fulfi l  exactly t h e  s a t u r a t i o n  

c o n d i t i o n s  (1.5) a n d  t h e  H u g e n h o l t z  a n d  V a n  H o v e  t h e o r e m  (1.15), p r o v i d e d  

t h e  p a r a m e t e r s  au  F a n d  fix F d e p e n d  on ro a n d  b v a c c o r d i n g  to  t h e  n u m e r i c a l  

t r e n d  g i v e n  in  t a b l e  V. T h e  s a t u r a t i o n  of n u c l e a r  m a t t e r  for  ro = ] . 2  f m  

a n d  b y - - - - -  1 5 . 0 M e V  is s h o w n  in fig. 3a ;  t h e  H u g e n h o l t z  a n d  V a n  H o v e  

t h e o r e m  is v i s u a l i z e d  for  t h e  s a m e  i n p u t  p a r a m e t e r s  in  fig. 3b;  for  t h e  r e a d e r ' s  
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TABLE VI .  - Quantities deduced, consistently with the saturation prescriptions (1.5), ]rom 
the ]actorable single-particle potential energy (7.33). The  z e r o - m o m e n t u m  l imi t  v(0, UF) 
and  t h e  compress ib i l i ty  modulus  K, eva lua ted  according  to eq. (5.23), are expressed  
in  MeV. The  mass  ra t ios  h a v e  been  eva lua t ed  accord ing  to eqs. (7.37) a n d  (7.38). 
L e n g t h  r o is g iven  in fm  uni ts .  

b v = - -  14.0 McV 

r o v(O, ~ )  M*(O)/M M*(uv)lM M**/M K 

0.9 - -  140.52 0.407 0.829 0.604 214.80 

1.0 - -  123.98 0.375 0.847 0.590 198.16 

1.1 - -  111.52 0.346 0.870 0.574 183.73 

1.2 - -  101.34 0.322 0.892 0.559 168.49 

1.3 - -  95.38 0.290 0.946 0.540 167.07 

1.4 - -  89.15 0.269 0.990 0.523 157.53 

b v = - -  15.0 MeV 

ro v(O, ,~) M*(O)/M M * ( u r ) / M  21/**/21/ /< 

0.9 - -  143.98 0.398 0.833 0.600 221.62 

1.0 - -  127.48 0.366 0.853 0.584 204.94 

1.1 - -  115.26 0.335 0.880 0.568 191.71 

1.2 - -  106.11 0.306 0.917 0.550 182.25 

1.3 - -  99.02 0.280 0.965 0.532 174.60 

1.4 - -  93.15 0.257 1.028 0.514 167.59 

b v = - -  16.0 MeV 

r o v(O, uF) M*(O)/M M*(~r)/M M**/M K 

0.9 - -  147.63 0.389 0.837 0.596 229.87 

1.0 - -  131.40 0.353 0.862 0.579 214.55 

1.1 - -  119.16 0.324 0.892 0.562 200.84 

1.2 - -  110.00 0.296 0.935 0.543 190.82 

1.3 - -  102.87 0.270 0.990 0.524 182.58 

1.4 - -  97.29 0.246 1.066 0.505 176.51 

c o n v e n i e n c e  w e  s p e c i f y  t h e  a n a l y t i c  f o r m  of  t h e  f u n c t i o n  p l o t t e d  i n  fig. 3a ,  b 

(7.43) W ( u ) / A  = ( 3 % / 5 ) Z  2 -[- (3/2)(Z/~u~)(b , -  %) {j~(a~Fz)/jo(auF) jl(a~F)} , 

(7.44) w(p, xF) : % ~  ~- (b - %) {jo(o~nr~)/jo(aUF)} , 

w h e r e  Z = u / n r  a n d  ~ ---- P/uF. I n  fig. 3b w e  h a v e  a l so  p l o t t e d  t h e  m o m e n t u m  

- II Nuovo Cimento A. 
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Fig. 3a. Fig. 3b. 

Fig. 3a. - Description of the saturation of infinitely extended nuclear matter derived 
from the factorable single-particle potential energy (7.42a), by assuming as input 
parameters %----1.2fm and b v -----  15.0 MeV. The ordinate is expressed in MeV; 
1) T(u)/A, 2) V(u) and 3) W(u)/A, given by eq. (7.43). 

Fig. 3b. - Visualization of the Hugenholtz and Van Hove theorem for the factor- 
able single-particle energy (7.42), by assuming as input parameters r o ---- 1.2 fm and 
b, = - - 1 5 . 0 M e V .  The ordinate is expressed in MeV; 1) t(p), 2) eqs. (7.42) mad 3) 
eq. (7.43). 

dependence of v(p, uF) predic ted  b y  eqs. (7.42) for ro ---- 1.2 and  b, ---- - -  15.0 McV, 

inside and  outside the  F e r m i  sphere. 

7"4. - Our choice of describing the  sa tura t ion  proper t ies  of infinite nuclear 

m a t t e r  in m o m e n t u m  space deserves fur ther  comments .  According to  current  

opinions, the  s t rong shor t - range repulsion in the  nucleon-nucleon poten t ia l  

makes  the  use of co-ordinate  space preferable ;  in fact ,  shor t - range repul- 
sion is usual ly  app rox ima ted  b y  an  infinitely repulsive core and  one of the  

mos t  i m p o r t a n t  proper t ies  of the  correlated wave  funct ions is t h a t  t hey  vanish  

inside the  ha rd  core: this  condit ion takes  a s imple fo rm in co-ordinate  space, 
whereas  i t  turns  out  to be  ve ry  compl ica ted in m o m e n t u m  space. We  have  
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a l ready po in ted  out  a t  the  end of subsect.  5"2 t h a t  the  single-particle po ten t ia l  
energy, calculated in f irst-order p e r t m b a t i o n  theory ,  fulfils the  hyperbol ic  
differential  equat ion (5.5), p rovided  the  nucleon-nucleon poten t ia l  is a con- 
t inuous funct ion  of the  in ternuclear  dis tance:  the  use of the  Heavis ide  func- 
t ion  in the  descr ipt ion of the  repulsive ha rd  core would be catas t rophic .  We  
have  also ment ioned  t h a t  the  t r e a t m e n t s  used to overcome hard-core difficulties 
toge ther  wi th  the  procedures based  on the  concept  of healing distance violate  

the  Hungenhol tz  and  Van Hove  theo rem and,  consequently,  the  differential  

equat ion  of nuclear  m a t t e r .  The  m a t h e m a t i c a l  t roubles b rought  abou t  b y  the  

ha rd  core have  a lways sys temat ica l ly  biassed the  theoret ical  outl ine of the  

nuc lea r -mat te r  p rob lem:  this is indeed disconcerting,  because the  hard  core 
is noth ing  bu t  a phenomenological  invent ion quan tum-mechan ica l ly  incon- 

sistent ,  which compensates  our ignorance of the  spat ia l  extension of the  meson 

source: in this  connect ion it  is worthwhile  to  recall t h a t  a proper  choice of the  

meson densi ty  d is t r ibut ion leads to nucleon-nucleon potent ia ls  which, a l though 
continuous funct ions of the  internucleon distance,  s imulate  the repulsive short-  
range  proper t ies  otherwise grossly a t t r i bu ted  to the  hard  core (45). The  funda-  

men t a l  impl icat ion of our m a t h e m a t i c a l  scheme, based on eq. (5.5), is t ha t  two- 

nucleon potent ia ls  inside the  nuclear  m a t t e r  do not  possess a ha rd  core. The 
suspicion t h a t  hard-core nucleon-nucleon potent ials ,  a l though fi t t ing the  
elast ic-scat ter ing data ,  cannot  give the  correct  vo lume energy and  equi l ibr ium 
dens i ty  of nuclear  m a t t e r  was originally expressed b y  BETHE (de). 

8. - The energy dependence of  the real part of  the optical potential. 

The genesis of the  real  p a r t  of the  optical  po ten t ia l  has been  outl ined in 
sect. 1. Po ten t i a l  cUR(E , ~F) deduced in such a way  contains informat ion  on 
nuclear m a t t e r  and  inheri ts  its character is t ic  features:  this  will be the  leit- 
motiv of our  fu r the r  considerations.  

(45) See ref. (25). 
(46) Private communication from H. A. BETHE to B. D. DAY (see B. D. DAY: Rev. 
Mod..Phys., 4, 719 (1967), p. 743). The opinion expressed by BETHE can be readily 
understood in the framework of the effective-mass approximation. Point nucleons 
obeying the Pauli exclusion principle have the kinetic energy T(=) due to the filling of 
free particle energy levels. The requirement that the wave function should vanish whenever 
any two nucleons approach within a separation distance equal to the hard core radius r c 
increases the wave function curvature and, hence, the kinetic energy above the Fermi 
value at ~ = =F- The Lenz correction (W. LENz: Z. Phys., 56, 778 (1929), see also 
S. D. DRELL and K. HUANG: Phys..Eev., 91, 1527 (1953)) accounts for this effect: the 
kinetic energy turns out to be T'(=) = T(=)(1 -F ~ ) ,  where ~ is a constant proportional 
to r c. I t  follows that the corrected kinetic energy depends also on a term proportional 
to ~3. This positive term modifies quantitatively the •3-dependence of the total energy 
expressed by eq. (7.31a), thus preventing one from obtaining simultaneously the 
correct volume energy and equilibrium density. 



84  C. VILLI 

According to eq. (1.19) the real optical potent ial  in the  N ---- 1 approxima- 
t ion is 

(8.1) (1) cU R (E, UF) : V(1){p(E), ~F}, 

where V(D(p, ~F) is given by  eqs. (7.4); it  is found tha t  

(8.2a) 

(8.2b) 

B ( I ( ~ )  1]/* 
cu~ = 1 + 2MS(~l)(u~) - -  i B~~ ' 

2 (1) ) 

Taking into account  eqs. (7.8), the  explicit  expressions of (8.2b), as functions 
of the input  parameters  r0 and b,, t u rn  out  to be 

(8.3) CU(ol)(xs) _ sF(7b,-- 3eF) 
3sF--  5b~ ' 

A~I~(UF) __-- SF-- 5b, 
3 s F -  5b, " 

A real optical  potent ia l  formally similar to  (8.2a) has been semi-empirically 
deduced by  BR~CKN~,R, :EDEN and :FRANCIS (4~) in the  f ramework of the i r  
theory  on neu t ron  reactions with nuclei;  the  potent ia l  is 

(8.4) V ( E )  ---- - -  41 M e V  -[- 0 . d E .  

The mathemat ica l  scheme developed in the  preceding subsections enables us 
to disclose the theoret ical  contents  concealed behind potent ia l  (8.4). To this 
end we ident i fy  V with ~ ( E )  and solve the  two equations (8.3) in the  un- 
known quant i t ies  r0 and b ,  i.e. 

(8.5) r . ~ (1) = A1 (~F)-- a (~P - -  41.0 MeV,  0.4.  

I t  is found t ha t  

(8.6) b = --  2.63 MeV,  % ----- - -  39.42 MeV,  r0 = 1.082.10 -18 cm; 

i t  is seen tha t  the  volume energy turns  out  to  be ludicrously small. The  very  
theoret ical  scenery disguised by  the  apparent ly  innocent  potent ia l  (8.4) is 
even worse than  m a y  appear  f rom the  predicted value of b,. In  fact ,  i t  can 

be readi ly  proved tha t  potent ia l  (8.4) is the  optical t ransformat ion of a 
single-particle potent ia l  energy which is not  compatible ei ther with the satu- 

(47) K. A. BRUECKNER, t~. J. :EDEN and N. C. FRANCIS: Phys. l~ev., 100, 891 (1955). 
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ration prescriptions of nuclear matter  or with the Hugenholtz and Van Hove 
theorem: thus its value b , = -  2.63 MeV is not only too small, but  also 
physically meaningless because it does not correspond to the minimum o~ the 
total energy at the value to, given in eq. (8.6)! 

The N = 2 approximation of ~U~(E) is 

(8.7a) r u~) = v(~)(p(E), ~ ,  

where v(~)(p, ~.) is given by eqs. (7.13); function (8.7a) is the solution of the 
quadratic equation 

(8.7b) 

(8.7e) 

~I(uF)[cU~)(E, u~)]"-- ~,(E, ~F) :U~)( E, uF) ~- "~3( E, ~F) = O, 

~(.~) (1 /~)  ' ~) -~ z ;~  (~), 

The physical solutions of eq. (8.7) have to be selected according to the obvious 
criterion expressed by the inequalities 

(8.8) ~ , ( ~ ,  ~) < o, I~) (  E, ~)l < I~ ' (o ,  z~). 

The zero limit of ~r~)(E) is obtained from the equution 

(8.9) ~ ' '"' '~, ~ {1 ( I / ~ ) . ~ B { ~ , ( . ~ ) } ~ , ( . ~ )  + `~, ( I / ~ , , )~ ;B~  (~ ) [%~o ( -F) ]  - + /% (~F ) - - -  o;  

clearly, ~OoC2~(zF) r r if (2) g 2 (xF)~0. Potential (8.7) has never been con- 
sidered in the literature. 

The optical transform of the single-particle potential energy (6.21b), obtained 
from eq. (5.5) by variable separation, is 

(8.10a) r uF) : v(p(E), u~}, 

(8.10b) tUn(E, uF) = r ~E --  ~Ua(E , uF) exp --  fluF e~ , 

(8.10e) ~o( -~ )  = ( b . - -  ~ )  exp [/~.~]. 

The zero energy limit of potential (8.10) is given by the equation 

(8.11) 

where 

(8.12) 

a ~ exp  [ - - / ~ ,  y] = yS, 

a , =  - ~ o ( . ~ ) / e , ,  y, = - ~ ( o ,  . ~ ) / ~ .  
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The  numer i ca l  va lues  of quan t i t i e s  r a n d  ~Ua(0 , rF), cons i s ten t  wi th  nu- 

clear  sa tu ra t ion ,  are  g iven  in tab le  V I I  as func t ions  of ro and  b ;  use has  been  

m a d e  of t he  values  of p a r a m e t e r  fluF l is ted in tab le  V. 

TABLE VII .  - Numerical values o/ quantities r and qYR(O, UV) (in MeV) as ]unctions 
o/ r o (in fm units) and b v. 

% b~ = - -  14.0 MeV b~ = - -  15.0 MeV b, = - -  16.0 ]VfeV 

~ro(~F) ~a(O, uv) ~o(uv) ~R(O, ~v) ~o(Zv) ~a(O, nv) 

0.9 --130.41 --64.43 --136.12 --64.67 --142.53 --65.16 

1.0 --124.01 --53.17 --130.19 --53.43 --137.87 --53.91 

1.1 --119.69 --44.77 --127.10 --45.23 --135.26 --45.64 

1.2 --115.08 --38.45 --126.56 --38.68 --135.34 --38.98 

1.3 --116.50 --32.98 --127.56 --33.76 --136.86 --33.98 

1.4 --118.61 --29.34 --129.43 --29.55 --139.93 --29.73 

W e  shall  show in sect.  9 t h a t  t he  d e t e r m i n a t i o n  of t he  p a r a m e t e r s  by, 

K a n d  % (i.e. t h e  l eng th  ro) can  be car r ied  out ,  cons i s t en t ly  w i th  t he  s a tu ra t i on  

prescr ip t ions  a nd  t he  H u g e n h o l t z  a n d  V a n  H o v e  theo rem,  b y  t ak ing  a d v a n t a g e  

of the  i n fo rma t i on  e x t r a c t e d  f r o m  the  nuc leon-nuc leon  e las t ic -sca t te r ing  da ta .  

9. - A cr i ter ion for  the determination of the compressibi l i ty  modu lus  o f  infi- 
nite nuclear matter. 

9 " 1 . -  W e  re - fo rmula t e  the  N = 2 a p p r o x i m a t i o n  of t he  s ingle-par t ic le  

po t en t i a l  ene rgy  b y  rep lac ing  the  t h i r d  of eqs. (7.20) wi th  the  first of eqs. (7.24). 

The  new sys t em of equa t ions  is 

(9.1) 

7 (2) -4- 72~ v C 5 ~ 4 2 ~  C c2) " ~ r(2) -3 35~v~1 = 7 0 b - -  42% , 

7 c~) ~_ __ 12ev ,  15~v ~i = 72~ F C 5 + 30:~  Cc~)-3 " ~ rt2) 

7 (2) 60~v~3 + 6 K - - 6 % ,  216u F C5 2r - . I~ r ~[Or F ~ .  3 ~'lf-(2) 

where  K ~) ~- K; t he  solut ions are  

(9.2) 

u~ C~ 2' = (175/96)b v -  (7/32)e v + (35/288) K,  

~5 r(8)  (5/4) % - -  (35 /4)b , - -  (5/12) K, 

ua r~2) _ (35/4) b - -  (9/4) %-[- (1/4) K F k~5 - -  
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Coefficients (7.18) of v(~)(p, ~ )  become 

B~o3)(z~) = (137/32) b, - -  (51/32) % -I- (5/96) K ,  

3 (3) (9.3) u, B x (;~) = (117/144) % - -  (245148) b , - -  (251144)/<, 

u~6~' ( 3 ) ( ~ ) :  (175/96)b,-- (7/32)e~ ~- (35/288)K. 

I t  is readily verified tha t  potent ia l  (7.13), characterized by  the coefficients 
(9.3), fulfils the  Hugenhol tz  and Van Hove  theorem (1.15). 

Let  us express the  real optical potential  (8.7) in power series of the incident 
energy E ;  the  first three terms of the  series are 

(9.4) (~) 

where r --  %T~)(0, ~ )  is a solution of eq. (8.9). The coefficients of the  
1Y[cLaurin expansion are direct ly obta ined from eq. (9.4); one has 

(9.5) (~ ~ = { d ~  (~,  ~p/aE}~_ o , ~p /d~%_o " 2 L  ~ ~JR t~'~ 

Using eq. (8.7b), we define the  two-variable function 

(9.6) F(E, r -~ ~,(~2)[r ~ -  ~3(E, ~ )  r JF ~ ( E ,  =,) -~ 0; 

from the theory  of implicit functions one has 

{dq . ) ' ~ ) ( .E ,  ~,)/dE}~o = - -  [(SF/SE}/{~ F/ScU~)}],=o, (9.7a) 

(9.7b) 
d E~ j~-o 

8~F ~ 8F ~' 2 ~F 8F ~F 8'F (~F~ ~1 
- -  / " 

Taking into account that 

(9.8a) {~FI~E} ,_  o 1 { ~ F / ~ ' } ~ _  o 3(~, 3 , ( 3 ,  . . . . .  (2/~) ~ ~ ( ~ p ,  (l/eF) u, B~ (uF) 

(9.8b) {83FI~E~},_o---- {~3F/ScU~m},.0 = -  {a~F/aEa~' } ,_0  = (2/0~,3 , B,~,,~3 , ~,) , 

it is found ~ha$ 

(9.9a) ~ i " ( = , ) =  ( 1 / ~ , ) 4 B ? ' ( = , , ) -  ' ' '" 

(9.95) ~13,(=,) = ( ] / 4 )  ~ ~ 's  
- (2/~,)~,  ~ (~,,) 1)~'(~,)} ~ 



8 8  C. VILLI 

TABLE VIII.  - .Numerical values o/ the parameters o/ the real optical potential (9.4) as 
/unctions o/ r o (in f m  units) and b v. Q u a n t i t i e s  e F, K a n d  cU(o~)(~F) a r e  e x p r e s s e d  in  
M e V  a n d  p a r a m e t e r  A~)(uF) in  (MeV) -1 (see t a b l e  IV) .  

b v = - -  14.0 M e V  

0.9 57.02 182.84 - 58.36 0.4852 - o.ooo 661 

1.0 46.18 140 . t0  - -  53.27 0.4748 - -  0.001 263 

1.1 38.17 97.94 - - 4 5 . 2 6  0.4664 - - 0 . 0 0 2  290 

1.2 32.07 71.79 - -  39.01 0.4582 - -  0.003 681 

1.3 27.33 55.77 - -  34.21 0.4470 - -  0.005 596 

1.4 23.56 47.73 - -  30.28 0.4383 - -  0.007 942 

b,  = - -  15.0 M e V  

0.9 57.02 265.04 - -  64.28 0.5116 - -  0.000 272 

1.0 46.18 222.30 - -  53.17 0.5271 - -  0.000 517 

1.1 38.17 180.14 - - 4 4 . 9 8  0.5342 - -  0.000 957 

1.2 32.07 153.99 - -  38.61 0.5438 - -  0.001 444 

1.3 27.33 137.97 - -  33.58 0.5554 - -  0.001 947 

1.4 23.56 129.93 - -  29.55 0.5701 - -  0.002 390 

b ,  = - -  16.0 M e V  

ro ~ K(~) ~ ' : ) ( ~ )  , ~ T ( , ~ )  , ~ T ( ~ )  

0.9 57.02 347.24 - -  64.26 0.5474 0 .000 096 

1.0 46.18 304.50 - -  53.04 0.5696 - -  0 .000 084 

1.1 38.17 262.34 - -  44.73 0.5856 - -  0.000 275 

1.2 32.07 236.19 - -  38.30 0.6037 - -  0.000 452 

1.3 27.33 220.17 - -  33.19 0.6236 - -  0.000 599 

1.4 23.56 212.14 - - 2 9 . 0 7  0.6455 - -  0.000 685 

w h e r e ,  a s  a l r e a d y  p o i n t e d  o u t ,  %~(o2)(ur) i s  g i v e n  b y  e q .  (8 .9) .  Q u a n t i t y  

%~(o~)(u~) a n d  p a r a m e t e r s  (9 .9)  a r e  c a l c u l a t e d  i n  t a b l e  V I I I  a s  f u n c t i o n s  o f  ro b y  

u s i n g  t h e  c o e f f i c i e n t s  o f  t h e  s i n g l e - p a r t i c l e  p o t e n t i a l  e n e r g y  (7 .22 ) ,  l i s t e d  i n  

t a b l e  I V .  

L e t  u s  s u p p o s e  t h a t  t h e  e l a s t i c  s c a t t e r i n g  o f  n e u t r o n s  f r o m  n u c l e i  a r e  

a n a l y s e d  o n  t h e  b a s i s  o f  t h e  r e a l  o p t i c a l  p o t e n t i a l  h a v i n g  t h e  e m p i r i c a l  f o r m  

(9 .10)  Vo(E) ---- ao -~ boE -~ t o e  ~ , 
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where parameters  (ao, bo, co) are determined by  fitting the data. Should such 
a circumstance occur, then  one could compare potential  (9.4) with (9.10) by  
put t ing  

(2) (9.11) c(~(o~(xF) = ao, A~)(ur) ---- b . ,  A~ (~r) -~ %; 

clearly, the three quantities (b., K, %), deduced/tom the system o/equations (9.11), 
are consistent with the saturation prescriptions and with the Hugenholtz and Van 
Hove theorem. From the first and second of eqs. (9.11), taking into account  
eqs. (8.9) and (9.9a), one obtains 

Bo (ZF)-- (aO/SF) Z;~l  (~F) § (ao/ F) ~ ~ (~F/ = ao, 
(9.12) [ ~ $ ~  ~2,(~) 44_ (2ao/%)~$ (~(~) ---- ?e~ , 

where ~ = b o / ( 1 -  bo). Subst i tu t ing  into sys tem (9.12) the  expressions given 
by  eqs. (9.3) for the  coefficient, the sys tem of linear equations in the  unknown 
parameters  b and K is found to be 

(9.13a) alibi-I- al~K = 911, a21b, ~ a22K : ~2 , 

I all ~ 3(411 ~- 4901 ~ 175x 2) , a~ -= 105(7 -{- 5x) ,  
(9.135) / a12 = 5(3 ~- 10x ~- 7x 2) , a~2 = 5(5 + 7x), 

/9~1= 3(153 ~- 174x-{- 21x2)%, 
(9.13e) [ 912 = (117 -~ 63x--  1447)%, 

where x = ao/%, :For given values of parameters  (ao, b0) the solutions of sys- 
t em (9.13) are expressed as functions of the  Fermi  energy only, i.e. 

(9.14a) 
by = erJl(ao/~r) , 

fl(x ) = 3(9 ~- 2r) -~- 2(31 ~- 10~,)x ~- 7(5 Jr- 2•)x 2 
55 ~- 98x ~- 35x 2 

K = - ( 6 ~ d 5 ) s 1 7 6  

(9.14b) 
s ---- 3(149 -t- 137r) + 14(62 + 35r )x  -4- 35(11 -~ 5~)x ~. 

55 + 98x -[- 35x 2 

the Fermi  energy is determined from the  third of eqs. 0.11):  

Co~,. = s 
(9.14e) 

72 576{9 - -  75(b,/eF) - -  5(K/er)} 
s ---- {3(87 -1- 2 1 x ) -  105(7 + 5x)(bv/~F)- 5(5 + 7x)(K/eF)} ~  

where ratios b I% and K/% are given b y  eqs. (9.14a), (9.14b). 
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The calculat ions pe r fo rmed  b y  WZL~OR~, and  HODGSON (as) for nonlocal 

potent ia ls ,  appropr ia t e  to  E = 1, 5, 10 and  15 MeV neutrons  elast ically scat- 
t e red  b y  nuclei of masses  A = 50, 100, 150 and  200, have  been f i t ted assuming 
an energy-dependent  po ten t ia l  well of the  fo rm (9.10) wi th  

(9.15) ao ---- - -  47.01 M e V ,  b0 ---- 0.267,  Co = 0.00118 (Meu -1 . 

Using the  set  of pa r ame te r s  (9.15) in eqs. (9.14), i t  is found t h a t  the  upper  l imit  

of the  var iab i l i ty  in te rva l  of r0 is fixed b y  the  quadrat ic  equat ions 

(9.16) ~l(Xl) = 0 ,  F2(x~) = 0; 

in the  considered case (7 = 0.2642), the  roots of eqs. (9.16) are 

(9.17) xrl = 1 ,  x~ = - -  0.7278, x~ = - -  0.9932, x~ = - -  1.3387. 

! ! 

Only roots x 1 and x 2 are significant for our purposes:  the  volume energy b, 
? 

turns  out  to  be  a posi t ive quan t i t y  for x > x1, and  the  compressibi l i ty  modulus  
f 

is negat ive  for x > x~. The numer ica l  t r end  of the  results thus ob ta ined  is 

shown in tab le  IX .  I t  is found t h a t  eq. (9.14e) is satisfied for g = -  0.9537; 
then,  one deduces t h a t  

(9.18) 
b,,= --  3.10 MeV,  

% ~ 49.29 MeV,  

/( = 61.13 MeV,  

r e =  0.968"10 -13 e m .  

TABLE IX. - Numerical results deduced/rein the Wilmore and Hodgson optical potential. 
Quantities ~F, by and K are expressed in l~eV; length r o is expressed in fm units. 

eF x b v K eoe F ~(x) 

0.900 57.02 --0.8244 --19.29 1333.1 0.0673 --0.0926 

0.925 53.98 --0.8709 --12.75 436.81 0.0637 --0.0316 

0.950 51.18 --0.9185 - -  5.79 958.04 0.0604 0.0092 

0.975 48.59 --0.9675 - -  2.16 35.16 0.0573 0.0748 

1.000 46.18 --1.0180 1.13 --23.38 0.0544 0.1083 

These horrible results  are physical ly  meaningless,  bu t  nonetheless ma the -  

mat ica l ly  consistent  wi th  eqs. (1.5) (the m i n i m u m  of the  to ta l  energy of infinite 

nuclear  ma t t e r ,  eva lua ted  equal  to - - 3 . 1 0  McV, occurs a t  r e = -  0.968 fm) 
and  wi th  eq. (1.15) ( the eva lua ted  average  vo lume energy - -  3.10 MeV is equal  

to  the  to ta l  energy of a single nucleon a t  the  Fe rmi  surface corresponding to 

(as) D. WILMO~ and P. E. HODGSON: /VucL Phys., 55, 673 (1964). 
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ro----0.968 fm);  thus,  the  theoret ica l  implicat ions of the  sa tura t ion  p rob lem 

are safe and  only the  predic ted  values of b, and  ]( are  nonsensical.  This is 
p robab ly  due to  the  fac t  t h a t  Co should be a negat ive  quan t i t y :  indeed, the  
W H  po ten t i a l  implies 8~2)(uF) > 0, which conflicts wi th  the  ~ = 2 approx ima-  

t ion (see table  V I I I ) .  Le t  us t en ta t ive ly  modi fy  the  W I t  po ten t ia l  by  assuming 

(9.19) ao = - -  47.01 M e V ,  bo ~ 0.267,  e' o ---- - -  0.00118 (MeV)-~; 

f rom eqs. (9.14) it  is found t h a t  

(9.20) { b, = - -  14.43 M e V ,  K --~ 782.77 M e V ,  

% ~ 55.65 MeV,  ro --~ 0.911.10 -13 c m ,  

a ve ry  unsa t i s fac tory  resul t  because the  value of the  compressibi l i ty  modulus 

turns  out to  be too large. Final ly,  we consider the  set  of p a r a m e t e r s  

(9.21) ao ~ - -  47.01 M e V ,  bo --~ 0.267 , e~ ~ O, 

which lead to the  following result :  

(9.22) 
b, --~ - -  6.82 M e V ,  

e F = 51.83 MeV,  

]( ---- 203.59 MeV,  

ro z 0.944.10-1a c m .  

The  rel iabil i ty of the  nuc lea r -ma t t e r  quant i t ies  (by, K, %)~ dete rmined  f rom the  

phenomenological  p a r a m e t e r s  of the  real  optical  po ten t ia l  expressed b y  
eq. (9.10), cri t ically depends on the  rel iabil i ty of the  zero-energy l imit  of the  
po ten t i a l  itself. This crucial  point  should be kep t  in mind  in handl ing the  
cri ter ion previously  outlined, which is s t r ic t ly  based  on the  in t imate  connec- 

t ion exis t ing be tween  the  opt ical  model  and  the  model  of infinitely extended 
nuclear  ma t t e r .  The  Wi lmore  and  Hodgson  analyses are heavi ly based on the  
use of electronic compute r  techniques:  this c i rcumstance  prevents  one f rom 
reaching a crit ical unders tand ing  of the  results  thus  obtained.  I t  would be 

desirable to know if set  (9.15) is univocal ly  de te rmined  and  what  is the  de- 

gree of confidence one can a t t r i bu te  to value ao = -  47.01 MeV. Unfor tu-  
nately,  such informat ion  is not  available.  

9"2. - Le t  us express the  opt ical  po ten t ia l  (8.10) in power  series of the  

incident  energy  E ;  the  first three  t e rms  of the  series are 

(9.23) ~R(E, z:) = ~ . (~)  + AI(~:)E + ~:(+)E:. 

The values of Ao(uF) ~-- r , u~) are given in table  V I I ;  the  coefficients Al(u~) 
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a n d  A~(uF) of e x p a n s i o n  (9.23) are  g iven  b y  

C. VILLI  

(9.24) A,(uF)  = { d ~ ( E ,  ~) /d~}~ .o ,  ~ ( ~ )  = �89 { d , ~ ( E ,  ~ ) / d ~ % .  o . 

U s i n g  eq. (8.10b), we define t he  two-va r i ab l e  f u n c t i o n  

l~rom the  t h e o r y  of imp l i c i t  f u n c t i o n s  one has  

= 0 .  

(9.26a) {d~:(E, zF)/dE}:= o = - [ { ~ G l ~ E } l { ~ g l ~ ] : : o  , 

(9.26b) { d ~ a (  E ,  zr) / = 

d E  S j~-o 

e=G eG eG e=G [eG~=7 

~Ea~.f aG I~E ~ +  ~ E I  J/=-3" 
/ a ~ : J  

T a k i n g  in to  accoun t  t h a t  

(9.27a) 

(9.27b) 

d~UR( E,  ~F) _ 8G/SE 

d E  1 - -  ~ g / a E  ' 

d~Ua( E ,  xr) ~G/O E~ 
dE~ {1 - ~G/~E}3 ' 

TABLE X. - Parameters charavterizing the real optical potential (9.23) obtaSned as optical 
trans]orm of the ]actorable single-particle potential energy (6.21b): the parameters are con- 
sistent with the saturation prescriptions and with the Hugenholtz and Van Hove theorem. 
Length r o is expressed in fm units  (see tables V and VII). 

r o b v = - -  14.0 MeV b v = - -  15.01VIoV by = - -  16.0 MeV 

Y ~F Y y ~ y Y ~YF Y 

0.9 1.0630 0.6460 1.0649 0.6779 1.0689 0.7149 

1.0 1.0730 0.7758 1.0756 0.8123 1.0804 0.8603 

1.1 1.0830 0.8993 1.0885 0.9485 1.0935 1.0007 

1.2 1.0949 1.0024 1.0982 1.0862 1.1025 1.1413 

1.3 1.0985 1.1663 1.1114 1.2260 1.1150 1.2824 

1.4 1.1159 1.2832 1.1199 1.3562 1.1233 1.4191 
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i t  i s  f o u n d  t h a t  

(9.28a) An(ur) - -  
3 -t- f l ~  Y ' 

~r y(3 -]- fl~r y)8 , 

w h e r e  t h e  p a r a m e t e r  y i s  d e f i n e d  i n  e q s .  ( 8 . 1 2 ) .  T h e  v a l u e s  o f  f l n r Y  a s  f u n c -  

t i o n s  o f  ro a n d  b ,  a r e  g i v e n  i n  t a b l e  X ;  i n  t a b l e  X I  w e  e v a l u a t e ,  c o n s i s t e n t l y  

TABLW X I .  - The nuclcar-matter quantities by, K and e~ (in M e V )  and the coeHieients 
~ d % )  (i = 0,  1, 2) o] the real optical ?otential (9.23) are evaluated as /unctions o] r o 
(in f m  u n i t s ) ,  consistently with the saturation prescriptions and the Hugenholtz and Van 
Hove theorem. Q u a n t i t i e s  A ( % )  a n d  A2(%)  a r e  g i v e n  i n  M e V  a n d ,  r e s p e c t i v e l y ,  i n  

(l~IeV) -1. (Se6 t a b l e s  V,  V I  a n d  V I I . )  

b .  = - -  14.0 1VIeV 

ro ~F K Ao(~F) AI(~F) '~(~F) 
0.9  57 .02  374 .28  - -  64.43 0 . 4 5 1 4  - -  0 .001 856 

1.0 46 .18  320 .87  - -  53 .17  0 .4703  - - 0 . 0 0 2  271 

1.1 38 .17  283 .09  - - 4 4 . 7 7  0 .4871  - - 0 . 0 0 2  721 

1.2 32 .07  249 .57  - -  38 .45  0 .5003  - -  0 .003  203 

1.3 27 .33  228 .99  - -  32 .98  0 .5195  - -  0 .003  722 

1.4 23 .56  2 0 7 . 6 0  - -  29 .34  O. 5330  - -  0 . 004  246 

b.  ~- - -  15.0 M:eV 

ro % K Ao(U~) AI(~F) A~(uF) 

0 .9  57 .02  380 .60  - -  64.67 0 .4582  - -  0 .001 853 

1.0 46 .18  328 .97  - -  53 .43  0 .4754  - -  0 .002  265 

1.1 38 .17  286 .62  - -  45 .23  0 .4975  - -  0 .002  707 

1.2 32 .07  258 .84  - -  38 .68  0 .5093  - -  0 .003  156 

1.3 27 .33  232 .26  - -  33 .76  0 .5267  - -  0 .003  682 

1.4 23 .56  211 .48  - -  29 .55  0 .5409  - -  0 .004  217 

b v ~- - -  16.0 M e V  

ro ~ K Ao(~r) Ai(~r) ~(~F)  
0.9 57 .02  387 .53  - -  65 .16  0 .4616  - -  0 .001 847 

1.0 46 .18  336 .29  - -  53.91 0 .4819  - -  0 .002  255 

1.1 38.17 296 .19  - - 4 5 . 6 4  0 .5001  - - 0 . 0 0 2  693 

1.2 32 .07  265 .22  - -  38.98 0 .5170  - -  0 .003  138 

1.3 27 .33  240 .42  - -  33 .98  0 .5330  - -  0 .003  662 

1.4 23 .56  220 .43  - -  29 .73  0 .5474  - -  0 . 0 0 4 1 9 2  
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with the saturat ion prescriptions and the Hugenholtz and Van Hove theorem, 
the  coefficients of the  real optical potential ,  expressed by eq. (9.23). 

Le t  us suppose tha t  the elastic-scattering data  of nucleons by nuclei has 
been fi t ted using a real optical potential  having the  empirical form 

(9.29) Va(.E) = a~-4- bx.E + v~-E ~ . 

We arbitrari ly assume tha t  such an analytical  expression is valid also in the 
energy intervals where the lV ---- 2 approximation certainly fails: for this reason 
we have modified the  notat ion adopted for the empirical potent ial  (9.10). 
The comparison between potentials (9.23) and (9.29) leads to the system of 
equations 

(9.30) Ao(ur) = an, Aa(uF) ~- b~, A~(uF) : -  v a . 

The basic idea of the  criterion devised for penetrat ing theoretically into the  
Fermi  sphere, using the experimental data  concerning the elastic scattering 
of neutrons by  nuclei, consists in determining the parameters 7, fluF and % from 
the  phenomenologically known parameters (a1, b~, el) and, then,  using eq. (6.20), 
determining parameter  ~u F (see table V). From the second of eqs. (9.30) one has 

(9.31) fluFY = (3b~-- 1)/(1-- bl); 

since y > 0, eq. (9.31) implies tha t  i t  must  be 

(9.32) �89 < 1 .  

Inequal i ty  (9.32) shows tha t  the Wilmore and  Hodgson potential ,  discussed 
in subsect. 9"1, conflicts with the optical scheme constructed on the basis of 
the  factorable single-particle potential  energy (6.21b), not  only because c0 > 0 
(note t ha t  A~(ur) is a negative quant i ty ,  as is shown in table XI) ,  but  also 
because b0 < �89 In  conclusion, i t  is found tha t  y depends on the parameters 
(ax ,  b~, c1) through the quadratic equation 

(9.33a) Y~ + ~1 Y Jr ~ = 0 ,  

1 --  bl (3b, - -  1)3(1 --  bl) - -  8ale1. 
(9.33b) ~1 = 361 --  1 '  ~2 ---- 3 ( 3 b l -  1)(1 --  b~) ~ ' 

then,  parameter  fluF is given by eq. (9.31) and the Fermi energy is obtained 

from the  relation 

(9.34) e~ "= - -  ax[y  ~ . 
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GIAI~I~INI, RICC0 and  ZUCCHIATTI (4~) have  successfully f i t ted the  energy  

dependence  of the  real  opt ical  po ten t i a l  up  to E ~__ 140 MeV b y  using the  

analyt ica l  fo rmula  (9.29) wi th  

(9.35) a~ ~- - -  48.5 M e u  b~ : 0 .36 ,  e~ ~ - -  0.000 855 (MeV) -~ . 

F r o m  eq. (9.31) i t  follows t h a t  fluF u ~ 0.1250: f rom table  X it  is seen t h a t  
this  value is not  compat ib le  wi th  nuclear  s tabi l i ty .  The  descript ion of nuclear  

m a t t e r  infer red  sic et simplieiter f rom the  set  of p a r a m e t e r s  (9.35) looks cum- 
bersome;  in fact ,  f rom eqs. (9.31), (9.32) and  (9.34) i t  is found t h a t  

(9.36) y ---- 0.3968 , fluF---- 0.3150 , %---- 308.03(!) M e V .  

The  paradoxica l  resul ts  in (9.36) show t h a t  the  GRZ formula ,  a l though useful 

for f i t t ing the  da ta  in a re la t ively  wide energy  interval ,  is depr ived of any  phys-  
ical meaning  in the  energy  region where the  MeLaur in  expansion of any  func- 

t ion describing the  energy  dependence of the  real  p a r t  of the  optical  po ten t ia l  
is p r e s u m a b l y  val id :  of course, this  is also t rue  for the  optical  t r ans fo rm (8.10) 
of the  fac torable  po ten t i a l  (6.21b). We  give credit  to the  analyses pe r fo rmed  
b y  GIAI~INI ,  l:~ICCO and ZUCOnZAT~ and  res t r ic t  the  va l id i ty  of the i r  formula  
up  to E ~ 50.0 lV[eV. As is shown in tab le  X I ,  the  nuclear  s tab i l i ty  implies t h a t  

(9.37) 0.400 < A2(zF) < 0.550; 

then,  t ak ing  into account  prescr ip t ion (9.37), we specify the  GRZ poten t ia l  
wi th  the  following sets of pa r ame te r s :  

(9.38) 

set  I :  al ---- - -  49.16 

set  I I :  a~------ 49.57 

set  I I I :  a l - - - - - -50 .00  

set  IV:  a 1 = - - 5 0 . 4 1  

set  V: al---- - -  50.83 

set  VI :  a ~ : - -  51.66 

MeV,  bl---- 0 .400,  cl--~ - -  0.001387 (Meu -1 ; 

MeV,  bl z 0.425, cl ~-- --  0.001723 (MeV) -1 ; 

M e V ,  bl ---- 0.450 , cl : - -  0.002 053 (MeV) -1 ; 

M e V ,  bl ~-- 0.475 , el ---- - -  0.002 389 (MeV) -1 ; 

M e V ,  bl ---- 0.500,  Cl ---- - -  0.002 720 (MeV) -1 ; 

MeV,  bl ---- 0.550, cl ~ - -  0.003 387 (MeV) -1 . 

E x c e p t  a t  the  

obta inable  b y  

t h a t  the  GRZ 

zero-energy l imit ,  sets (9.38) lead to the  same resul ts  o therwise  

using the  original GRZ formula.  I t  is worthwhile  to point  out  

formula ,  modified b y  sets (9.38), looks like a pe r tu rbed  optical  

(49) M. ~ .  GIANNINI, G. :RIcco and A. ZUCCmATTI: ,Microscopic Optical Potentials, 
Proceedings o] the Hamburg Con]erence, edited by H. V. yon GERAMB (Berlin, 1978), 
p. 126. 
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t ransform of the  single-particle potent ia l  energy described in the  effective- 
mass approximat ion:  this is a ve ry  naive clue for unders tanding m an y  con- 
ceptual ly  twisted t rea tments  of the  optical model (which, incidentally, have 
never  produced significant results). The  parameters  expressed by  eqs. (9.31), 
(9.32) and (9.34), calculated using sets (9.38), are given in table XI I .  The 
comparison of table X I I  with tables X and X I  shows tha t  the values of the 
parameters  (a~, b~, e~) consistent  with nuclear s tabil i ty and with the  Hugen- 

holtz and  Van Hove  theorem are included between those characterizing set IV 
and those character izing set V. Taking into account  table VI,  one finds tha t  
i t  mus t  be 

ro = (1.1 • 0.1).10 -18 c m ,  

(9.39) by = -- (15.0 ~: 1.0) MeV,  

K _~ 220.0 -{- 50.1.  

T A B L E  X I I .  - Parameters (9.31), (9.33) and (9.34), characterizing the McLaurin expan- 
sion o/ the reaZ optical potentia~ (8.10), are evaheated as ]unctions o] sets (9.38). 

Set y fluF y fluF eF 

I 0.6597 0.3333 0.5052 112.96 

II 0.8089 0.4783 0.5912 75.76 

I I I  0.9437 0.6364 0.6743 56.14 

IV 1.0715 0.8095 0.7555 43.91 

V 1.1930 1.0000 0.8382 35.71 

VI 1.4382 1.4444 1.0043 24.97 

This result  is ve ry  grat ifying;  we shall not  bother  to determine the  exact  value 

of the  nuclear-mat ter  parameters  (by, K, %). 
We shall now examine the  real optical potent ia l  (8.10) : 

(9.40a) cUR(E, nF) = c~ {E -- cUR(E, n~)}-t cxp [ - -  c%(np) {E -- cUa(E, nF)}t], 

(9.405) o~1(~) : cUo(~F)~/%, to2(~F) = f l~p/%/~. 

The unknown parameters  o)l(~F) and co~(~F) have been determined by  minimizing 

the  mean square deviation 

(9.41) 

~o 

~(~,~, o~) =f {V,(E)- CUdE, ~)}:aE, 
0 

where VI(E) is the GRZ potent ia l  and Eo = 140 MeV. Several mathemat ica l  
difficulties have been overcome in order  to deduce in explicit  form the  system 
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of equa t ions  

(9.42) ~f l /~o ,  = O, 

where  i---- 1, 2. A l e n g t h y  ca lcu la t ion  has  led to the  solut ions  

(9.43) OJl(~F) = - -  899.82 (MeV) t , e%(~F) = 0.1310 (MeV)-~. 

The  m i n i m u m  of eq. (9.41) is f o u n d  to  be ~ o =  55.98 (MeV)3; i t  is wor th-  

while  to  po in t  ou t  t h a t  the  m i n i m u m  becomes  Jt(~0= 1.50 (MeV) 3 if t he  

in tegra l  is ca lcu la ted  b y  a s s u m i n g  E ~> 50.0 MeV. The  numer i ca l  va lues  of 

p o t e n t i a l  (9.40) are  g iven  in tab le  X I I I ;  t he  b e h a v i o u r  of the  po ten t i a l ,  gove rned  

b y  p a r a m e t e r s  (9.43), is p l o t t e d  in fig. 4a), b) vs. t h e  inc iden t  ene rgy  E (5o). 

TABLE X I I I .  - Numerical values (in McV) o] the real optical potential (9.40) governed by 
parameters (9.43). 

E ~UR(E, ~ )  E "UR(E, uF) 

0 - -  50.20 25.0 - -  40.96 

2.5 - -  49.22 30.0 - -  39.27 

5.0 - -  48.25 50.0 - -  33.00 

10.0 - -  46.35 100.0 - -  20.89 

15.0 - -  44.50 150.0 - -  13.86 

20.0 --42.71 200.0 - -  11.26 

W e  have  now sufficient i n fo rm a t i on  for  the  d e t e r m i n a t i o n  of the  nuclear-  
m a t t e r  p a r a m e t e r s  (b ,  K, %). F r o m  (9.43), t ak ing  in to  accoun t  definit ions 

(9.40b), one has  

(9.44) ~Uo(nF)fln F ----- --  117.88 M e V .  

The  same  q u a n t i t y  is eva lua t ed  in tab le  X I V ,  b y  us ing  r and  fin F g iven  
in tables  V I I  and ,  respec t ive ly ,  V. I t  is seen t h a t  for  b y = -  14.0 MeV 

value  (9.44) cor responds  to  ro inc luded  be tween  1.1 a n d  1.2 fm,  for  b y =  

---- --  15.0 MeV it  cor responds  to  ro v a r y i n g  in the  in t e rva l  be tween  1.1 and  1.0 fm  

and  for  b - - - - -  16.0 MeV ro appears  to  be  inc luded  be tween  1.0 and  1.1 fm.  

These  resul ts  are  subs t an t i a l l y  cons i s ten t  w i th  the  values  of the  n u c l e a r - m a t t e r  

quan t i t i e s  g iven  b y  eq. (9.39). W e  shal l  no t  seek for  exac t  n u m e r i c a l  solut ions 

a n d  a s sume  b v ---- - -  15.0 MeV. T he  final result ,  o b t a i n e d  b y  means  of tables  V 

(50) The real optical potentials, so far considered, do not reproduce with the same set 
of parameters the low- and high-energy data; this circumstance was first noticed by 
FRAHN (W. E. FRAHN: NUOVO Cimento, 5, 393 (1957); see also W. E. FRAHN: NUOVO 
Cimento, 4, 314(1956)). 
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Fig.  4. - E n e r g y  dependence of the  real  par~ of the  opt ical  po ten t ia l  (9.40) charac- 
te r ized  by  pa ramete r s  {9.43) ; a) energy in te rva l  0 < E < 50 MeV: po ten t ia l  (9.40) is 
expressed by  curve  1); the  empir ica l  po ten t ia l  of Giannini ,  Ricco and Zucchia t t i  and 
the  empir ica l  po ten t ia l  of Wi lmore  and Hodgson are represented by  curves  2) and 3), 
respec t ive ly ;  b) po ten t ia l  (9.40) in the  energy in te rva l  0 < E < 200 MeV. The  ord ina te  
scale is g iven  in MeV. 

TABLE X I V .  - Numerical values (in MeV) o] quantity r F calculated consi- 
stently with nuclear saturation and with the Hugenholtz and Van Hove theorem, by using 
the values o/ cUo(uF) and flUF given in table V I I  and, respectively, in table V. Leng th  r o 
is g iven  in fm units .  

ro ~o(~) fi~ 
b, = - -  14.0 MeV b v = - -  15.0 MeV b v = - -  16.0 MeV 

0.9 - -  79.25 - -  86.65 - -  95.32 

1.0 - -  96.59 - -  98.32 - -108 .78  

1.1 - -  99.39 - -110 .75  - -123 .78  

1.2 - -  105.35 - -  125.18 - -  140.10 

1.3 - -  123.69 - -  140.71 - -  157.40 

1.4 - -  136.39 - -  156.74 - -  176.77 

a n d  V I I  a n d  u s i n g  eqs .  (6.20),  (5.23) a n d  (7.41), is 

b ---- - - 1 5 . 0  M e V  , r0 - - - - 1 . 1 7 1 " 1 0 - 1 a c m ,  uF = 1 . 3 0 0 8 " 1 0 1 8 c m - 1 ,  

(9.45) % = 35 .08  M e V ,  ~ F  = 2 . 0 1 8 4 ,  fix F = 0 . 9 2 7 6 ,  

v(0, ur) ---- - -  109 .00  M e V ,  K = 187.48 M e V .  

I n  c o n c l u s i o n ,  a p a r t  f r o m  c o n c e p t u a l l y  i r r e l e v a n t  n u m e r i c a l  a p p r o x i m a t i o n s ,  

q u a n t i t i e s  (9.45) a r e  i n f e r r e d  f r o m  t h e  p h e n o m e n o l o g i c a l  i n f o r m a t i o n  on  t h e  

e l a s t i c  s c a t t e r i n g  of  n u c l e o n s  b y  n u c l e i  a c c o r d i n g  t o  a n  e x a c t  m a t h e m a t i c a l  

p r o c e d u r e  c o n s i s t e n t  w i t h  t h e  s a t u r a t i o n  p r e s c r i p t i o n s  (1.5) a n d  t h e  H u g e n -  

h o l t z  a n d  V a n  H o v e  t h e o r e m  (1.15).  T h e  o b t a i n e d  r e s u l t  is v e r y  s a t i s f a c t o r y ;  
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i t  should be clear t h a t  this goal has been achieved only b y  vi r tue  of the  dif- 
ferent ia l  equat ion  of nuclear  m a t t e r  (5.5). 

The to ta l  energy  (7.34) can be wr i t t en  as 

(0.46) W(u)/A : aa%)~2 -F ~{(b  - -  %)/:r {J~l(auF)~)/Jo(~uv)Jl(~ Z ,  

where ;( = u/uF. Func t ion  (9.46), calculated with  p a r a m e t e r s  (9.45), is plot-  

ted  vs. %, in fig. 5a: i t  is seen t h a t  W(~()/A possesses a m i n i m u m  equal  to 

by- - - - -  15.0 MeV at  r o ~  1 .171fm.  The  m o m e n t u m  dependence of the  fac- 
torable  single-part icle po ten t ia l  energy  (7.42), calculated a t  the  m i n i m u m  of 
the  to ta l  energy,  is shown in fig. 5b. 

15.0 

--15.(] 

--30.0 

_ _ . L  -J. J 

- -45 .0  ~ J . L _ _ ~  f ~ 1  ~ _ _ . L  t L J-  
0 0.5 1.0 1.5 0 0.4 03 1.2 

X/XF p/X F 
Fig. 5a. Fig. 56. 

Fig. 5a. - The saturation of infinitely extended nuclear matter described by the total 
energy (9.46), calculated using parameters (9.45) deduced from the analysis of the 
real optical potential. The ordinate is expressed in ]~eV. Curves 1), 2) and 3) cor- 
respond to T(u)/A, V(~)/A and W(x)/A, respectively. 

Fig. 5b. - The momentum dependence of the single-particle potential energy (7.42) 
at the minimum of the total energy expressed by eq. (9.46) (see fig. 2b). The Hugen- 
holtz and Van Hove theorem is also visualized. The ordinate is expressed in 1EeV. 
Curves 1), 2) and 3) refer to t(p)----eF$~ , v(p, uv) and w(p, uF), respectively. 
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lO. - The energy dependence of the imaginary part of the optical potential. 

The pessimistic perspectives of sophist icated theories of the imaginary 
pa r t  of the  optical  potent ia l  (51), and the scanty  results obta ined from them,  
will p robab ly  s t imulate  the revival  of the theoret ical  outlook on which the 

so-called frivolous models (5~) are based. Our purpose is to re-formulate  the  
simple model  cons t ructed  by  CLE~E~TEL and VILLI (68) and calculate ~UI(E , ~F) 
consis tent ly  with the  saturat ion requirements  of infinitely ex tended nuclear 
m a t t e r  and with the  Hugenhol tz  and Van Hove  theorem. The achievement  
of this ambit ious goal has never  been a t t em p ted  before: of course, it  is signifi- 
cant  only as a tes t  of the in ternal  logic of the  whole nuclear-mat ter  problem. 

10"1. - As is well known, according to the clouded crystal  ball model (54) 
the  nucleon-nucleus scattering problem is reduced to  a one-body problem by  
describing the  nucleus by  means of a complex a t t rac t ive  potent ia l  

(10.1) ~ ( ~ ,  u~) = ~ ( E ,  ~ )  - i~ I (E ,  ~ ) ,  

act ing upon the incoming particle.  I t  is easy to see from the cont inui ty  equa- 
t ion  t ha t  the  in t roduct ion  of a negative imaginary  potent ia l  energy in the 
SchrSdinger equat ion is a theoret ical  device for describing absorpt ion of par- 
ticles: in fact ,  the  optical  potent ia l  (10.1) corresponds to an absorption prob- 
abi l i ty  2r per  uni t  t ime as long as the  part icle  is within the  nucleus. I t  
follows tha t  the  ta rge t  nucleus can act  upon the  incoming nucleon as a potent ia l  
well, because the  format ion  of a compound state,  described by  the  potent ia l  
r , ~ )  as an absorption,  occurs inside the nucleus with a probabi l i ty  smaller 
t ha n  uni ty .  In  terms of the  mean  free pa th  ~, the  absorpt ion probabi l i ty  per  
uni t  t ime is given by  v(E)/2, where v(E) is the veloci ty  in nuclear ma t t e r  of a 
nucleon incident  on the  ta rge t  nucleus with energy E. Trivial statist ical  con- 
siderations and e lementary  quantum-mechanical  arguments  lead to the general 
conclusion tha t  the  imaginary  pa r t  of the optical potent ia l  depends on the  
'density ~ of nuclear mat te r ,  on the  nucleon veloci ty v(E) and on the  neutron- 
p ro ton  cross-section (a~p}, averaged o v e r  the  A nucleons of the nucleus and 

(51) B. SINHA-" Phys. Rep. C, 20, 1 (1975). 
(52) ]~. CLEMENT:EL and C. VILLI: Nuovo Cimento, l ,  176 (1955); A. M. LANv. and C. F. 
WA~D~L: Phys. Rev., 98, 1524 {1955); I thank Prof. F. ZARDI for a useful discussion on 
the recent developments of this topic. 
(sa) j .  p. J~NK~NU~, A. LEJ~UNV, and C. MAHAUX: Nuclear Optical Model Potential, 
edited by S. BOFFI and G. PASSATORV. (Berlin, 1976), p. 72; B. SZNHA and F. DUGGAN: 
Phys. •ett. B, 47, 389 (1973); B. SINHA and F. DtTGGA~: Nucl. Phys. A, 226, 31 {1974). 
(54) H. F~SHBACH, C. E. PORTV, R and V. F. WEISSKOPF: Phys. Rev., 96, 448 (1954). 
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over their momenta within the :Fermi sphere, according to the relation 

(10.2) cU~(E, uF) : ( 5 /16 )~v (E) (a , ,~ }  , 

where ( a , }  is evaluated in the centre-of-mass system; potential (10.2) has 
been deduced taking into account the implications of charge symmetry and 
charge independence and assuming 

(10.3) a , . =  %. = ( 1 / 4 ) a . o ,  

where ann and %~ are the elastic proton-proton and, respectively, neutron-neutron 
cross-sections. The validity of conditions (10.3) is a decreasing function of the 
scattering energy and is based upon the fact that  the integral cross-section 
related to the pure isobaric spin state T =  0 is negligible as compared with 
that  corresponding to the pure isobaric spin state T = 1. 

Let p and q be the momenta of the nucleon incident on the nucleus with 
energy E = k~/2M in the laboratory system (p > xF) and, respectively, the 
momentum of a nucleon embedded in nuclear matter (q < uF) ; the momentum p 
will be defined according to the dispersive relation 

(lO.4) p ~ p (E)  = k(1 -- cUR(E , uv) /E}t  , 

already introduced in sect. 8. Tile relative momenta of the two-nucleon sys- 
len s before and after the elastic collision are 

(10.5) P - � 8 9  P ' : � 8 9  

the energy conservation requires that  

(10.6) P ' = P :  �89 q[.  

The cross-section an~ depends on /) and on the angle between P and P' ,  i.e. 

(10.7) ano = an~(P, P . P ' ) .  

The procedure for calculating (and) is the following: a) quanti ty (10.7) is 
multiplied by the flux of incident particles of velocity [ p - - q [ / M ;  b) the 
quanti ty thus obtained is integrated over the solid angle dQ----sin~dadfl 
defined by the relative momenta P and P' ,  keeping momenta p and q 
fixed; e) then, by averaging over the Fermi sphere one obtains the number of 
particles scattered per unit time in the whole solid angle for any value of q; 
d) finally, such a result has to be divided by the flux of incident particles 
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corresponding to the velocity k/M. In conclusion, it is found that 

(10.8) (an~ } ---- (1/p)(3/4nu~)fl p -- q ia.p(P, P" P')  dq d ~  . 

The calculation of eq. (10.8) cannot be performed without resorting to an elec- 
tronic computer: a prospect which, at least for me, holds little excitement. 
At this stage, to avoid nonessential refinements, we shall simplify eq. (10.8) 
by neglecting the angular dependence of the neutron-proton cross-section and 
use the total cross-section, i.e. 

(10.9) an~(P; P ' P ' )  --+ (1/4n)an~(P); 

consequently, eq. (10.8) becomes 

(10.10) (a  ~} = (1/p)(3/16r~2u~) f [p  -- qla.~(P) dq dt9 . 

Let us define the vector 

(10.11) Q = p + q ,  

which, owing to the consel-~ation of the total momentum, turns out to be an 
axis of cylindrical symmetry. :From the relation 

(10.12) p' = p + q - -  q ' :  �89 ~- P' 

one readily obtains, taking into account prescription (10.6), 

(10.13) cos a~ : (2p ' 2 -  p 2 _  q2)/[p _~ q ] ] p _  q[; 

then, one has 

(10.14) f d ~ 9 = 2 ~ f s i n a d a - -  

g 

8~ ~'d(p,~) _ _ _  
Jp -F q[]P - -  q[ J 

The lower limit of integration is given by 

(10.15) Po = x,; 

2 2 4n(pl --  Po) 

[P § q[]P- -q[  " 

the physical meaning of equality (10.15) will be discussed later. The upper 
limit P~I is determined by the Pauli principle and by the principle of energy 
conservation: in fact, the latter requires that  

(10.16) p'2 = p~ ~ q2__ q'2; 
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it follows that  the maximum of p' is obtained by putting into eq. (10.16) 
q' ~ "F, which is the minimum value of q' compatible with the exclusion prin- 
ciple, i.e. 

2 (10.17) p~ = p~ ~_ q O  "F- 

The previous considerations ensure that  p21>p~ o. Equation (10.10) becomes 

( lO.1s)  <~oo> = (1/p)(3/~)f{(p2 + q~_ ~,~)/t~ + qJ}~,(P)dq. 

Let de/=-q~dqsinOdOdq be the volume element in momentum space. We 
identify 0 with the ~ngle between p and q. From the relation 

(10.19) Q~'= I P -  q]2 = p2 ~ q2_ 2pqcosO 

one obtains sin0 dO--~ (Q/pq)dQ; the analytic expression of the relative mo- 
mentum (10.6) turns out to be 

(10.20) p = �89 (2p~ ~- 2q2_ Q~)t. 

Consequently, eq. (10.8) becomes 

ql 

(10.21a) (a.~> = (1/p2)(3/2,~)[q(p 2 + q~-- 2,~)S(p, q) dq , 

q0 

= f (2p ~ + 2q ~ -  Q~)} dQ , (10.21b) S(p, q) 

where ql ~ qo and p > q because p > "F and q<,~;  the limits of integration are 

(10.22) [ qo---- 0 ~ q < " F  ~ ql, p~>2k~ . 

In conclusion, the imaginary part  of the optical potential reads 

(10.23) "F )  (5h/167~ 2) {v(E)/f(E)}jq(p: + q~- 2.~)S(p, q)dq, 
q0 

where the equilibrium density of nuclear matter has been expressed by means 
of the corresponding Fermi momentum, 

(10.24) e = A / 9  = 3/4~r~ = (2/3n~)g. 
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Although completely unphysical,  the  assumption tha t  the to ta l  neutron- 
pro ton  cross-section a.~(P) is a constant  has been widely used in order to cal- 
culate <(~ ~}. In  this case one has S(p, q )~-2aoq and from eq. (10.21) and 
prescript ions (10.22) one obtains 

(10.25a) 

(10.25b) 

where 

{ 7 }  
<a~o>=ao 1--g~ 2 p2>2~, 

{ ( 7 ~  2 ~  2-- p~<2~, 

(10.26) =_ $ ( E )  = , ~ / p ( E )  . 

Equa t ion  (10.27a) has been der ived by  GOLDBERGER (~5) following a different 
procedure and eq. (10.27b) has been obta ined  by  Y.A..~AGUCHI (se). 

A deep insight into equal i ty  (10.15) is provided by the following theorem:  
the real optical potential, calculated at the average volume energy o/nuclear m~ttter, 
identi]ies with the single-particle potential energy at the Fermi sur/ace. To this 

end we consider the equation 

(10.27) x~ = p(Eo) , 

where Eo is an unknown energy and x F is the Fermi  mo,nel~tum corresponding 
to the  mininmm of the  to ta l  energy of infinitely extended nuclear mat ter .  
F rom eq. (10.27) taking into account  eq. (10.4), one has 

(10.28) Eo =- % + r uF) �9 

According to eq. (1.19), the optical t ransform of the  single-particle potent ia l  
energy v(p, ~.) is 

(10.29) cU~( E, ~F) -= v{p(E), ~F} ; 

it  follows tha t  at  E = Eu eq. (10.28) becomes 

(~o.3o) Eo = ~ +  v(~F, ~) . 

The only physically meaningful value of Eo, satisfying eq. (10.31) consistently 
with the saturat ion prescriptions (1.5), is given by  the Hugenhol tz  and Van 

(55) ]~. h. GOLDBERGER: Phys. Rev., 74, 1269 (1948). 
(~e) y .  YAMAC.VCm: Progr. Theor. Phys., 5, 332 (1950); the formula obtained by this 
author contains some analytical mistakes. 
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Hove theorem (1.15), i.e. 

(10.31) E o :  b ;  

in conclusion, the  following iden t i ty  holds: 

(10.32) 'UR(bv, ~F) --  V(~F' ~F)" 

F rom theorem (10.32) one deduces tha t  the minimum value of p(E)  is 

(10.33) XF ---- P(bv) ~ Po.  

I t  should be clear tha t  the val id i ty  of the preceding proof relies entirely on 
the fact  tha t  v(p, ~) is ,~ solution of the diffcrential equat ion (5.5). 

10"2. - In  the following discussion we shall consider only the  real optical 
potent ia l  (9.40), obtained as optical t ransform of the  factorable single-particle 
potent ia l  energy (7.42): in this way the frivolous model,  expressed by  eq. (10.23), 
is logically included in the  theoret ical  description of nuclear ma t t e r  based 
on the hyperbolic differential equat ion (5.5). 

10 

10 

ha 

10 

' ! 

, , , , , , , I  , i i l l l l l i  i I I l l l l J ]  i i I l i l l i i  I I I 
7o -2 lo- '  lo 0 lo' lo 2 E 

Fig. 6. - Experimental values (in barn) of the total neutron-proton cross-section as 
functions of energy E (in MeV), measured in the laboratory system of reference. 
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The  ca l cu la t ion  of ~Ux(E , u~) requ i res  a careful  use of the  e x p e r i m e n t a l  va lues  

of the  t o t a l  n e u t r o n - p r o t o n  cross-sect ion in  order  to o b t a i n  re l iable  n u m e r i c a l  

va lues  for ((~n~), g iven  in  eq. (10.2]). F o r  the  sake of comple teness  we l i s t  in  

t ab l e  X V  the  va lues  of (%~(E) as f u n c t i o n s  of the  ene rgy  E in  the  l a b o r a t o r y  

s y s t e m  of re ference  (57) ; t he  ene rgy  dependence  of the  to t a l  n e u t r o n - p r o t o n  cross- 

sec t ion  is p l o t t e d  in  fig. 6. W e  shal l  now d e t e r m i n e  the  i n t e r v a l  of v a r i a t i o n  

of a~(P) i n  the  cen t re -of -mass  s y s t e m  a n d  in  nuc l e a r  m a t t e r  as a f u n c t i o n  of 

TABLE XV. - Experimental values (in barn) o] the total neutron-proton cross-section as 
]unctions o] the energy E (in l~[eV), measured in the laboratory system o] reference.: 

E a:p(E) E an,(E) E anp(E) 

0 - -  2.28 2.70 • 0.06 15.00 0.63 

0.024 18.15 • 0.05 2.40 2.39 16.00 0.66 

0.035 16.74 4- 0.41 2.50 1.80 • 0.40 18.00 0.55 

0.095 13.46 • 0.39 2.60 2.60 ::[= 0.05 19.50 0.52 

0.130 11.85 :J= 0.15 2.76 2.40 ~ 0.06 19.93 0.504 4- 0.001 

0.140 10.50 :J= 0.90 2.80 2.17 ~ 0.10 21.00 0.41 

0.157 l l .10 2.90 1.80 ! 0.20 25.00 0.39 4- 0.06 

0.160 12.00 • 0.30 3.00 2.23 • 0.13 27.00 0.36 

0.180 11.30•  3.10 2 . 1 8 •  39.00 0.223 •  

0.200 10.0 3.50 2.09 ~ 0.09 40.00 0.170 

0.220 9.60 • 0.40 4.00 1.85 :J= 0.09 64.50 0.126 • 0.003 

0.245 0.20 4.10 1.73 :j: 0.06 90.00 0.082 

0.265 9.12 4- 0.24 4.50 1.83 • 0.10 95.00 0.073 4- 0.0015 

0.32 8.70 4.75 1.69 • 0.06 97.00 0.074 :j:: 0.010 

0.35 7.15 ~: 0.24 5.00 1.63 • 0.05 117.00 0.0616 

0.40 8.70 ~ 0.90 5.50 1.48 • 0.06 140.00 0.0485 

0.60 5.85 4- 0.25 6.00 1.32 • 0.12 156.00 0.0493 

0.72 5.22 • 0.12 6.50 1.40 • 0.11 160.00 0.0512 

0.83 5.00 • 0.10 9.30 0.92 • 0.08 169.00 0.0492 • 0.0016 

0.90 5.50 ~ 1.10 10.60 0.78 • 0.08 180.00 0.044 

1.00 4.16 ~ 0.15 12.50 0.69 • 0.10 220.00 0.0411 

1.34 3.64 :j: 0.04 12.80 0.83 • 0.09 260.00 0.035 

1.60 3.36 ~: 0.08 13.50 0.69 4- 0.019 270.00 0.038 • 0.0015 

2.00 2.96 ~: 0.07 14.00 0.71 280.00 0.036 

2.14 2.76 • 0.06 14.80 0.61 • 0.07 400.00 0.0336 

(57) More complete information is given in the review paper by L. BERETTA, C. VILLI 
and F. FERRA~I: NUOVO Cimento, Suppl., 12, 499 (1954). 
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the  k ine t i c  ene rgy  E of the  nuc l eon  i n c i d e n t  on the  t a rge t  nuc leus .  The  k ine t i c  

ene rgy  i nvo lved  in  t he  col l is ion b e t w e e n  a. nuc l eon  of m o m e n t u m  p ( E ) >  x r 
wi th  a n u c l e o n  h a v i n g  in  the  F e r m i  sea m o m e n t u m  q < u  F is 

(lo.3~) e --- e(P) - -  P2/M = [ p -  ql~/4M. 

The  i n t e r v a l  of m a x i m u m  v a r i a b i l i t y  of the  r e l a t ive  m o m e n t u m  is 

(lo.35) /)o : -  +1 ( P -  g F ) < P <  1 (p _~ • ---- P~ ; 

i t  follows t h a t  eo~<e<e~, where  

(10.36a) eo ~ e(Po) = �89 {~/E ..... CUR(E , x F ) -  %/e-~:, 

(10.36b) e, ~ e ( P , ) - -  �89 (V/E - ~U~{E, ~F) :4- V'%} 2. 

TABLE XVI. - Auxiliary parameters required ]or the calculation o] the imaginary part 
o] the optical potential giwn by eq. (10.23). Quantities E, e o, el and c 2 are expressed in 
MeV, and c I in b. MeV (see tables XI I I  and XV; the Fermi energy is assumed to 
be % - 33.68MeV). 

E e o e I c 1 e 2 

0 0.82 83.06 4.1651 0.4109 

2.5 0.96 84.43 4.1895 0.3792 

5.0 1.11 85.81 4.2130 0.3456 

10.0 1.45 88.58 4.2468 0.2661 

15.0 1.83 01.35 4.2836 0.1814 

20.0 2.24 94.15 4.3260 0.0970 

25.0 2.69 96.95 4.3530 --  0.0008 

30.0 3.17 99.77 4.3855 - -  0.0976 

50.0 5.47 111.21 4.5842 0. 5994 

100.0 13.48 141.09 5.5618 4.8878 

150.0 24.48 173.06 6.4567 8.8188 

200.0 38.12 206.82 8.3629 45.8345 

Energ ie s  (10.36) are e v a l u a t e d  in  tab le  X V I ,  u s ing  the  va lues  of the  real  

opt ica l  p o t e n t i a l  g iven  in t ab l e  X I I I .  We s imula t e  the  energy  dependence  

of and(e) by  m e a n s  of the  t w o - p a r a m e t e r  f o r mu l a  

(10.37) s(e)---- cl/{c2 ~- e(P)} 
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and minimize the mean square deviation 

r 

(10.38a) ~V(c~, de, 

(10.38b) ~,N'/~c, = O, 

where i =- 1, 2. The values of parameters  c~ and c2 are listed in table XVI  (68). 
I f  we take  into account  eqs. (10.20) and (10.34), the empirical formula 
(10.37) becomes 

(10.39) s(p, q; Q) -= 4Mc~/(4Mc2 q- 2p 2 -{- 2p 2 -- Q2). 

F rom table XVI  it  is seen tha t  the approximat ion c2= 0 is not  correct,  

except  for E "~ 25 McV (ss). 
The funct ion defined in eq. (10.21b) reads 

(lO.40) 
~-i-q 

S(p, q) q; Q) dO; 

a s t ra ightforward calculation gives 

(10.41) S(p, q) = 
2 Mcl 

V'2(2Mc2 -}- p~ -{- q2) 

4Me., ~- p2 ~_ 3q2 ~_ 2qV2(2Mv,  -~ p2 ~_ q2) 
�9 In 

4Me2 q- p2 ~ 3q2 _ 2qV'2i2MT-_ ~ p2 q_ q,) 

Since. in the interval  p -  q<<.Q<.<p q- q it results t ha t  Q2 < 2(2Mc2 q- p2_[_ q2), 

from eq. (10.40) on(, also obtains 

(10.42) 
2 Me1 

�9 [ tg l r  ~ P q- q 
[ 

_ _ _ _  _ tgh-1 P - - q  ];  
~/2(2Me2 q- p2 q_ q2) 

by means of trivial manipulat ions eq. (10.42) can be writ ten in the following 
analyt ical  form, which for numerical  computat ions is more convenient  than  

(ss) S. HAYAKAWA, M. KAWAI and K. KIKUCIII: Progr. Theor. Phys., 13, 415 (1955); 
the approximation c~ = 0 has been adopted also by B. SINHA: Phys. Rev. C, 11, 
1546 (1975). 
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that  expressed by eq. (10.41), i.e. 

2Mc, 
(10.43) S(p, q) -~ %/2(2Me2 + p* ~- q*) 

tgh_ ~ 2qV'2(2Mc~ ~- p2 + q2) 
4Mc~ ~- p2 ~ 3q* 

In conclusion, the imaginary optical potential (10.23) turns out to have the 
following analytical form: 

(10.44a) 

(10.44b) 

(10.44c) 

(10.44d) 

~U~(E, xF) ---- C I { E -  ~UR(E, ur)} g(E, uF), 

C~ ~-- C,(E) ---- (5/4~2)(M/~)c,(E) , 

f ' z(z ~ - -  i f )  1 2 z  v ' 2 - ~ - +  ,,\ 

Zo 

f f  =_ i f ( E ,  ~ )  = 2 ~ - -  I ,  ~ - -  ~(E, ~F) = 2{1 + (cJ~p  ~'}; 

the limits of integration are 

(I0.44e) if>0: Z0 --= ~//~<Z<~ --Zl, ~<0: Z0 ~-- 0<Z<~ --Zl, 

being the energy-dependent parameter defined in (10.26): model (10.38) is 
consistent with the saturation prescriptions o/ nuclear matter, provided "UR(E , ~)  
is the optical trans]orm o/a single-particle solution o/the di]]erential equation {5.5). 
The numerical values of the parameters if, v, zo and zl as functions of the inci- 
dent energy E are given in table XVII,  assuming that the nuclear matter is 

TABLE X V I I .  - Energy dependence o] the parameters involved by the imaginary optical 
potential {10.44). E n e r g y  E is expressed  in  MeV. (See t ab l e s  X I I I  a n d  XV.)  

E ~ v z o z I C I 

0 0.3418 2.0164 0.5847 0.8191 1.2762 

2.5 0.3021 2.0147 0.5497 0.8069 1.2833 

5.0 0.2649 2.0129 0.5147 0.7953 1.2909 

10.0 0.1954 2.0094 0.4420 0.7731 1.3012 

15.0 0.1321 2.0060 0.3634 0.7523 1.3125 

20.0 0.0741 2.0030 0.2723 0.7328 1.3255 

25.0 0.0212 2.0000 0.1457 0.7146 1.3337 

30.0 - - 0 . 0 2 7 6  1.9972 0 0.6972 1.3437 

50.0 - - 0 . 1 8 8 4  2.0144 0 0.6370 1.4046 

100.0 - - 0 . 4 4 2 8  2.0808 0 0.5278 1.7041 

150.0 - - 0 . 5 8 8 9  2.1076 0 0.4534 1.9783 

200.0 - -0 .6811  2.4339 0 0.3993 2.5624 



110 c. VILLI 

characterized by the parameters  (9.45) and using the energy dependence of 
the  real pa r t  of the optical potent ia l  given in table XI I I .  Taking into account  
eq. (10.27), one has 

(10.45) Zo(b) : :  z~(b) = 1 ,  

and, consequently,  

(10.46) 'O,(b , ~r) = 0 ; 

property (10.46), possessed by the imaginary potential (10.44), is consistent with 
the shell model basic assumption that the nucleons in the nucleus should be em- 
bedded in a real potential well. 

1 0 " 3 .  - Tile imaginary potent ia l  (10.44) cannot  be evaluated analytical ly 
because of the complicated integral  g(E, xF). For  our purposes it is preferable 
to perform the numerical  integrat ion by  using the Gauss method  (59), which 
is as precise as o ther  methods,  bu t  entails nmch less work. Let  us re-write 
eq. (10.44c) 

g t  

(10.47a) g(E, zr) --= j / (z)  dz ,  
2 o 

z(z~ --/~) 2z V'2z; + ~, 
(10.47b) /(z) := ~ z  2 ~L V-- t gh - '  3z 2 + v - -  1 ; 

the usefulness of the Gauss method  is due to the fact  t ha t  in the considered 
case the interval  of integrat ion is ve ry  l imited and the positive funct ion ](z) is 
well behaved.  In  applying the method,  it is convenient  to change the  limits of 
integral (10.47a) by making the subst i tut ion 

(]0.48) 

consequently,  one has 

(10.49) 

z =  zo+ (z~-  zo)r; 

1 

g(E, xv) = (z,--  Zo)f-F(r)dr , 
0 

where we have pu t  ]{Zo + (zl--  Zo) r} -- -~'(r). The final result  obtained by  

Gauss'  method  is 

(10.50) g(E, x~) --~ G(E, nF) = ( z l -  zo) ~. a,.F,~ , 
m--o  

(59) tI. MARGENAU and G. M. MURPIIY: The Mathematics o] Physics and Chemistry 
(New York, N.Y.,  1943). 
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where  F ~  m e a n s  the  n u m e r i c a l  va lue  of ~ (z )  ca lcu lu ted  for a va lue  v~ of the  

new v a r i a b l e  ~; va lues  z~ a n d  coefficients a~ are d e t e r m i n e d  in  such a w a y  

t h a t  the  difference b e t w e e n  g(E ,  ~:F) a n d  G(E,  xF) be a m i n i m u m .  :For the  

r eade r ' s  c o n v e n i e n c e  we repor t  in  t ab l e  X V I I I  the  va lues  of v~ a n d  am cor- 

r e s p o n d i n g  to  the  a p p r o x i m a t i o n s  of order  n ~ 2, 3, 4 a n d  5. 

TABLE XVIII .  - Parameters required /or per]orming numerical integrations using the 
Gauss method in  n = 2, 3, 4 and 5 approximation.  

n : 2  n ~ 3  

m Tm a m m T~n a m 

0 0.112 702 0.277 778 0 0.069 432 0.173 927 

1 0.5 0.444 444 1 0.330 009 0.326 072 

2 0.887 298 0.277 778 2 0.669 990 0.326 072 

3 0.930 568 0.173 927 

n = 4 n = 5 

m T m a m m T m a m 

0 0.046 910 0.118 463 0 0.033 765 0.085 662 

1 0.230 765 0.239 314 1 0.169 395 0.180 381 

2 0.5 0.284 444 2 0.380 690 0.233 957 

3 0.769 235 0.239 314 3 0.619 309 0.233 957 

4 0.953 090 0.118 463 4 0.830 605 0.180 381 

5 0.966235 0.085662 

The  n u m e r i c a l  va lues  of ~UI(E , u~,) expressed  b y  eqs. (10.44), c ' f lcula ted 

u s ing  the  n z 5 a p p r o x i m a t i o n  of Gauss '  m e t h o d ,  are g iven  in  t,~ble X I X ;  

the  ene rgy  b e h a v i o u r  is shown  in  fig. 7. The  zero-energy  l i m i t  of 2)'I(E, uF) 

t u r n s  ou t  to be (with  a v e r y  h igh degree of a p p r o x i m a t i o n )  a l inear  f u n c t i o n  

TABLE XIX.  - Energy dependence o] the imaginary part o] the optical potential, expressed 
by eq. (10.44). The ordinate of the plot and the energy E are given in MeV. (See 
table XVI.) 

E ~UI(E, uF) E ~UI(E, UF) 

0 2.33 25.0 5.66 

2.5 2.66 30.0 6.28 

5.0 3.01 50.0 8.01 

10.0 3.68 100.0 10.71 

15.0 4.36 150.0 12.33 

20.0 5.06 200.0 11.85 
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of the zero-energy l imit  of the real par t  of the potent ial :  as pointed out in 
sect. 9, the  value of ~a(0 ,  uF) is a ve ry  crucial one in order to ext rac t  reliable 
information on the  nuclear-mat ter  parameters  (b,  K, ro) f rom the  elastic- 
scat ter ing data  of nucleons from nuclei. The maximum of ~U~(E~ u~) occurs 
~t an incident  energy included in the in terval  (100--200) MeV: it  arises mainly 
from the competing effects due to the  decrease, with increasing incident energy, 

B 

a) 

I I I I I i I ~ I I I 

2 5 E 50 0 100 E 200 

Fig. 7. - Energy dependence of the imaginary part of the optical potential. The or- 
dinate is expressed in MeV. 

of the  restr ict ions brought  about  by  the  Pauli  principle (which t end  to 
augment  ~UI(E , x~.)) and to the decrease of the neut ron-proton to ta l  cross-section 
(which tends to reduce the value of ~U~(E, uF)). The posit ion of the  max imum 
is influenced by  the energy dependence of the real optical potent ial :  i t  is 
grat i fying to note  tha t  the  outl ined version of the Clementel and Villi model~ 
al though conceptually and numerically more refined, leads to values of 
-- r uF) which are in substant ial  agreement  with those obtained on the 
basis of the  older model (53). The predicted energy dependence of r x~.), 
a l though consistent (except at low energies) with the behaviour  of the  real 
optical potent ia l  obtained by  GIA~'~I~I, RICCO and ZUCCmAT~I (see subsect. 9"2) 
deviates markedly  from the imaginary par t  of the potent ia l  given by  these 
authors(~O): the  occurrence of a max imum between E--~ 20MeV and  
E ~--60 MeV together  with the predicted high-energy behaviour  cannot  be 
reproduced by  our model. I t  would be interest ing to compare the results given 

in table X I V  with those obta ined (or obtainable) using the models based on 

(60) M. M. GIANNINI, G. RICCO and A. ZUCCIIIATTI: Ann. Phys. (N.Y.), 124, 208 (1980), 
fig. ] 1. For a comparison with earlier calculations of the imaginary optical potential 
we refer to P. E. HODGSON: The Optical Model of Elastic Scattering (Oxford, 1963), 
fig. 10.5, p. 180. See also E. A. GLASSGOLD, W. B. CHESTON, IV[. L. STEIN, S. B. 
SIIOULDT and G. W. ERICSON: Phys. Rev., 106, 1207 (1957). 
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the  assumption tha t  the  absorpt ion arises ent i re ly  f rom the forward elastic 
nucleon-nucleon scat ter ing ampli tudes:  unfor tunate ly ,  these models a le  re- 
por ted  in the  l i tera ture  in a ra the r  elusive theoret ical  manner  and with scanty 
numerical  details (el). Finally,  i t  is worthwhile  to point  out  t h a t  the model, 
out l ined in this subsection consis tent ly with the  saturat ion prescriptions of 
infinitely ex tended  nuclear mat te r ,  can easily be re-formulated with the pur- 
pose of calculating the imaginary  pa r t  of the optical  potent ia l  related to the 
scat ter ing of pions and kaons f rom nuclei (62). 

11. - Concluding remarks .  

Our program of ex t rac t ing  the  max imum of theoret ical  informat ion on the 
overall behaviour  of infinite nuclear ma t t e r  f rom the  saturat ion prescriptions 
and the Hugenhol tz  and Van Hove  theorem with a min imum of physical  as- 
sumptions has been accomplished. The discovery of the differential equat ion 
(5.5) has allowed us to develop a mathemat ica l  scheme ent i re ly  free f rom any 
detai led descript ion of the  nucleon-nucleon interaction.  This approach makes 
realistically i r relevant  the  ve ry  many  heuristic shadows arising from the  fol- 
lowing paralysing doubt :  since scattering experiments  are all carried out  on 
the  energy shell, do they  give all the information needed in the  nuclear-mat ter  
problem, where mat r ix  elements off the energy shell p lay  a crucial role? Argu- 
ments  have been proposed to support  Bethe 's  opinion tha t  two-body potentials  
with a hard  core are not  compatible with a consistent description of nuclear 
mat te r :  t hey  contr ibute  to so-called re-ar rangement  energy, which in our scheme 
is exact ly  equal to zero. In  conclusion, one might  be forgiven for regarding 
the  va r ie ty  of nucleon-nucleon forces in t roduced into the  nuclear-mat ter  prob- 
lem as a t r ick for opening a Pandora ' s  box. The solutions of the  differential 
equat ion of nuclear ma t t e r  provide an unconvent ional  answer to the self- 
consistent  field problem of finding the single-particle potent ia l  energy, which 
is the  major  point  in Brueckner ' s  theory.  Many distinguished physicists who 
have dealt  with this crucial aspect of the  theory,  have devised and so far  
unsuccessfully, though unwillingly, p layed a sort of (( nuclear-mat ter  game ~, 
whose rules are well summarized by  DAy (6a) (( ... the  single-particle potent ia l  

(61) The relations existing between nucleon-nucleus and nucleon-nucleon scattering 
are reviewed by W. B. RIESENFELD and K. M. WATSOn: Phys. Rev., 102, 1157 (1956). 
I t  has to be noted that according to this kind of model the real part of the potential 
can be constructed as the optical transform of the single-particle potential energy (2.1), 
the incertitudes arising from the use of the nucleon-nucleon asymptotic phase shifts 
have been pointed out in subsect. 7"2. 
(62) R. M. FRANK, ft. L. GAMMEL and K. M. WATSON: Phys. Rev., 101, 891 (1956); 
R. ~ .  STERNItEIMER: Phys. Rev., 106, 1027 (1957). 
(sa) B. D. DAY: Rev. Mod. Phys., 39, 719 (1967), p. 738. The function indicated by this 
author with the symbol U(k) corresponds to our v(p, u). 

8 - II Nuovo ~tmen~o A. 
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energy is at our disposal; it is to be chosen with a view towards making the 
summation of the Brueekner-Goldston series as easy as possible. Certain dia- 
grams contain U interactions and, if U(k) is appropriately defined, these diagrams 
may cancel other diagrams. This cancellation reduces the number of diagrams 
that  must be explicitly evaluated. This is the basic idea underlying any de- 
finition of U(k). How one chooses U(k), therefore, depends on which diagrams 
one decides to cancel by this choice. In making this decision, one should keep 
two points in mind. First, only certain types of diagrams are conveniently 
cancelled by diagrams involving U(k). Second, choosing U to cancel the 
maximum number of diagrams is not necessarily the best procedure. One should 
have an idea of which diagrams are appreciable and which are negligible. Then, 
U should be defined so as to cancel as many of the important diagrams as 
possible. We, therefore, see that  the choice of U is closely related to the 
question of the convergence of the Brueckner-Goldstone expansion. ,) Thus 
the theoretical game looks more like a conceptual gamble! This paper, 
which was first conceived with a pragmatic view, has been aiming in itinere 
more and more at finding a way out of such an astonishing approach to the 
nuclear-matter problem. 

Our basic idea underlying the definition of U(k) ----v(p, ~) is that  such a 
function has to be a particular integral of the differential equation of nuclear 
matter :  such a definition, however approximate it may be, is nevertheless well 
grounded, because the Hugenholtz and Van Hove theorem, concealed within 
the mathematical structure of eq. (5.5)~ turns out to be exactly fulfilled by any 
single-particle potential energy consistent with the saturation requirements of 
infinitely extended nuclear matter.  The choice of the physically significant v(p, u) 
is determined by the energy dependence of the real optical potential. The 
criterion developed in sect. 7 for the simultaneous determination of the average 
volume energy, nuclear radius and compressibility modulus from the phenom- 
enological evidence extracted from the nucleon-nucleus scattering exper- 
iments provides, if adroitly handled, a valuable heuristic tool so far com- 
pletely ignored in the literature. I t  represents an at tempt  to patch up several 
fragmentary aspects of the nuclear-matter problem which have contributed 
to making it appear rather chaotic. The real and imaginary parts of the 
optical potential have been constructed consistently with eq. (5.5): in per- 
forming the related calculations we have put aside all formal theories together 
with their theoretical subtleties which generally prevent one from obtaining 
clear-cut numerical results. The extension of the differential equation of 
nuclear mat ter  to finite nuclei is promising: a detailed account will be 

published in a forthcoming paper (ed). 

(64) The differential equation (5.5) can be used to obtain the single-particle potential 
energy in a strongly degenerated nucleon gas at a nuclear temperature T = 0, 
provided the limiting momentum u is assumed to be temperature dependent, i.e. u ~ ,t(T). 
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Reca l l ing  to m i n d  the  m a n y  years  I have  been  engaged  in this  research,  

t h r o u g h  the  var ious  even ts  of m y  life, I feel I have  somehow fa red  like biblical  

k ing  Saul.  Saul  while looking  for  some donkeys  f o u n d  a k i n g d o m ;  I mere ly  
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$ * $  
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who he lped  to  solve some linguistic subtleties.  

From the normalization condition it is found, up to terms in T 2 (I. E. MAYER and 
M .  G .  MAYER: Statistical Mechanics (New York, 1950)) 

, . ,T(T) = ~,~.{1 - -  (n2124)(TI~FV}, 

where n~,----= n(0) is the Fermi momentum consistent with nuclear saturation. The 
total energy of infinite nuclear matter reads 

co 

, ] W(T,g,.) = ~-~ + -~ v(p, ~( T) ) q~(e, T) dp , 

O 

where ~(e, T) is the Fermi-Dirac distribution function and e --= p2/2M. For illustrative 
purposes we assume the effective-mass approximation (7.4). The excitation energy, 
up to terms in T 2, is found to be 

E(T, uF) = W(T,  x F ) -  W(O, uF) =- bFT 2 , 

b,, = a,,,{ 1 - -  ( , ,~ /4~F)e l"  + ( W l O ~ F ) Q " } ,  

where ar  ---- n ~ A/4s F is the level density parameter of the conventional statistical theory; 
using eqs. (7.7) one also has 

b F ~ {(e: F - -  bv)/2sF}a F < a F �9 

The inequality b~. < aF has an important role in the thermodynamical description of 
the bulk properties of excited heavy nuclei; its physical meaning is that  the momentum 
dependence of the single-particle potential energy reduces the specific heat of the ex- 
cited Fermi sea as compared with that  of a strongly degenerated nucleon gas moving 
in a constant potential well: consequently, the degrees of freedom of the nuclear-matter 
system as a whole are also reduced. I t  has been ascertained that  such a correlated model, 
constructed on the basis of the factorable single-particle potential energy (6.21), provides 
a systematic explanation of the empirical adjustcmcnts of the nuclear-matter param- 
eters required for fitting several experimental data (principal resonances in T-ray 
absorption, rotational levels, average spacing of excited levels, de-excitation processes, 
evaporation spectra, etc.). 
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�9 R I A S S U N T O  

Scope di questa nora ~ di delineare uno schema matematico per la deserizione del 
comportamento globale della materia  nucleare infinita. Esso ~ state concepito con lo 
scope pragmatico di fornire un semplice strumento analitico per eseguire calcoli nume- 
riei attendibili.  A questo scope sono stati  anehe riesaminati  aleuni aspetti  finora insuf- 
fieientemente esplorati di ben note teorie che sembrano essere del tut to  ignorate dai 
pid reeenti sviluppi teoriei. 

MaTeMaTHqecmm3 no~txo~ ~ npo6~eMe s~epnoro BemecTBa. 

Pe3mMe (*). - -  I~eym 3 T O I ~  C T a T b H  - -  pa3BHTHe MaTeMaTHqCCKOii CXeMbI ~Ym OIIHCaHILq HOBe- 
~eHIi~I ~eCKOHeqHOFO u~epHoro BemCCTBa. Hpe~nomeHHl~l~ no~xo~t pa3Bffr c nparMaTn- 
~ecxoi~ ~em, m nony~eHHa npocToro MCTO~a ~JI~ npoBej~eHHg peanHCTHtIHI, IX ~IHCBeHI~,IX 
BbIqHC/IeHH~. 

(*) FIepeaeOeno peOaKque~. 


