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Summary. — The aim of this paper is to outline a mathematical scheme
for the description of the overall behaviour of infinite nuclear matter: it has
been conceived with the pragmatic purpose of providing simple tools for
carrying out realistic numerical calculations. To this end we shall revive
some insufficiently explored aspects of vintage theories, which seem to have
been by-passed by recent theoretical developments.

1. —~ Introduction.

We begin by briefly summarizing the problem. Let p < be the momentum
of a nueleon ingide a sphere having in momentum space radius

(1.1) % = (9n/8)}(4¥/R)

where A is the mass number and R the corresponding radius of the sphere in
co-ordinate space. The kinetic energy of a single nucleon is

(1.2) t(p) = p*)2M;
then, the internal kinetic energy of nuclear matter is

(1.3) Tix) = (34 Jdr3) f t(p)dp = (3A/10M) %2 .

37



38 C. VILLI

If V(x) indicates the potential energy of the system, the total energy is

x®

(1.4) W) = T(x) + V() = (3A/%'"‘)j{t(p) + 3v(p, x)}p2dp,

0

where v(p, %) is the potential energy of a single nucleon in the Fermi sea; the
factor 1 in the last term underlies the assumption that the whole potential
energy is due to interactions between pairs of nucleons. The saturation prop-
erties of nuclear forces are expressed by the conditions

(1.5) (AW() [ uany = 0, W(rt) = b 4,

where b, = — (15.0 4- 1.0) MeV is the observed volume energy per nucleon and
#,= (9m)}/2r, is the Fermi momentum obtained from (1.1) by putting
R = r,A* at the minimum of W(x). In the following we shall explore the interval

(1.6) 0.9-10 % cm<r,<1.4-10-¥ cm .

The compressibility C of infinite nuclear matter is defined at the equilibrinm
dengity by the relation

@.7) C = o*{d*W(g)/de?},

and the compressibility modulus is defined as K=9C. Taking into account
that ¢ = A[Q = 2x3/3n%, from eq. (1.7) one obtains

(1.8) K= (0] A){d>W(5) A2} yan, -

At present there is no direct empirical evidence of the value of K and the
theoretical estimates are controversial. The value of K is crucially dependent
on the behaviour of v(p, ») as a function of the limiting momentum #x; in fact,
taking into account that the necessary condition for nuclear saturation implies
that

(1.9)

Xp
1 ov(p, %
—%—ﬁ. [ (gx )]”=”szdp = 2(by — &) — V(g #z) »

where &, = t(x,) is the Fermi energy, it is found that

3 (/o 28
(1.10) K = 6z, + o f [(55—4—2—; a—%) v(p, M)]M prdp +
1]

33xg [OV(p, %) Bsep [dv(a, )
_I_ _—2— [ a% ]y=n=xn. + 7 [ doe ]n-xF )
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The energy of a particle on the Fermi surface is the extra energy which
would be obtained by adding one particle to the nuclear-matter system without
changing its volume (2, while the average energy is the extra energy which would
be obtained by adding one particle to the system without changing its density o:
these two quantities must be equal if the system is in equilibrium at zero pres-
sure. The proof is straightforward. Let us define the single-particle energy w,
at the Fermi surface to be the lowest-energy state of a single particle in interac-
tion with the system, namely

(1.11) W= (OW[0A)g = (@W/BA),,

where account has been taken of the fact that the system is in equilibrium with
its surrounding, i.e. (€W/Sg), = 0. Since the saturation implies that

(1.12) (oW[ed),= W/4,

it follows that

(1.13) wp= Wi, )JA =b_;

relation (1.13) is trivial and its physical content rather poor. A conceptually

remarkable result is achieved by defining the total energy of a single nucleon
in nuclear matter as

(1.14) w(p, ) = t(p) + v(p, %);

indeed, the separation energy theorem due to HUuGENHOLTZ and VAN HOVE (%)
expresses the remarkable property

(1.15) Wp == W(x,, %) = b

v

namely, at the density minimizing the total energy of nuclear matier, the average
volume enerqy s equal to the total energy of the most energetic nucleon. From
eqs. (1.14) and (1.15) one has

(1.16) V(g #5) = b

v SF;

then, from eqs. (1.9) and (1.16) one can infer that the dependence of v(p, x) on
the momenta p and » must fulfil the condition

*p

(1a7) I8 | prap = rviom, o).
b F

() N. H. Hueenmortz and L. VaNx Hove: Physica (The Hague), 24, 363 (1958).
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A convincing theory of nuclear matter must simultaneously account for
egs. (1.5) and (1.15) consistently with the phenomenological information on
the energy dependence of the optical potential (2) extracted from the experi-
mental data concerning nucleons scattered from heavy nuclei. The optical
potential of a nueleon in motion in the field of a nueleus with energy E = k*f2 M
is taken of the form

(1.18) V(E, #,) =V (B, #y) — 1ULE, %)

where U (B, »,) and U (H, x,) are the real and the imaginary parts, respectively.
We define the real optical potential as the optical transform of the potential
energy of a single nucleon embedded in the Fermi sea, i.e.

(1.19a) VB, #) = VD), 2} = Vol F(B, 2%,)
where momentum p(E) of the incident nucleon is
(1.19b) P(EB) = k1 — {Uy(B, ) [E}]';

we shall assume that the target nucleus is infinitely heavy, so that F is the
kinetic energy in the laboratory system of reference. A test of the validity of
the optical description is provided by the comparison of the measured nucleon-
nueleus total and elagtie-scattering differential cross-sections with those pre-
dicted using VL(H, »,) and the imaginary optical potential

(1.20) VUE, #,) = C{E — UE, x,)} (B, %) .

Our purpose is to discuss all these matters according to a unified theoretical
scheme. In such a secheme there is no room for many of the dissertations which
so far have but contributed to shattering the nuclear-matter problem into
innumerable aspects generally contradicting one another.

2. — Remarks on Brueckner’s theory of infinitely extended nuclear matter.

2'1. Assessing the validity of the picture of nuclear matter as it evolved
in the past is rather difficult. This is due to the practical impossibility of
disentangling the validity or failures of the adopted physical assumptions
from the merits or inadequacies of the mathematical techniques used in
handling them.

(?) P. E. HopesoN: The Optical Model of Elastic Scattering (Oxford, 1963); Nuclear
Reactions and Nuclear Structure (Oxford, 1971).
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The capability of Brueckner’s theory of infinitely extended nuclear matter
to explain the observed value of b, according to the prescriptionsin (1.5) has not
been proved with the limpidity that such a remarkable theory deserves. It is
not clear whether the unsatisfactory results so far obtained are due to intrinsic
fauits concealed in the theory or whether they are brought about by the ap-
proximations adopted with the purpose of obtaining numerical results. The
fundamental assumption of the theory is that the saturation properties of
nuclear forces can be explained in terms of the parameters characterizing the
nucleon-nucleon elastic-scattering collisions, provided the effects of the other
nucleons on the elastic scattering of two nucleons in nuclear matter are properly
evaluated. A clear-cut proof that this assumption is correct (or wrong) has
not yet been reached: in general, two-nucleon potentials sufficiently strong
to give the correct volume energy cause the nucleons to collapse to a much
smaller radius than that observed, whereas potentials which account for
stability at approximately the observed radius do nof give the correct vol-
ume energy.

The use of phenomenological potentials has led to the discrepanecy noted
by BRUECKNER and MASTERSON (3) and by RaAzavy (¢). Many quodlibetic
suggestions have been put forward in order to clarify the origin of such a
discrepancy (for example, there has been speculation about the possibility that
the two-body forces between nucleons should be changed in such a way as to
preserve the agreement with the nucleon-nucleon seattering data, but increase
the volume energy of nuclear matter, ete.). A blow to the whole problem
has been given by the doubts concerning the validity of the deseription of the
forces existing within nuclear matter through nucleon-nucleon potentials derived
from experiments on the energy shell. This conceptual impasse becomes even
worse if one takes into account eq. (1.15). Brueckner’s theory has been made
formally consistent with the Hungeholtz and Van Hove theorem by BRUECENER
and GOLDMAN (5): the implications of the assumption that the K-matrix for
the ground-state energy has to be expressed as a function of the occupation
numbers of the Fermi gas have not been investigated in detail. In the
Brueckner and Goldman treatment the consistency of the separation energy
theorem with the first of equations (1.5) is still an open problem.

2°2. The conjectured role of the nucleon-nucleon interactions in determining
the properties of infinite nuclear matter can be simply understood by resorting
to a modification of the Hartree-Fock theory which consists in expressing the

(®) XK. A. BRUECKNER and K. 8, MASTERSON: Phys. Rev., 128, 2267 (1963); see also
R. RasaraMaN and H. A. BETHE: Rev. Mod. Phys., 39, 249, 745 (1967).

() M. Razavy: Phys. Rev., 130, 1091 (1963).

(®) K. A. BrUECkNER and T. D. GoLpMAN: Phys. Rev., 117, 207 (1960); see also
K. A. BRUECENER, J. L. GaAMMEL and J. T. Kusis: Phys. Rev. 118, 1438 (1960).
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ordinary and exchange K-matrix elements in terms of the nucleon-nucleon
elastic-scattering amplitudes (°); the potential energy of a single nuecleon is
found to be

3x—p) $Hxt+o)

4 1
(2.16)  V(py %) =— 5 [ fF(q)q-"' dg + % fF(q){%2—(2q—p)2}qdq] y P2,
0 $(x—p)
1 o+
(210)  v(p, %) = — 5 =0 F(q){x*— (20 —p)*} ¢ dyg, P>%,
Ho—x)

where F(q) is a complicated function of the nucleon momentum. Since in nuclear
matter elastic collisions can occur only in the forward and backward directions,
and the scattering amplitudes related to the latter situation can be simply
expressed in terms of those related to the former one, it follows that F(qg) is
congtructed as a sum of forward scattering amplitudes, classified according to
spin and isobaric spin substates for the two-nucleon system:

(2.2) F(q) = F,(q9) + 3F,(q9) + 37,(0) + 9F,(a);

function F(g) can then be evaluated using the asymptotic phase shifts
determined from the analyses of the nucleon-nucleon elastic-scattering data.
The total potential energy is obtained from eq. (2.1a), ¢.e.

(2.3) Vir) = (34 /8md) f v(p, %) dp;

from the saturation prescriptions in (1.5) one determines the quantities b, and
r.: the separation energy theorem requires that at the minimum of the total en-
ergy the following relation be valid:

#p

2.4) b= e — (2fn M) [aF(@) e — @) .

We shall not go into numerical details, but rather use the description (2.1)
a8 a heuristic paradigm.
In first-order perturbation theory the potential energy of nuclear matter is

_94(4—1)

(2.5) Vir) = 55— f G(2P)dpdgq,

(®) K. A.BRUECKNER, (. A. LEViNsON and H. M. MAuMOUD: Phys. Rev., 95, 219 (1954);
K. A. BRUECKNER: Phys. Rev., 96, 1558 (1956); N. Fukupa and R. G. NEwTON: Phys.
Rev., 103, 1558 (1956).
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where P = 1(p— q) is the relative momentum of a pair of nucleons and G(2P)
is the three-dimensional Fourier transform of the two-body potential: this
function is independent of the limiting momentum ». Equation (2.5) becomes
conceptually more significant by inverting the order of integrations; performing
very carefully the required trivial manipulations, it is found that

(2.6a) Vix)/A —[6@P)IP,xap,
24P*[. 3 (P\  1(Py
(2.6) (P, =20 [1 -3 (;) +1 (;) ] ,
(2.6¢) T1(0, %) — II(x,%) = 0 , fH(P, x)dP —1.

0

It is readily established that function II(P, ») plays the role of the distri-
bution of the probabilities that a pair of nucleons have relative momentum P;
thus, the meaning of eq. (2.6) is: in first-order perturbation theory the x-dependence
of the average potential energy of nuclear matter is given by the three-dimensional
Fourier transform of the two-body potential averaged over the relative-momentum
distribution of pairs of noninieracting nucleons.

This result corresponds to the absolute zero of temperature of the degenerate
Fermi gas of nucleons. The distribution of the momenta of the single nucleons
is simply described by saying that all the lower states are occupied up to the
limiting momentum #, fixed by the total number of nucleons confined in the
nuclear sphere of radius R, according to the saturation prescriptions (1.15).
The effect of the nucleon-nucleon interactions, by causing virtual transitions
from occupied states into unoccupied ones, is to spread the momentum distri-
bution of the single nucleons in the neighbourhood of the limiting momentum #,
lowering the density in momentum space below x and giving rise to a tail in
the distribution above this value. The modification of the momentum distri-
bution of single nucleons also alters JI(P, x): these effects can be coneceived
qualitatively as being of the same kind as those due to thermal agitation, and
are responsible for the discontinuity of the momentum distribution at p = Hps
which—in turn—also implies a discontinuity of the energy spectrum w(p, ;)
at the Fermi surface (incidentally the latter discontinuity is in no way related
to the energy gap of superconductivity). The physical content of the nuclear-
matter description based on eqs. (2.1) now becomes clear: the experimental
momentum dependence of function F(g) implicitly accounts for the un-
known two-body potential and for many of the theoretical intricacies due to
the nonuniform momentum distribution of the single nucleons in the Fermi
sea. The potential energy (2.3) calculated with the single-particle potential
energy (2.1a) is far more realistic than that predicted by eq. (2.6). The func-
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tion F(g) also accounts for the effects due to tensor interactions, which in per-
turbation theory contribute to the potential energy of nuclear matter only
in second-order and in higher-order approximations. From a conceptual point
of view the theoretical scheme according to which eqs. (2.1) have been deduced
is intermediate between perturbation theory and Brueckner’s theory.

2'3. Brueckner’s theory is a mathematical model invented either for
meeting the requirements with the theoretical scenery of infinite nuclear matter,
mentioned in subsect. 2'2, or for circumventing the drawbacks of the conven-
tional perturbation theory. Its fundamental goal is to determine elements
K., of the antisymmetrized K-matrix, calculated on the basis of a precon-
ceived choice of the nucleon-nucleon potential. By using the standard notation,
the basic aspect of Brueckner’s theory is expressed by the equations

Vis,mn K.
2.9a K — 2, i5,mn-Dmn, ki
( ) i1,kL 4,0 +n§;ek+ 6, —e,—e,’

where the self-consistent single-particle energies are given by
(2.7b) e;= t(ps) + Z (K00 — Kii,h‘) .
)

The exact solutions of the nonlinear system (2.7) are unknown and the approxi-
mations used to obtain numerical results give rise to complications and ambi-
guities which outweigh the heuristic value of the theory. For this reason, the
attitude of laying all the blames for the unsatisfactory results thus obtained
on the choice of the two-body potential seems objectionable. This opinion is
also supported by the remark of Brueckner and Masterson that two-body po-
tentials which give supposedly equally good fit to the scattering data do not
lead necessarily to identical nuclear properties. Unfortunately, a stringent
critical analysis of the approximations, corrections and modifications of Brueck-
ner’s theory cannot be carried out because the major part of the available results
has been obtained by means of calculations which are neither transparent
nor controllable on numerical ground. Several results, usually quoted in the
literature, can be proved to be wrong. It is indeed discouraging to realize that
misleading conclusions have often been taken for granted out of faith or mental
indolence. Substantiating this statement properly would be too pedantic.
Suffice it to point out, as an example, that the modification of Brueckner’s
theory (7), developed for removing the discrepancy discovered by BRUECKNER
and MASTERSON, implies a strong violation of the separation energy theorem
and conflicts with the first of eqgs. (1.5): the uncritical acceptance of the conjec-

() H. A. BeTHE: Phys. Rev. B, 4, 804 (1965).
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tured role of three-body correlations in nuclear matter has led to conclusions
which are completely ungrounded (8).

All those who feel disenchanted enough in front of theories adjusted ad hoc
by sudden flashes of wit (the therapeutical role ascribed to the three-body
correlations in order to make up for the failure of Brueckner’s theory is but
an example) may also feel the lack of a reliable, analytically simple and numeri-
cally manageable tool which allows them to deal with the nuclear-matter
problem. For this reason we have to lay aside the ambitious aim of developing
a formalily rigorous treatment (systematically spoilt by approximations whose
validity cannot be assessed a priori and are often found a posteriori to be
disastrous) and try instead to approach the problem along a different pathway.
Our program is to extract the maximum of theoretical information from the
saturation prescriptions (1.5) and from the Hugenholtz and Van Hove theorem
(1.15) with a minimum of physical assumptions. More specifically, our primary
aim is the explicit determination of the dependence of function v(p,x) on
p and x» without resorting to preconceived choices of the nucleon-nucleon
potential or to sophisticated nuclear many-body procedures. This note in-
tends to show that even in the realm of theoretical physies one can try to
be faithful to Newton’s statement « hypotheses non fingo ».

3. — The nucleon effective mass.

3'1. The concept of nucleon effective mass is not so trivial as it appears
from many nuclear-matter calculations: a deeper insight into its meaning can
be achieved with the help of elementary quantum mechanics. Resorting to
the correspondence principle and requiring that the following classical relation

(3-1) W(p, %) = F-v

between the force F acting on a nucleon having velocity v in the Fermi sea
and its total energy w(p, »,) remains valid for the mean values of the quantum
theory is consistent with the idealized conception of infinite nuclear matter.
The group velocity »(p) of the packet and the total energy w(p, »,) satisfy the
relation

(3.2) v(p) = V,w(p, %,);
consequently, one has

(8.3) D) =V, F-v) = (F-Tw(p, %)) ,

(8) D.W.L. SPRUNG, P. C. BHARGAVA and T. K. DarLBLoM: Phys. Lett., 21, 538 (1966);
the quoted results are wrong also because based on an incorrect application of Bethe’s
three-body theory (see D. B. DAY: Rev. Mod. Phys., 39, 719, 743 (1967)).
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where T=V_V, is a differential tensor operator of rank 2. Equation (3.3)
corresponds to the classical relation ® = F/M provided one introduces the
mass tensor

(3.4) 1/M* = Tw(p, %) -

Relation (3.3) had previously been obtained by SEITZ (°) in a different con-
text. Since nuclear matter is conceived as a spherically symmetrie system,
the mass tensor (3.4) reduces to the scalar nucleon effective mass

(3.5) M| M*(p) = M{A*W(p, x,)/dp?} = 1 -+ M{A%V(p, x,)/dp?} .

It is indeed astonighing that eq. (3.5), which is undoubtedly well known to
various individuals, should not have yet achieved the dignity of a specific
mention in the literature concerning the nuclear-matter problem. It is cus-
tomary (1) to define a parameter M**, homogeneous to a mass, from the slope
of v{p,»,) at p = », through the relation

(3.6)  M|M**= M[(1/p){dW(p, %) AP} Jp—x, = 1 + M[(1/p){AV(D, 2,) AP} ]ps,;

definitions (3.5) and (3.6) lead to identical results only if v(p, ;) depends
quadratically on the momentum p. Although definition (3.6) is completely
unrelated to the coneept of mass tensor, it is nevertheless used to express
the nuclear effective mass in infinite nuclear matter also when the momentum
dependence of v(p, »,) is not quadratic in p: this is the cause of several mislead-
ing conclusions drawn from nuclear-matter caleulations.

3'2. — One of the most important goals of a nuclear-matter theory is to
provide reliable values of the compressibility parameter K, consistently with
eqs. (1.5) and (1.15) and with the phenomenological information on the energy
dependence of the optical potential (1.18). Definition (3.5) of the nucleon
effective mass, reached independently of any detail concerning the nuclear
matter, stimulates curiosity about the possible existence of a general relation
between the compressibility modulus and the effective mass. To satisfy such
a curiosity, we shall resort to our imagination and prove, as a purely intellec-

(*) F. Serrz: The Modern Theory of Solids (New York, N. Y., 1940).

() K. A. BRUECKNER: The Many Body Problem, Vol. 1 (Paris, 1959), p. 169; M. A.
PRESTON: Physics of the Nucleus (Reading, Mass., 1962), p. 202. A rather queer crite-
rion for calculating M** has been suggested by L. C. Gomes, J. D. WALECKA and V.
F. WEISSKOPF: Ann. Phys. (N. Y.), 3, 241, 252 (1958). Recently, definition (3.6) has
been adopted also by J. P. Braizor in his review paper on nuclear compressibilities
(Phys. Rep., 64, 171 (1980), formula (7.1), p. 234). See also K. A. BRUECKNER and
J. L. GamMEL: Phys. Rev., 109, 1840 (1958), formula (21).
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tual divertissement, the following theorem: if the infinitely extended nuclear matter
is conceived as a nonviscous and incompressible fluid and the relation R = ry A}
is assumed to be valid, then the effective mass of a nucleon plunged into it is

(3.7) MM =1,

It is a matter of common experience that the apparent inertia of a body of
mass M, moving in a fluid, is greatly increased by the fluid around it. The
increased inertia is called the effective mass M* of the body, and the difference
between the effective mass and the real mass is called the induced mass M, (11).
According to classical hydrodynamics, the motion of a body in a fluid is
dynamically equivalent to the motion of a heavier body in vacuo, whose ef-
fective mass is

(3.8) M*= M+ M,.

It is easily realized that this result, which was first given an exact mathematical
formulation by GREEN and STOKES well over a century ago (12), has to be changed
if one attempts to describe, along the same line, the motion of a nucleon in nu-
clear matter, because of the peculiar property of the nuclear fluid of exerting
attractive forces upon the moving particle. Since in this case the increase of
the kinetic energy of the fluid must be thought of as due to nuclear interactions,
an elementary energy balance shows that the motion of a nuecleon in nuclear
matter is dynamically equivalent to the motion of a free nucleon having a
lighter mass

(3.9) M*=M— M,

i.e. the effect of the attractive interactions between the nuclear body and the
nueclear fluid is dynamically equivalent to a negative induced mass, contrary
to what is to be expected in connection with the motion of an ordinary body
in an ordinary fluid.

According to hydrodynamics, the induced mass M, can be regarded as the
mass of a virtual particle having a kinetic energy equal to the additional
kinetic energy 87T(x,) gained by the fluid. In order to evaluate 8T(x,) we con-
sider a single body of mass M and « virtual » radius 7, in motion with velocity v
through a nonviseous and incompressible fluid, extended over the whole space:
the theoretical amusement lies in the identification of the single body with a
nucleon and the nuclear matter with a perfect fluid. We shall assume Dirichlet

(**) The idea of induced mass was originally expresged in a very crude way by DusBuaT
in 1786 (see L. G. DUBUAT: Principles & hydraulic, Vol. II (Paris, 1816), p. 222).
(**) G. GrEEN: Mathematical Papers, Vol. I (London, 1833), p. 315; G. STOKES:
Mathematical and Philosophical Papers, Vol. I (London, 1834), p. 17.
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flow and neglect, also in the adopted classical scheme, the effects of the intrinsic
angular momentum of the nucleon on the surrounding nuclear fluid. Without
loss of generality, we may choose the axis of spherical eo-ordinates as the direc-
tion of motion. With respeet to the fluid at infinity, the interaction body-
fluid is expressed by the dipole-velocity potential (?)

(3.10) U=—1rvcosf[2r2.

At any point of the fluid the radial and angular components of the velocity are
(3.11a) v, = 0U[or = rivcosBr?,

(3.11b) v, = (1/r)(0U[00) = rivsin§[2r®.

The additional kinetic energy is
(3.12) 8T(x) = } f o(r)(0? + of) dr;
=1,

assuming for r< R a uniform density distribution of nuclear matter, from
eq. (3.12) it is found that

(8.13) 3T(2,) = (moer3[2) 0% = (M, [2)v? .
Since the packing of A4 nucleons satisfies the relation R = r,AY, one has

(3.14) o= 3M/dnry for r<R, g=0 for r> R;

then, from eq. (3.13) it is found that M,= M/2 and from eq. (3.9) M* =
= 0.5.M, which proves the theorem.

4. — A mathematical property of the single-particle potential energy in the
Fermi sea.

Conditions (1.5) are necessary, but not sufficient, for testing the validity
of a nuclear-matter theory. The x-dependence of the single-particle potential
energy has never been investigated in detail and, therefore, the calculation of
V(%) by means of eq. (2.3) makes also the p-dependence of v(p, ») rather elusive:
the separation energy theorem (1.15) provides crucial information on the value

(*®) G. BirerOFF: Hydrodynamics (Princeton, N. J., 1950); see also H. Laus: Hydro-
dynamics (New York, N.Y., 1945), p. 123.
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of v(p,») at p = % = x,. Additional information on v(p, %) can be obtained
by direct or indirect comparison with the data of the predicted values of the
compressibility modulus (dependent on the second-order derivatives of V(x)
evaluated at the minimum of W(x)) and with those concerning the real part
of the optical potential (deduced as optical transform of v(p, »,) for p > ».):
from this information one can derive the required sufficient conditions. For
these reasons we shall concentrate primarily on the two-variable function v(p, ).

The necessary condition for nuclear saturation, expressed by the first of
eqs. (1.5), means physically that there exists a value », of the limiting momen-
tum x at which the pressure P(x) of the Fermi gas is zero, i.e.

(4.1) P(x,. #p 972 A) {AW () [ Qs er, = O .

Let us work out eq. (4.1) using the integral form of W(x) given in eq. (1.4j:
taking into account definition (1.14), one obtains

(4.2a) b, = W) A = Wi, ) — {Qx,) (252} ,

v

(4.20) Qrte) = #2V(stp, 25) —f {av(p’ } ap

Clearly, the separation energy theorem (1.15) follows from eq. (4.24) pro-
vided that

(4.3) Q) = 0;
note that conditions (4.3) and (1.17) are identical. It is interesting to compare
relations (4.2) with those obtained by BETHE (14) and then simplified by as-

suming that a quantity playing the role of our Q(sx,)/2x% is «negligible ».
Let us introduce the funection

(4.4) Q%) = #2v(sx, % fp {ov(p, x)[0x} dp .

A lengthy calculation shows that v(p, ), calculated in first-order perturbation
theory, possesses the property

(4.5) Q(x) = 0;

the proof will be given in subsect. 5°2. It is readily verified that also the single-
particle potential energy (2.1a) is characterized by property (4.5). In fact,

(1% H. A. BeTHE: Phys. Rev., 103, 1353 (1956); see formulae from (9.17) to (9.25).

4 — Il Nuovo Cimenlo A,
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one has
(4.6a) #V(x, %) = — (2¢[adl) [F(@)(x — 9)g*dg = I(x),
(1}
ot
(4.6) Mpw) ___x | ;1) d
. % mip (9)qdq,
Hx—p)
% ( ) 1 % otp) .
vip, % A _ .
(4.60) [0 ap = - 5 [oan[Fraraag=seo
0 Hx—p)

inverting the order of integration, eq. (4.6¢) becomes

/2

(4.6d) — M) (%) =fF(q) gdg f pdp + f F(q)q dqu dp .

®—2¢q /2 2q—x

In conclusion, one finds Q(x) = /(%) — J(x) = 0. Since Q(x) =0 holds for
any value of x, it is necessarily valid also for the value » = x, corresponding
to the minimum of the total energy W(x): we have thus verified with striking
simplicity the wvalidity of the Hugenholtz and Van Hove theorem.

In nuclear-matter calculations the Hugenholtz and Van Hove theorem
constitutes a dark corner around which there is much confusion (*%). Using
our notation, such a theorem can be expressed by the exact relation, which
has a well-defined meaning for large systems,

d (W
(@.7) e, )= 5o {02,

where ¢ = 243/37°; eq. (4.7) is by no means a trivial one: in fact, w(p, o) is
defined in terms of diagrams with an external line at both ends, whereas W(p)
is obtained from ground-state diagrams. In Brueckner’s theory the difference

(15) The disconcert created by the suspicion that equality (1.15) could be true was well
expressed by BETHE about two years before the discovery of the separation energy
theorem by HuceEnaOLTz and VAN Hove (H. A. BrTHE: Phys. Rev., 103, 1353,
1372 (1956)): « It is perhaps somewhat surprising that one calculate in one case an
average energy and in the other one a maximum energy, and that these two should be
equal. This is made possible by the factor  in the potential energy when the average W
is calculated in eq. (9.17); this should just compensate for the difference between average
and maximum ». The theoretical background of this problem will be examined in
sect. 5: we shall see that the « magic » role attributed by Bernr to the factor 1 does
not work because conceptually irrelevant.
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between w(x,, »,) and W(x,)/A is called the re-arrangement energy (¢): this
energy can be identified with quantity Q(x2)/222. Thus, we have previously
given a general argument for concluding that the validity of the Hugenholtz and
Van Hove theorem implies that the re-arrangement energy is equal to zero because
it must be Qx,) = 0.

The single-particle potential (2.1a) is intrinsically consistent with the
Hugenholtz and Van Hove theorem, although the numerical results obtained
from eq. (2.4) exhibit a discrepancy quantitatively similar to that noted by
BRUECKNER and MASTERSON. Energy ((x}/2x* has been evaluated accord-
ing to Bethe’s treatment of the nuclear many-body problem (1): it has been
ascertained that Bethe’s integral equation obeyed by the scattering matrix
leads to results intrinsically inconsistent with the separation energy theorem.
This also occurs in the older formulation of Brueckner’s theory: for example,
the results obtained by BRUECKNER and GAMMEL (V) disclose a large discrep-
ancy between the values of w(sx,, »,) and b which can only be partially ex-
plained by taking inte account the contribution of cluster terms underestimated
by the authors. The re-arrangement energy is conceived as a contribution (not
necessarily additive) to the single-particle potential energy due to the density
dependence of the K-matrix, which also includes some of the effects of correla-
tions between particles: when the density changes, the particles re-arrange
themselves, and the K-matrix also changes. This justification is unsatisfactory
because it ignores the fact that the appearance of the re-arrangement energies
is strictly bound to the ecriterion adopted in the application of wvariational
methods, whiech—in turn—influence the choice of the definition of the single-
particle potential energy (1*). We do not share the opinion according to which
the nonzero magnitude of the re-arrangement energy is a characteristic many-
body effect which manifests itself through high-order effects in the K-matrix.
There are very good reasons to retain that the re-arrangement energy question
is a false problem, originated by objectionable mathematical approximations
used in handling the nuclear-matter problem: no re-arrangement energy would
probably appear in an exact formulation of Brueckner’s theory.

The most conceptnally troublesome aspect of any nuclear-matter theory
of Brueckner’s type arises from the somewhat frantic theoretical justifications
of the appearance of «theoretical energies », which (like the re-arrangement
energy) are «ereated » by the adopted approximations and/or by the techniques
used to handle the nuclear-matter problem (model energies, single-particle

(*¢) K. A. BRUECKNER: The Many Body Problem, Vol. I (Paris, 1959), p. 160.

(*) K. A. BRUECKNER and J. L. GAMMEL: Phys. Rev., 105, 1679 (1957).

(**) Suggestions concerning the application of variational methods in such a way that
the re-arrangement energy should not occur have been given by R.J. EpEN V. J. EMERY
and S. SAMPANTHAR: Proc. R. Soc. London Ser. A, 253, 177, 186 (1959); see also D,
J. THOULESS: The Quantum Mechanics of Many-Body Systems (New York, N, Y., 1961).
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energies included in self-consistent energy denominators, ete.). All these ghost
energies, which in some cases depend even on the particular arrangement of
the terms of series expansions, are experimentally unobservable. We ghall
not waste time with unfruitful theoretical subtleties and try instead to outline
a description of nueclear matter rigorously based on the property Q(x) = 0.
This heuristie frontier has never been explored before: we shall call it the Hu-
genholtz and Van Hove approximation of infinitely extended nuclear matter.

5. — The differential equation of infinite nuclear matter.

51. — The kinetic and potential energies of nuclear matter, and the po-
tential energy of a single nucleon plunged into it, tend to zero at the limit of
zero nuclear density. This trivial statement follows from the fact that for
» — 0 the average distance (*°)

(5.1) d(x) = (3)* (1/»)
between the nearest neighbours of the A nucleons, uniformly distributed in
the interior of the nuclear sphere, tends to infinity and, consequently, the
nucleon-nucleon interactions vanigsh. It follows that it must be V(0) = 0 and
(5.2) v(p, 0) = 0;
an obvious implication of property (5.1) is
(5.3) v(0,0) = 0.

The following theorem holds: the necessary and sufficient condition for the

validity of the physically obvious property v(0,0) = 0 is given by

(5.4) Q) = w2 v(ty 1) — [P*{BV(p, )[R dp =0,

provided the potential energy of a single nucleon in the Fermi sea obeys the partial
differential equation

¢ 2090 o 20
(5.5)

w—l-;%—a—”z -]*;a—%)V(P,%) =

(* J. M. Brarr and V. F. WEIssKoPF: Theoretical Nuclear Physics (New York,
N.Y., 1952), p. 129.
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The proof of the theorem is straightforward. Let us evaluate the first-order
derivative of the function Q(x)/x* given by eq. (4.4). Taking into account that
for p = x» the following relation exists:

)
5.0 ot N+ ) ]

one obtains

3 [Q(x) v(p, » ov(p, %)
oo 5= Jwﬁwﬂ)w]@

The differential equation (5.5) can be written as

aV(p, ) a 2av(p7 )
(5-8) ap[() ap[ 8%[() o ]’

substituting (5.8) into (5.7) it is found that

d Q=)  [{p\*ovip,%)]
©9) ) =6 57 L =

where it has been taken into aceount that the invariance prescription of the
potential under time reflection implies that for small momenta Jv(p, »)/op
varies linearly with p. From eq. (5.9) one gets

(5.10) Q(x) = Ox?,

where € is an arbitrary constant of integration. Substituting eq. (4.4) into
(5.10) and performing the transformation z = p/x, one has

(6.11) v(z, %) — xfﬁ{é)v(xw, %)[On} dow = C' .

0

At the limit % — 0 eq. (5.11) becomes v(0,0) = C; it follows that property
(5.4) is satisfied if C = 0, which proves the theorem. We shall denominate
eq. (5.5) as the differential equation of infinite nuclear matter. Taking the impli-
cations of condition (4.3) into account, the theorem proved in this subsection
can also be formulated in the following way: solutions v(p, x) of the differential
equation of infinite nuclear matter automatically satisfy the Hugmholtz and Van
Hove theorem. The nuclear-matter description constructed on the basis of these
solutions constitutes the Hugenholtz and Van Hove approximation of infinite
nuclear matter, mentioned at the end of sect. 4.



54 C. VILLI

Equation (5.5) is a special case of the general second-order partial dif-
ferential equation in two variables

(5.12) {0t 4 2802 + 0% + D3, + €0,+ Flo(p,x) + =0,

where 7, %, ¥, 2, &, % and ¥ are real functions of p and » (or possibly real
constants), and 0, = 0/0p, 0,, = ©*/0p0x, ete. The characteristic curves of
eq. (5.12) are given by the equation

dx B VB — A€

(5.13) = —

Since in our case o = — € =1 and & = 0, eq. (5.5) turns out to be of hy-
perbolic type (#*— /€ > 0): its hyperbolic nature can also be exhibited in
normal form by using the transformation

(5.14) A=w+p)2, p=(@x—p)2.
The characteristic curves are given by the straight lines

(5.15) x=e¢+tp,

where ¢ is an arbitrary integration constant. The physical meaning of the
variables » and » implies p>0 and x%>0; the Hugenholtz and Van Hove
theorem requires ¢ = 0, because v(p,») must obey prescription (1.16) at
point p = x = x, lying on the characteristic line passing through the origin
of the reference system chosen in the positive region of the (x, p)-plane. The
fundamental role played by ea. (5.5) arises from the fact that it provides a
remarkable clue for disentangling the mathematical aspects of the nuclear-
matter problem from the physical ones. In fact, the analytic structure of the
equation is « universal» in the sense that it is entirely independent of any
detail concerning the nucleon-nucleon interactions as well as the nuclear sphere,
where the interactions occur (®): this stimulating circumstance implies that
all physical properties have a crucial role only in the specification of the
Cauchy problem associated with the equation itself. These considerations are
restricted to the saturation properties of nuclear matter: indeed, they open a
new path also for a deeper insight into the optical model outlined in sect. 1.
The optical transform (1.19) operates on the tail of the single-particle potential
energy v(p, #,); it should be evident that the optical-model analyses do not
give any information on v(p, %,) at the Fermi sphere (p = ;). In fact, the
closest approach (in momentum space) of the probe neutron to the Fermi

(20) This circumstance justifies the attitude expressed at the end of subsect. 2'3.
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sphere occurs at the zero-energy limit; putting ¥ = 0 in eq. (1.195) one has
(5.16) P(0) = [— 2MVL(0, 2,) ]t = [— 2Mv {p(0), .} ]* .

According to the Hugenholtz and Van Hove theorem it is

(5.17a) w22 M + v(wy, 2,) =D, ,

whereas from eq. (5.16) one has

(5.17b) {P(0)}2/2M + v{p(0), ) = 0;

it follows that the equality p(0) = %, would imply b, = 0: since v(p, »,) is
a decreasing function of p, eq. (5.17b) shows that it must be

(5.18) P(0) > x, .

The optical-model analyses determine, through transformation (1.19), the
p-dependence of function v(p, »,) along the straight line » = %y, parallel to
the p-axis and for p>p(0) > x, crossing the characteristic curves of eq. (5.5):
this situation is summarized in fig. 1. It is evident that the phenomenological

—
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Fig. 1. — The saturation of nuclear matter and the optical model.

information extracted from the optical-model analyses contributes to the spec-
ification of the Cauchy problem associated with the differential equation of
nuclear matter. This is the motivation of our efforts to link the description of
the saturation properties of infinite nuclear matter with the gross properties
characterizing the scattering of neutrons from heavy nuclei within the frame
of a consistent theorctical scheme,

The hyperbolic partial differential equation (5.5) is indeed remarkable.
One may speculate whether it expresses in a differential form the Pauli prin-
ciple, whose role in the description of nuclear matter prevails upon the partic-
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ular feature of any realistic two-body potential (3!). In fact, it seems plausible
to retain that the p-dependence of v(p, x) arises primarily from the total anti-
symmetry of the nuclear wave function, although it can also include other
effects (for instance, those brought about by the conjectured velocity dependence
of the nucleon-nucleon interactions andjor by their nonlocal nature, etc.).
Equation (5.5) seems to reconcile, in a surprisingly simple manner, the inde-
pendent-particle and collective liquidlike aspects of nuclear matter, so that the
properties of a Fermi liquid at not too high densities and those of a diluted
Fermi gas are not mutually exclusive and must not be regarded as opposite
extremes (22). Thege considerations are strictly based on the fact that the
mathematical structure of the nuclear-matter equations is inexfricably linked
to the Hugenholtz and Van Hove theorem. A piece of corroborative evidence
is given in the following. Let us express eq. (4.7) in terms of the energy per
particle instead of the energy per unit volume; one has

d (W W 1
(319) e 0= "0+ o 1M =0 12 o).

In a liquid the pressure is

(5.20a) P(o) = deig{v%} —0

and, therefore, from eq. (5.19) one obtains
(5.200) w(e, 0) = W(p)/4;

condition (5.20a) is the first of the saturation prescriptions (1.5) valid at
o = 2x3/3n%, where eq. (5.20b) must be equal to the average volume energy b,.
Thus the differential equation of nuclear matter, which conceals within its
mathematical structure the Hugenholtz and Van Hove theorem, governs the
behaviour on p and x of the potential energy of a single nucleon embedded in
a very peculiar medium, the Fermi sea, which is described as a degenerate gas
of nuecleons, but nevertheless at equilibrium density exhibits properties which
are typical of a liquid. The fall-out of this situation on the compressibility mod-
ulus is particularly interesting. To highlight this point we re-write eq. (5.5)

(21) This idea has been suggested to the author by L. ROSENFELD; see also L. ROSEN-
FELD: Interactions nucléaires aux basses energies et structure des moyaux (Paris, 1959),
P. 330; C. ViLLi: Nuel. Phys., 9, 306 (1959). 1 recall with gratitude M. Bor~N, W. HEISEN-
BERG, R. E, PriErLs, L. RosenreLD and V. F. WEIsskorr for the stimulating discus-
gions I had with them long ago: they have influenced, directly or indirectly, whatever
is good in this paper, but are not responsible for its ghortcomings.

(22) C. VILLI: Atti dellIstituto Veneto di Scienze, Lettere ed Arti, Tomo CXXXVII, 1
(1979-1980).
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in the form

2 228 10(,0 )
(5.21) (5}—‘;—; 5{) v(p, x) —?52;(17 55) v(p, %);

replacing eq. (5.21) into eq. (1.10) one finds

(5.22a) K = 6¢, + (32,/2) i(pi(xF) )
Palotg) = {av(p, x)/ap}p="=%,. ’
(5.22b) Pa(ty) = {av(p, ")/a"}p=%=’¢F7

Paltte) = {Q0(, ) [}y

If we take into account egs. (1.16) and (5.6), the compressibility modulus
becomes

(5.23a) K = 6e, 4 3(b, — »,) p(xg)
where (apart from factor ;) w(x,) is the first-order logarithmic derivative
(5.23b) Ploeg) = #, {d 10 v(x, %) [dot} e, -

The parameter 9(x,) is a crucial one for testing the validity of a nuclear-matter
theory. So far it has been ignored because of the lack of reliable information
on K: such information can be extracted from the data only by means of a
unified theoretical scheme suitable to match the saturation preseriptions of
nuclear matter with the phenomenological information concerning the scat-
tering of neutrons from heavy nuclei. Equation (5.5), combined with the optical
transformation (1.19), opens the way towards the achievement of this goal.

As already stressed, the importance of eq. (5.5) in the construction of a
realistic description of nuclear matter is centred upon its intrinsic capability
to account rigorously for the Hugenholtz and Van Hove theorem. A similar
central role in solid-state physics is possessed by Koopmans’ theorem (22), which
is essential to the interpretation of solids in terms of energy band structures (22).
Both theorems, although proved along substantially different theoretical lines,
lead to the same conclusion: this circumstance seems to reveal a common
conceptual background. Serious mathematical complexities discourage any
attempt to summarize the proof of the Hugenholtz and Van Hove theorem.
We shall limit ourselves to recalling the most significant stages of the proof:

(3) T. KoormaNs: Physica (The Hague), 1, 104 (1933); see also W. JoNEs and N. H.
Marcu: Theoretical Solid State Physics (London, 1973).
(**) W. A, Harrison: Solid State Theory (New York, N. Y., 1970).



28 C. VILLI

a) in a Fermi gas with interaction at the absolnte zero of temperature,
the single-particle total energy has a physical meaning only for particles of
momentum p close to the Fermi momentum »,; b) the single-particle energy
states are metastable with a lifetime approaching to infinity at the limit
P — »,; ¢) the limiting value w,, of the single-partiele total energy is the pole
on the real axis of a complicated analytic function, defined as the sum of con-
tributions of all connected diagrams with one ingoing and one outgoing par-
ticle line: quantity w,, consistent with eq. (1.13), becomes physically more
signifieant by virtue of definition (1.14). We recall that Koopmans’ theorem
proves that the energy required to remove from a solid one electron in a Hartree-
Fock state ¥, is the eigenvalue w, of the Hartree-Fock equation for ¥,. More
specifically, the difference in the total energics calculated by using Slater
determinants with ¥ and with N — 1 wave functions (under the assumption
that in both cases the individual onec-electron wave functions are the same)
is found to be equal to the Hartree-Fock parameter w, corresponding to the state
which has been omitted: at the top of the Fermi sphere this is just the con-
clusion reached by the Hugenholtz and Van Hove theorem, expressed for large
systems by eq. (4.7) with w(g, o) = w,. Furthermore, under the assumption
that the electron wave functions do not change as an electron is removed, the
ionization energy of a crystal with respect to any given electron state is simply
the Hartree-Fock parameter w,. Since the removal of one electron changes the
potential of only one part in N, one may neglect this ehange and conclude that
the Hartree-Fock parameter in a solid is the negative of the ionization energy
for the corresponding state in a crystal computed in the Hartree-Fock approxi-
mation. According to Koopmans’ theorem the change in energy of the system
when one electron is transferred from one state to another is simply the dif-
ference between the two Hartree-Fock parameters, because both the initial-
and final-state energies may be directly related to the same ionization state:
it follows that the calculated energy bands can be conceived as one-electron
cnergy eigenvalues. Since the effects of the electron-electron interaction do
not change much in going from the free atom to the solid, one may argue that
Koopmans® theorem is valid for a crystal only if it is valid for the free atoms
that constitute the crystal. Translating all this into nuclear-matter language
is indeed intriguing. Two questions then arise: a) do the Hugenholtz and Van
Hove theorem and Koopman’s theorem provide the theoretical clue for deserib-
ing multinucleon and, respectively, multielectron systems as «independent-
particle systems »?; b) does the interpretation of a solid in terms of energy
band structures correspond—imutatis mutandis—to the description of a nucleus
in terms of energy shell structures? Finally, is eq. (5.5) also valid in solid-state
physies? Alas, I have no exact mathematical answer to these questions.

5'2. — The single-particle potential energy v(p, ), calculated in the frame-
work of Brueckner’s theory, is incompatible with eq. (5.5): this circumstance
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makes it difficult to assess all the merits of Brueckner’s work, whose importance
can be judged only from its overall impact on our understanding of nuclear
matter.

We have already verified in sect. 4 that v(p, %), given by eq. (2.1a), posses-
ses property (4.5): therefore, it also fulfils eq. (5.5). We shall now verify that
also v(p, »), expressed by eq. (2.1b) for p>x, is a particular solution of the dif-
ferential equation of nuclear matter. One has

(5.24a) 9, v(p, #) = — (1/p)V(p, %) — (D, %) ,

(5.24b) Opv(D, %) = — (2[p) O, v(p, %) -+ yo(p, %) — I'(p, %) ,
(5.24¢) 0,v(Py %) = — uyo(D, %)

(5.24d) B2v(p, %) = — (1/2) 0uV(p, %) — I'(p, ),

where functions v (p, %) (v=0,1) and I'(p, %) are defined as follows:

Hotx)
1
(5.25a) (P, %) = ~ aMp fF(q)(Zq—p)’dq,
Fo—s)

(6.250)  I'(p, %) = (x/4xMp) [(p + %) F{(p + #)[2} + (p — ) F{(p —=)/2}];

using relations (5.24) it is trivially checked that eq. (5.5) is satisfied. It has
to be stressed that the differential equation of nuclear matter governs the
p-dependence of v(p, x,) also for p>p(0) > x, consistently with the separation
energy theorem valid at p = x,: this is the most remarkable feature of the
Hugenholtz and Van Hove approximation of infinitely extended nuclear matter
as far as the optical model is concerned.

We shall now prove that another particular solution of eq. (5.5) is provided
by v(p, ») calculated in first-order perturbation theory. To this end we con-
struct the nuclear wave function, antisymmetric with the interchange of all
the co-ordinates of any pair of nucleons, in Slater’s determinantal form from
different individual wave functions for single particles. To represent the ground
state of the bound system idealized as «infinitely extended nuclear mattex »
composed by A interacting nucleons, one has to take into account that the 4 /4
spatial wave functions of lower momentum are associated, each in turn, with
all four spins and isobarie spin wave functions. The potential energy of nuclear
matter in first-order perturbation turns out to be

(5.26) V(x) = %asﬁ {CaBl Vel — <af|Velfayy

where the symbol § indicates the operations of integration and summation
over the nucleon states |o) and |f) in co-ordinate, momentum spin and isobaric
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spin spaces. We assume that the central nucleon-nucleon potential Vy, is a
regular function of 7, so that we do not have to circumvent the well-known
problems arising from the conjectured existence of a hard core. More specifi-
cally, we assume that V.= V(r) is a second-order two-nucleon central poten-
tial deduced from the PS-PV Yukawa theory with an extended source, suitable
for simulating core effects (suggested by the low-energy nucleon-nucleon elastic-
scattering data and by the description of the deuteron S-state) without the
necessity of resorting to unphysical discontinuities introduced ad hoe in the
radial behaviour of V,(r). Using standard notation, the two-nucleon potential
we have in mind reads

(5.27a) Vo(r) =V, 0c(r) ,

(6.27b) Vo= (/"02/3)(,“/2]‘[)292 y Oc = (6,°6,) (7, 7s) ’

where the radial behaviour of the regular function w,(r) need not be specified
in view of our further considerations; furthermore, we assume that V(r) pos-
sesses the property (%)

(5.27¢) f Ve(r)dr =0 .
The ordinary and exchange contributions to (5.26) are
(5.28a) Vi) =V 00) — V, (),

(5.28b) V al2) = (Vo/2)[ > i lOclij>] [1<abloclab)]

iy3=1

4
(5.280) Vewal®) = (Vaf2)] 3 <G10clji> ] [1<abluclba] ,

1yj=1
where symbol | indicates the operations of integration over all the occupied

states |a) = |ry; p, = p) and [b) = |ry; p. = g>. Since

(5.29) I<ablujad = 0, i Gj|Oeljiy = 36,

i5§=1

() A one-pion nucleon-nucleon exchange potential of type (5.27) has recently been
deduced in the framework of the static PS-PV theory of nuclear forces with an ex-
tended meson source density, which accounts for the presumptive spatial dimensions
of the quark confinement region. For our purposes it is relevant to remark that such
a potential possesses realistic physical features without resorting to the ad hoc intro-
duction of the hard core and to cutting-off procedures at short distances (C. ViLLi:
Nuovo Cimento A, 67, 178 (1982)).
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where the first of (5.29) arises from property (5.27¢) (*); the potential energy
of nuclear matter becomes

(5.30) V(ix) = — 18Voa|b<ab|vg]ba> .

Let ¢,(r;) be the plane-wave functions describing the generic nucleon «1»
of momentum p;, = p<x, ete.; one has

9A(
(5.31) a|b<“bl”a|b“> = _QWJ. (lp—ql)dpdg,
(5.32) H(p—q|) = fngP (r1) 95(1r3) Vo(r15) Pg (1) Pp(ry) dry dr,

where 2 = (47/3)R®= 3n2A4/2x%. We now perform the co-ordinate trans-
formation

{5.33) r=r—ry,, s=3%r+r);

sinee the Jacobian is equal to 1, the integration over the variable s gives the
volume factor £ and, after two angular integrations, it is found that

2747,
(5.34a) V(x) = —WfK(IP—QI) dpdq,

o]

(5.340) E(lp—q|) fm)c ){sin (|p— qlr)/|p— q|}dr = K(2P).

o

Finally, comparing eq. (5.34) with eq. (2.3), one has
(5.35) Wb, ) = — (¢Vo/20) [E(Ip — q]) d
The G(2P) function appearing in eq. (2.5) is

(5.36) G(2P) = — {6V,/(A— 1)n} K(2P).

{%6) This is also true for the central potential deduced from the old PS-PV theory
with a pointlike source, provided one takes into account the contact interaction term
expressed by the delta-singularity. In the older literature it was customary to omit
this term, because for »> 0 it does not influence the wave function of the two interacting
nucleons. Also in this case, however, it was generally assumed, in first-order perturba-
tion calculations, that the ordinary part of the total energy of nuclear matter be equal
to zero (L. ROSENFELD: Nuclear Forces, Part III (Amsterdam, 1948); see also R. HUBY:
Proc. Phys. Soc. London Sect. A, 62, 62 (1949)).
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Equation (5.35) can easily be worked out and one obtains

e

(6.37) vip, ) = — (18V,/n) xzfrvc ) Jo( D7) jao(per) dr,
0

where j,(x) and j,(®) are spherical Bessel functions
(5.38) Jolz) = sinzfe, §i(x) = sinx/z® — cos x/x .

Since v(r) is supposed to be a continuous function of », we can derive eq. (5.37)
under the integral sign. It is found that

(5.39) {02 4 (2/p) 0, — 0% 4 (2/%) Ou} {e*Jo(p7) 2 2er)} = 05

thus the single-particle potential energy (5.37) satisfies the differential
equation of nuclear matter and, consequently, it possesses property (4.5) ().
In conclusion, the Hugenholtz and Van Hove theorem is formally fulfilled
in first-order perturbation theory, but the observed value of b cannot be
obtained for any reasonable value of the length r, and the PS-PV pion-nucleon
coupling constant g% Function v(p, ), calculated in first-order perturbation
theory on the basis of a nucleon-nucleon potential characterized by a repul-
sive hard core at short distances, does not fulfil eq. (5.5); the conventional
treatment of the hard core in a many-body system leads to results which violate
the Hungenholtz and Van Hove theorem, thus simulating the existence of the
so-called re-arrangement energies, already discussed in sect. 4: this is generally
true if the preceding calculations are carried out by taking into account the
concept of « healing distance », introduced by Gomes, WALECKA and WEISS-
KOPF (%),

6. — Solutions of the differential equation of nuclear matter.

6'1. — We shall seek for solutions of eq. (5.5) by expanding v(p, %) in power
series of p, i.c.

(6.1) v(p, %) = 3 Adle)p™,

(*) A. L. Ferrer and J. D. WALECKA: Quanium Theory of Many-Particle Systems
(New York, N. Y., 1971): it is readily verified that the single-particle potential energies
given in formula (40.17), p. 355, in formula (40.18), p. 356, in formula (41.51), p. 369, etc.
are particular solutions of the differential equation of nuclear matter.

(2®) L. C. GoMEs, J. D. WALECKA and V. F. WeisskoprF: Ann. Phys. (N. Y.), 3, 241
(1958).
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where A,(x) are unknown functions of the limiting momentum . Substituting
eq. (6.1) into eq. (5.5) it is found that
(6.2) San— 1) Am)p= + 2 3 nA ) prt = 3 (DA} p*

n=0

n=2 n=1

where we have introduced the differential operator (D = d/dx)
{6.3) D=D*— (2/2)D .

Replacing » — 2 with » in the summations on the left-hand side of eq. (6.2),
one has

(6-4) (2/p) () + 3 [0 + 2)( + 3) Auralie) — DALTp" = 0;

n=0
consequently, it must be
(6.5a) Ax) =0,

(6.50) (n+ 2)(n + 3) Anpa() = DAu() .

From condition (6.5a) it follows that only even powers of the nucleon momen-
tum p appear in expansion (6.1) (2:3%),

(2*) The expansion of v(p,») in even powers of p has been used previously, without
any mathematical justification, with the purpose of describing the p-dependence only
near p = 0. Originally it was privately suggested to K. A. BRUECENER by J. A.
WHEELER (see K. A. BRUECKNER: Phys. Rev., 97, 1353 (1955)). The drawbacks of va-
rious attempts to describe, even approximately, the nuclear-matter behavicur by using
such an expansion were due to the fact that the x-dependence of v(p, ) was completely
unknown: we now know that the x-dependence of the single-particle potential energy
is governed (to a very high degree of approximation) by eq. (5.5).

(3%) The ignorance of the existence of eq. (5.5) (and of its mathematical implications)
has led—even on an approximate ground-—to serious misunderstandings of the funda-
mental properties of infinitely extended nuclear matter. For example, the theoretical
credibility of its claimed superfluid character is largely spoiled by such misunderstandings.
A disconcerting proof in support of this opinion is given in a note by K. L. MiLL,
A. M. SESSLER, 8. A. MoskowskT and D. G. SHAUKLAND (Phys. Rev. Lett., 3, 383 (1959)):
apart from several other critical remarks, it has to be pointed out that @) the single-
body potential energy, given by their formula (9), does not fulfil eq. (5.5) and, therefore,
conflicts with the saturation prescriptions (1.5) (for instance, for »p = 1.4 fm-1 it is
found that b, = 0.15 MeV(!) instead of b, = — 15.5 MeV as assumed by the authors);
b) the calculation of the effective mass is incorrect and ¢) the interpolation formula,
given in note (5), is wrong because the cubic power of the nucleon momentum is not
allowed



64 C. VILLI

Let N be the maximum value of # in expansion (6.1), which we re-write in
the form

(6.6) W(p, 1) = 3 B rypt

n=0

this means that all terms corresponding to » > N are assumed to be zero, i.e.

(6.7) B () =0
for » =1, 2,.... The functions B (x) satisfy the recurrence relations
(6.8) (2n + 2)(2n 4 3) B () = DB (%) .

It follows that the determination of the functions B™(x) can be carried out by
golving the system of differential equations

6B (x) = DB (x) ,

......

(6.9) e e e :
2N(2N + 1)BP(x) = DBW (%),

0 = DBD(x) .

The solutions of the system are

BY(x) = C) o 4 C)

2N+1 2N ?

{6.10) Bm1(”) = N@2N + 1) C;JI?+1%5 - C;va)”a] + 3 C;IJVV)—I”S + C‘gr)q ’

......

..........

where C),, are 2N - 1 arbitrary integration constants. Taking into account
conditions (5.2) and (5.3), we must put equal to zero all the constants which are
not multiplied by the limiting momentum #x, thus reducing their number to
N -+ 1; in conclusion, functions (6.10) are physically significant provided

(6.11) W= =..=0.

2N-2 o

It is worthwhile to remark that, owing to conditions (6.11), function v(p, x)
depends only on the odd powers of » (x* with n>3).
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6'2. — We shall now solve eq. (5.5) assuming that the single-particle po-
tential energy v(p, ») is a separable function of p and x, <.e.

(6.12) V(Dy %) == vi(p) va(x);

the analytic form (6.12) has never been used before in nuclear-matter calcula-
tions (31). Substituting (6.12) into eq. (5.5) one has

(6.13) Vo vi(p)a(p) = Bva(w)/vala) ,
where V2 = d2/dp? + (2/p)(d/dp) is the «radial» part of the Laplacian oper-

ator in momentum space. Both terms of eq. (6.13) must be equal to a real con-
stant ¢,; one has

(6.14) (Vs — co)va(p) = 0, (D—c)va() = 0.

It is @ priori unknown whether ¢, is a real, negative quantity (¢,= — a2) or a
positive one (¢, = f2); thus the differential equations to be examined are

(6.15q) Vot a®np) =0, (D+at)vx) =0,
(6.15b) (Vie BIn(p) =0, (®—FYw) =0.

The solutions of eqs. (6.15) must be sought for by requiring that the following
conditions be satisfied:

(6.16) vi(0) = const, wv{co)=10, v{0)=0,
It follows that a) the first of eqs. (6.15a) for p < possesses the general integral
(6.17) vi(p) = Cy{sin (ap)/p} ,

where C, is an arbitrary constant, whereas the solution for p > » has to be
rejected because asymptotically oscillatory; b) the first of eqs. (6.15b) is a
Klein-Gordon equation in momentum space: for p< its solution is given by
a Hulthén function, which turns out to be incompatible with the saturation
prescriptions (1.5), and for p > x is expressed by the Yukawa function

(6.18) vi(p) = Cuy{exp [— fpl/p} ,

(®1) Only two-body factorable potentials have been used so far in nuclear-matter cal-
culations, following a suggestion of K. M. Warson to K. A. BRUECENER (see K. A.
BRUECENER and W. Wapa: Phys. Rev., 103, 1008 (1956)).

5 — Il Nuovo Cimenio A.
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where C, is a new arbitrary integration constant. Thus the p-dependence of
the factorable single-particle potential energy (6.12) in the interval 0<p<oo
is obtained by linking by continuity at p ==, functions (6.17) and (6.18)
and their first derivatives: this is ensured provided

(6.19) Ci=1, (= Cyly) = exp [fr,]sin ()

and the parameters o = afx,) and f = f(»,) satisfy the equation

(6.20) (L 4 Bty dulorrg) = ooty

where j,(x) and j,(x) are the spherical Bessel functions specified in egs. (5.38).
In conclusion, the factorable single-particle potential energy (6.12) reads

(6.21a) v(p, x) = vo(x){sin (ap)/p} , p<u,

(6.21b) V(D, %) = Vy(x) COg(,) {exp [— Bpl/p} , P>x.

From the preceding considerations it follows that v,(x) is the solution of the
equation

(6.22) (D 4 a?)vyl) = 0.

By means of the transformation

(6.23) Vo(x) = 22(x)

we eliminate the first-order derivative appearing in ® and obtain the equation
(6.24) D2z(x) + {at— (2/x*)2(%)} = 0.

A solution of eq. (6.22), vanishing at the origin as required by conditions (5.2)
and (5.3), is

(6.25) Vo(x) = Cy{sin (ox) — (o) cos (ox)}
where C, is an integration constant. In the forthcoming discussion we shall

examine the single-particle potential energy (6.21) with v,(x) expressed by
eq. (6.25) (3%).

(®2) General solutions of the differential equation of nuclear matter have been searched
for by T. A. MiNELLL: Atti ¢ Memorie dell’ Accademia Patavina di Scienze, Lettere ed Arti,
Vol. LXXXYV, Part. IT (1972-1973).
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7. — Constraints imposed by the saturation prescriptions on the solutions of
the differential equation of nuclear matter.

As is well known, the saturation preseriptions (1.5) and the separation
energy theorem (1.15) are necessary, but not sufficient, conditions for proving
the capability of a theory to outline a realistic deseription of nuclear matter:
any theory constructed for this goal only deserves limited credit a priori
(actually such a goal has not yet been achieved satisfactorily). For this reason
we shall regard b_ and 7, as input parameters. Our aim is to build up a nuclear-
matter description which, by construction, fulfils eqs. (1.5) and (1.15), and then
use such a description in order to determine parameters b , 7, and K, con-
sistently with the phenomenological evidence on the energy dependence of the
real part of the optical potential.

We shall adopt the following notation:

(7.1a) W sy 2) = &+ V(3 3e,)
(1.1b) V() = (34/8ax?) f v (p, %) dp
(7.1¢) K = (6/5) &, + (1/4) {#2DV® ()},

where N indicates the order of approximation on solutions (6.6), obtained
by series integration of eq. (5.5). We shall indicate with the notation
w(r,, #,), V(x) and K the same quantities calculated with the solutions of
eq. (5.5), obtained by wvariable separation.

For the reader’s convenience we give in table I the values of the Fermi
momentum and those of the Fermi energy as functions of the nuclear length r,.

TABLE I. — The Fermi momentum xy (in units 1/im) and the Fermi energy ep (in MeV)
calculated as functions of the nuclear length 7, (in fm units).

7o #p £p 7y "p £p

0.9 1.6925 59.38 1.2 1.2693 33.40
1.0 1.5232 48.09 1.3 1.1718 28.46
1.1 1.3848 39.75 1.4 1.0880 24.54

71. — The N = 0 approximation is not significant. Function B®(x) obeys
the differential equation

(1.2a) DB(x) = 0;
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the momentum dependence of v(p, %) is lost and one has
(7.2b) VO (p, %) = BO() = 3 CO%°,

where we have put C”= 0. Equation (7.2b) represents a potential weil in
momentum space: this description of the single-particle potential energy is
not compatible with nuclear stability.

The ¥ = 1 approximation is obtained by solving the system of differential
equations

(7.3) DB () = 6BV (%), DBP(x) = 0;

it is found

(7.4a) v (p, %) = By (x) + B (x)p*,

(7.4b) B:,l)(%) — %C;l)%s + C(ll)xs , B(ll)(x) — C:(:)xs ,

where we have put C{¥= 0; note that an unessential factor } has been
included in the integration constants C{¥ and C™. It is readily verified that
the function Q(x), caleulated with (7.4}, is identically zero. The x-dependence
found for V(x) shows that the interpolation formula reported by BETHE (3°)
is wrong. The total energy of a single nucleon having momentum p in the
Fermi sea is

(1.8a) ~ wO(p, ) = (p*2M) 4 v(p, %) = (p*/2M*) + B () ,
(1.5b) MM* =1 + 2MBY(x,);

in the considered approximation both definitions (3.5) and (3.6) lead to the
analytical expression (7.5b) for the nucleon effective mass. According to
eqs. (7.5), the nucleon is described as a free particle in motion in the potential
well B{"(x,) with momentum p <x, and constant effective mass M*: as is well
known, this is the effective-mass approximation.

The two unknown constants C¥ and C are determined from the saturation
prescriptions (1.5). The following system of linear equation is found:

(1.6)  6x8CY 4 5x2CM = 10b, — 6g,, 10xpCP 4 15p (V= — 4e.,
the solutions of which are

(1.7) w5 CV = (e,— Bb)[2, x5CY = (2Bb,— 9¢,)[5;

(**) H. A. BETHE: Annu. Rev. Nucl. Sci., 21, 93 (1971); see also W. Kunpr and E. T.
NEwWMAN: J. Math. Phys. (N. Y.), 9, 2193 (1967).
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therefore, the coefficients of the single-particle potential energy (7.4) read
(7.8) B () = (1b,— 3e,)/2, #2BW () = (e,— BD,)[2 .
Using eqs. (7.7) one has

(7.9) M*|M = e, /{e, -+ #% CP} = 2¢,/(3e,— Bb,) ,

(7.10) KO = (6/5) e, + 1245 CV 4 342 CIV = (3/5)(3e, — 25b,) .
The total energy of a single nucleon at the Fermi surface is
(7.11a) WD (ot ) = &+ (8/8) 18 CV + %3 CV .
Substituting parameters (7.7) in eq. (7.11a) it is found that

(7.11b) W (e, 2,) = b, ;

v?

thus the saturation prescriptions (1.5) are consistent with the Hugenholtz and
Van Hove theorem (1.15), because the single-particle potential energy (7.4), although
expressed in N = 1 approvimation, is nevertheless an exact solution of the dif-
ferential equation of nmuclear matter.

The numerical results of the N = 1 approximation are given in table II
as functions of the input parameters 7, and b,. The values of the ratio M*/M
and those of the compressibility modulus express the ultimate result of the
effective-mass approximation: to the author’s knowledge they have never been
evaluated before by taking exactly into account the saturation prescription
and the separation energy theorem (3¢). The most appealing peculiarity is that
both the effective mass and the compressibility modulus increase as 7, de-
creases: this fact has stimulated the considerations developed in sect. 4.

7'2. — The N = 2 approximation is obtained by solving the system of dif-
ferential equations

(7.12) DB (x) = 6BP (%), DBD(x) = 20BP(x), DBP(x) =0 ;

(*) The effective-mass approximation without the knowledge of the k-dependence of
v(p, %) has been extensively used by K. A. BRUECKNER and W. Wapa: Phys. Rev.,
103, 1008 (1958): it can be readily proved that the quoted results do not fulfil the first
of equations (1.5) and the separation energy theorem (1.15).
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TasLE Ila. ~ N = 1 approximation. Numerical values (in MeV) of the coeflicients
of the single-particle potential energy (7.4) as functions of 7, (in fm units) and b,.

7, b, = —14.0 MeV b, = —15.0 MeV b, = —16.0 MeV
B(er)  xpB(tg) BE (3¢s) 25 BP0y} BO(w)  #nBP(xr)
0.9 —134.53 63.51 —138.03 66.01 —141.53 68.51
1.0 —118.27 58.09 —121.77 60.59 —125.27 63.09
1.1 —106.25 54.08 —109.75 56.58 —113.25 59.08
1.2 — 97.10 51.03 —100.06 52.99 —104.10 56.03
1.3 — 89.99 48.66 — 93.49 51.16 — 96,99 53.66
1.4 — 84,34 46.78 — 87.84 49.28 — 91.34 51.78

TaBLE I1b. — N = 1 approwimation. Numerical values of the ratio M*/M and the
compressibility modulus K® (in MeV) as funections of 7y (in fm units) and b&,.

7 b, = —14.0 MeV b, = —15.0 MeV b, = — 16.0 MeV
M*/M KD M*/M K@ M*/‘M K
0.9 0.473 312.63 0.463 327.63 0.454 342,64
1.0 0.443  293.12 0.432 308.12 0.423 323,12
1.1 0.414  278.71 0.401 293.71 0.392 308.70
1.2 0.386  267.73 0.375  282.73 0.364  297.73
1.3 0.360 259.19 0.348 274.19 0.337 289.19
1.4 0.335 252.41 0.323 267.41 0.313 282.40

it is found that
(7.13a) v (p, %) = BP () + BP(e)p* + BP(x)p* ,

B = $C 1 ACP A P,
(7.13b) B®(x) = 2C2 26 4 (P,

B(;)(M) — C?)%a’
where we have put C®= C¥=0 as required by conditions (6.11) (note
that an unessential factor 1 has been included in the integration constants C”
and C?). We shall now bring to light once more the subtle link existing
between solution (7.13) of the differential equation (5.5) and the Hugenholtz
and Van Hove theorem. To this end, we use the single-particle potential
energies (7.13) in order to deduce from eqgs. (1.5) two equations in the un-
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known parameters C{¥, ¢ and C{?; they are

7207 C® - 4255 C2 - 35x3 C® = T0h, — 42¢,,
(7.14)

7257 C - 30%3 C¥ + 15263 C¥ = — 12¢,;

the solutions C!? and C! of system (7.14), expressed as functions of C, are

#8.CO = (1/2) e— (5/2)b, — (24/7)xL.CE
(7.15)

%2 C¥ = Bb,— (63/35) e, + (72/35) %% C® .
The single-particle total energy at the Fermi surface is

(7.16a) W (s, ) = e, + (24/T) L CP + (8/5) 22 OF + 23 C2;

F F F

substituting eqs. (7.15) into eq. (7.16a) it is found that

(7.16b) WO (o, %) = b,
thus the Hugenholtz and Van Hove theorem is fulfiled for any value of
% C®. Let us suppose we ignore the interlacement existing among the solutions
of the differential equation of nuclear matter and the separation energy
theorem. Then, one could be tempted to determine the three unknown par-
ameters C?, C" and C!® as solutions of the system of three linear equations
composed by eqs. (7.14) and eq. (7.16), which reads

(7.17) 1205, C2 + 56x5 CO 4 3513 C2 = 35(b, — &) -

To reach this goal one needs to evaluate determinant A(x,) of the system,
which must be different from zero; it is found that

T2x]  42:) 35k
(7.18) Ay = | 247 30x% 15%3|=0.
120x]  56x)  35x3

The result expressed in eq. (7.18) is self-explanatory: saturation prescriptions
(1.5) are consistent with the Hugenholtz and Van Hove theorem (1.15), because
the single-particle potential energy (7.13), although expressed in N = 2 approxi-
mation, is nevertheless an exact solution of the differential equation of nuclear
matier.

As a third equation we choose the analytic form of the single-particle
potential energy of zero momentum at the Fermi sphere, From eq. (7.13)
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it is found that
(7.19) V(0, ) = (3/7)2l CB + (3/8)af C2 + 22 C®,

where v®(0, »,) = v(0, %) is supposed to be a known parameter. The system
of linear equations required for the determination of the parameters C, C¥
and C¥ is

725 C2 - 4258 C® |- 35x3C = T0b, — 42, ,
(7.20) T2 CO - 3028 C2 4 1523 CP = — 124,

1527, C2 + 2128 C - 3553 C¥ = 3Bv(0, %,);
the solutions are

1 CP = (7/2) e — (49/6) b, + (7/3) v(0, %)y ,
(7.21) x5 C® = (51/2)b, — (23/2) &, — 8v(0, %) ,

% CP = (27[6) g, — (59/5)b, -+ (24/5) v(0, ) .
A check that solutions (7.21) are exaet can be carried out by replacing
them into eq. (7.16a): then eq. (7.16b) is found! The coefficients of the single-
particle potential energy (7.13) are

BP(xy) = v(0,%,)
(7.22) 12 B®(x,) = (85/6)b, — (9/2) e, — (10/3)v(0, %) ,

1t BP () = (7/2) e, — (49/6)b, + (7/3)v(0, ) .

A check that coefficients (7.22) are exact can be carried out by putting
B®(x,) = 0; it is found that

(7.23) v(0, %) = (7/2)b, — (3/2) e, = BP () ,

whereas, substituting eq. (7.23) into the second of eqs. (7.22), one finds the coef-
ficient B(x,) which, together with B{’(x,), characterizes the effective-mass
approximation. The compressibility modulus turns out to be

K® = (6/5) e + (216/5) %% C2 + 125 C2 | 33 CP

¥

(1.24)
K = (153/5) e, — (411/5)b, + (96/5) v(0, %,);

substituting eq. (7.23) (C®'= 0) into eqs. (7.24) one finds K® given by
egs. (7.10). The nucleon effective mass, calculated for p = 0 and p = x, ac-
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cording to the gquantum-mechanical definition (3.5), and the parameter M **
defined in (3.6) are, respectively,

(7.25a) M*0)/M = 6¢,/{B5b — 21, — 20(0, %,)} ,
(7.25b) M*(30,) | M = 66,/{1056, — 239b, + 64v(0, x.)} ,
(7.26) M**|M = 6c,/{21s, — 43b, + 8v(0, x,)} .

The preceding relations provide a useful tool for testing the validity of
nuclear-matter calculations. As an example, let us extract the physical content
of the empirical formula for the single-particle potential energy used by
BRUECKNER (%)

(7.27) V(p) = — 119 + BT.3(p[x,)*— T.18(p/x,)* .

The identification of V(p) with vd(p, »,), expressed by eq. (7.13a), leads to the
system of equations

BP(x,) = — 119 MeV ,
(7.28) £2BP(x,) = 57.3 MeV ,
4B (x,) = — 7.18 MeV,

where the coefficients »2"B®(x,) (n = 0,1,2) are given by eqs. (7.22). It is
found that v®(0, %) = v(0, »,) = — 119 MeV and

T

(1.29a) b, = — 6.28MeV, ¢, = 62.61 MeV, o= 0.86-10~"% cm ,
(1.295)  M*(0)/M = 0.522, M*(x)/M = 0.817, M**/M — 0.593;

the compressibility modulus is found to be K® = 147.47 MeV. The values
of b, and 7, do not correspond with those given by BRUECKNER: thus, the
quoted paper is numerically erroneous and conceptually misleading.
Let us evaluate parameter v(0, »,) by taking the limit for p —0 of v(p, %)
given by eq. (2.1a), i.e.
#pl2

(7.30) V0, ) = — (4/) [Flg) g .

According to the classification (2.2) forward seattering amplitudes, involved
in the construction of F(q), must be separated into even and odd nucleon-

(**) K. A, BRUECKNER: Phys. Rev., 97, 1353 (1955).
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nucleon spatial states; the calculation was numerically performed taking
into account 8, P and D waves. We used the asymptotic phase shifts
determined from the analyses of the nucleon-nucleon elastic-scattering data
by McGREGOR, MoORAVCSIK and Noves (*), and by CLEMENTEL and myself.
Extensive use has been made of singlet and triplet scattering lengths and ef-
fective ranges. The dominant contribution to the integral appearing in (7.30)
arises from the triplet and singlet S-wave phase shifts. The major difficulties
in evaluating v(0,,) come a) from uncertainties concerning the slope of the
singlet S-wave phase shift, which possesses a maximum at about 10 MeV
(in the laboratory system); b) from the fourfold triplet-P ambiguity, and e¢)
from the insufficient knowledge in the considered energy interval of the coupl-
ing parameters of § and D waves. As is well known, the phase shifts can be
varied by few degrees in a correlated way without using undue violence to the
data: the stability of v(0, »,) against such variations has not been investigated.
This is a weak point, because small variations of v(0, ) could change the sign
of the coefficient BP(x,). The numerical results are given in table ITI; I am
unable to assess their degree of reliability.

TasLE III. - Numerical values (in MeV) of the single-particle potential energy v(0, xy)
as functions of vy (in fm wunits).

To v(0, xg) To v(0, %p)

0.9 —141.29 1.2 -—107.31
1.0 —126.24 1.3 —100.59
1.1 —115.67 1.4 — 95.00

The numerical results characterizing the N = 2 approximation are given
in table IV as functions of the input parameters #, and b_: The values of
%2 B®(x,) at 1.0 fm probably betray the lack of accuracy in the calculation
of the integral appearing in eq. (7.30). Ratio M*(p)/M possesses a sin-
gularity at the Fermi sphere: it is seen that the singularity moves towards
higher values of 7, and disappears for b, = — 16.0 MeV. While in the N =1
approximation the concept of momentum-independent nucleon effective mass
has a clear-cut physical meaning, in the N==2 approximation M/M*(p)is signif-
icant only because it is a linear function of the second-order derivative of the
single-particle potential energy. The parameter M**/M turns out to be a
slowly varying function of 7, and b_; its values are not very different from those
characteirizing the N = 1 approximation: thus, not only is definition (3.6)

(39) Use has been made of the information contained in the following reports issued
by the Lawrence Radiation Laboratory of the University of California: UCRL 4947 (1957),
UCRL 5348 (1958), UCRL 5566 (1959) and UCRL 6108-T (1960).
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TaBLE IV. — N = 2 approximation. Numerical values (in MeV) of the coefficients of
the single-particle potential energy v®(p, %y) and the compressibility modulus K@ as
functions of 7, (in fm wunits) and b,. The mass ratios M*(p)/M (p =0, p = xy)
and M**/M have been evaluated according to eqs. (7.25) and, respectively, (7.26).

b, = —14.0 MeV
7, B (s¢) 22 BP (o) xABPep) MXO) M M*(ep) /M M*¥*/M K@

0.9 —141.29 86.04 —15.77 0.398 1.177 0.519 182.84
1.0 —126.24 84.66 —18.60 0.353 2.398 0.493 140.10
1.1 —115.67 8547 —21.97 0.309 —4.671 0.479 97.94
1.2 —107.31 85.05 —23.81 0.274 —1.249 0.461 71.79
1.3 —100.59 83.98 —24.72 0.245 —0.738 0.442 55.77
1.4 — 95.00 8231 —24.87 0.222 —0.543 0.420 47.73

b, = —15.0 MeV
7, B®(3¢,) 1gBP(ep)  xpBR(xy)  MHO0) M M*(xp)/M  M**/M  K®

0.9 —141.29 176.87 — 17.60 0.426 0.645 0.480 265.04
1.0 —126.24 75.49 —10.43 0.379 0.780 0.458 222.30
11 —115.67 76.30 —13.80 0.333 1.202 0.439 180.14
1.2 —107.31 75.88 —15.64 0.297 2.251 0.418 153.99
1.3 —100.59 74.81 —16.55 0.267 9.429 0.396 137.97
l4 — 9500 73.14 —16.70 0.244 —6.828 0.372 129.93

b, = -—16.0 MeV
o BP(xp) weBP(e)  xpBPes)  MHO)M M) [M  M*¥*M K®

0.9 —141.29 67.71 0.56 0.457 0.445 0.453 347.24
1.0 —126.24 66.32 — 2.26 0.410 0.467 0.428 304.50
1.1 —115.67 67.13 -— 5.63 0.362 0.534 0.406 262.34
1.2 —107.31 66.72 — 748 0.325 0.594 0.382 236.19
1.3 —100.59 65.65 — 8.39 0.294 0.641 0.358 220.17

14 — 95.00 63.98 — 8.54 0.269 0.649 0.334 212.14

deprived of any theoretical background, but it is also heuristically useless.
It is interesting to compare the predicted values of the compressibility mod-
ulus K® with those quoted in the literature: a) CHEID, LIGENSA and GREI-
NER (*) have suggested value K~ 100MeV in a research on heavy-ion

(*) W. Cuew, R, Licensa and W. GREINER: Phys. Rev. Lett., 21, 1479 (1968).
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reactions; b) BoHR and MOTTELSON (%) and BRETHE (*) have estimated
K~ 117 MeV and, respectively, K~2135 MeV; ¢) the values calculated by
BRUECKNER and GAMMEL (%), using different two-body potentials, vary from
K~ 167 MeV to K~ 187 MeV; d) value K~ (210 4+ 30) MeV has been re-
ported by BLAIZOT (41); ¢) the investigation of Mach and head shock waves,
occurring in the collisions of light high-energetic nuclei with heavy ones, has
allowed the deduction of value K ~ 300 MeV (4?); f) according to the Zamick
formula (#3) K varies from ~ 95 MceV to ~ 379 MeV; the compressibility mod-
ulus evaluated by using potentials of the Skyrme type (44) turns out to be
~ 370 MeV. The conclusion to be drawn is obvious: the spread of the values
of K is so large that none of them can be considered to be reliable. The cri-
terion for the determination of K, outlined in sect. 9, is an attempt to over-
come such a discouraging situation.

The total energies of infinite nuclear matter in the ¥ =1 and N =2
approximation are

(7.31a)  Wm(x)JA = (3e,/5) 1%+ (1/2) %2 C¥ 7 + (3/5) %t C0 4%,

(7.31D) WS ()[4 = (3e,/8) 22+ (1/2) %2 C2 o* 4 (3/5) 25 CP 4* +
- (36/35)%2, C‘(f) T,

where y = xfx,: clearly, functions (7.31) satisfy exactly eqs. (1.5), provided
the parameters are evaluated according to eqs. (7.7) and, respectively,
eqs. (7.21). The x-dependence of W(x) and W®(x) is strongly affected by the
nature (real or conjugate complex) and by the localization of the roots of the
fitth- and, respectively, seventh-degree equations W®(x ) =0 and W®(x ) = 0:
in both cases there exists at the origin a root K,= 0 of multiplicity 2, while
another root is localized within the interval (0,1). In fig. 2a we have plot-
ted functions (7.31) assuming as input parameters = 1.2fm and b =
= —15.0 MeV. For x> », the behaviour of W®(x) is governed by two complex
conjugate roots having real parts slightly larger than the considered Fermi

(38) A. Bour and B. R. MorTELSON: Nuclear Structure, Vol. I (New York, N. Y., 1969),
p. 257,

(®) H. A. BeTHE: Proceedings of the International Nuclear Physics Conference, Gat-
linburg (New York, N. Y., 1967), p. 625.

(#) K. A. BRUECKNER and J. L. GAMMEL: Phys. Rev., 109, 1023 (1958).

(4) J.P.Brawzor: Phys. Rep., 64, 171 (1980); I thank Dr. A. Virrur: for having brought
this paper to my attention.

(#2) H. G. Baumcarpr, J. U. Scorr, Y. Sakamoro, E. ScuHorpER, H. STOECKER,
J. HorManN, W. CHEID and W. GREINER: Z. Phys. A, 273, 359 (1975).

(83) L. Zamick: Phys. Leit. B, 45, 313 (1973); see also the paper by Braizor ().

(%) T. H. R. SKYRME: Nucl. Phys., 9, 615 (1959); see also D. VANTHERIN and D. M.
Brink: Phys. Lett. B, 32, 149 (1970).
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Fig. 2a. — The saturation of infinitely extended nuclear matter described in N =1 and
N =2 approximations, by assuming as input parameters 7,=1.2 fm and b,= —15.0 MeV.
The ordinate is expressed in MeV. Continuous lines: 1) T(x)/4, 2) V®(x)/4 and
3) W®(x)/A; dotted line: WM(x)/A.

Fig. 2b. — Visualization of the Hugenholtz and Van Hove theorem in N =1 and
N = 2 approximations, assuming as input parameters r, = 1.2 fm and b, = — 15.0 MeV.
The ordinate is expressed in MeV. Continuouslines: 1)t(p), 2) v®(p, xy) and 3) w®(p, ) ;
dotted lines: 2) vW(p, xg) and 3) wl(p, xy).

momentum (x, = 1.5232/ry). In fig. 2b we visualize the Hugenholtz and Van
Hove theorem; more specifically, we plot the single-particle total energies
evaluated in the N = 1 and N = 2 approximation at the minimum of func-
tions (7.31):

(7.320) WO (p, ) = B () + {e + 93 BV ()} (p/%,)?
(7.320)  w(p, 2) = B (o) + {1 22 B (06)} (9 6)? + 3 B (36) (p[2)* .

In fig. 2b we have also plotted the p-dependence of v(p, #p) and v®(p, )
for p>x,. The importance of the momentum dependence of v(p, %,) outside
the Fermi sphere will be discussed in sect. 9.
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7'3. — We shall now determine, as funections of the input parameters 7,
and b_, the constraints imposed by the saturation prescriptions on the single-
particle potential energy (6.21a). Recalling eq. (6.25), one has

(7.33) v(p, #) = Cyfsin (ax) — ax cos (ax)} {sin (ap)/p};

then, taking into account egs. (1.4) and (2.3), one finds that the analytic expres-
sion of the total energy of infinite nuclear matter, brought about by the single-
particle potential energy (7.33), reads

(7.34) W(x)[A = (3/10.M) % 4 (3C,/202%3) {3in (oex) — auxt €08 (o)} .

Function (7.34) must satisfy conditions (1.5) for a certain value %, of the lim-
iting momentum . From eq. (7.33) one finds

(7.35) O, = O, ()

3 (bv_ EF)/IXSK;jO(OCXF)jI(GCKF) 3

i

where the spherical Bessel functions jo(z) and j,(x) are defined in egs. (5.38).
From both saturation prescriptions (1.5) one deduces that, for given valunes
of », and b_, the length « is determined by the equation

15(b, — eg)axy
15(b, — e5) — 2(bb, — 3eg)a® w2’

(7.36) tig (op) =

The nucleon cffective masses calculated at p = 0 and at p = %, according to
the quantum-mechanical definition (3.5) read

M*(0) _ 6ex jo(orxy)
S T T N PR B N
(7.37b) M*(atp) _ 2¢x jo(ony)

M 2eg Jolory) — ang(b, — &p) {“”Fjo(“”r) _2?.1(“”1'1')}’

the analytical expression of the ratio M**/M evaluated according to definition
(3.6) turns out to be

M** . 2ep sy Jo(oser)
M el + 20t folore)} — b,

(7.38)

The compressibility modulus implied by the total energy (7.34) can be readily
calculated using eq. (5.23); in the considered case the first-order logarithmic
derivative is

(7.39) W) = — 1+ 2 {j (2a0,) [ ot) o (oe,)} -
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It is trivially verified that the saturation prescriptions (1.D) are consistent with
the Hugenholtz and Van Hove theorem (1.15), because the factorable single-particle
potential energy (7.33) is an exact solution of the differential equation of nuclear
matter (5.5).

The solutions of eq. (7.36) are to be searched for in the interval

(7.40a) N < o, < 2m[3,
(7.40b) 2= 15(b, — &,)/2(5b_— 3¢,) .
7] v F v r

The numerical values of asx, as functions of v, and b, are given in table V,
together with the values of the parameters defined by egs. (6.19), (6.20) and
(7.35), which characterize the factorable single-particle potential energy (6.21)
inside and outside the Fermi sphere: it is needless to say that all tabulated
values fulfil exactly the saturation requirements of nuclear matter. The role
of table V is auxiliary to the construction of table VI, which refers only to the
single-particle potential energy (6.21a), brought about by the saturation pre-
scriptions, conceived as inextricably connected with the separation energy
theorem: we stress again that such a connection is made mathematically pos-
sible by virtue of eq. (5.5). The comparison of the results listed in table VI
and in table IV discloses the origin of several misleading conclusions drawn from
nuclear-matter caleulations and uncritieally reported in the literature. We
shall limit ourselves to pointing out that a) the single-particle potential energy
at zero momentum,

(7.41) v(0, %) = (b, — &,)[jy(any) ,

is a function of the Fermi momentum which also depends slightly on b_ (in
contrast with the results obtained from the direct calculation of eq. (7.26),
listed in table ITI; it has been ascertained that a self-consistent caleulation of
eq. (7.30) does not improve the N — 2 approximation discussed in subsect. 72);
b) the pathological behaviour, exhibited in table IV, of the nucleon effective
mass at the Fermi surface for p = — 14.0 MeV and b, = — 15.0 MeV disap-
pears; as already noted, parameter M** is completely unrelated to the
quantum-mechanical concept of effective mass: table VI gives an additional
evidence of its heuristic nselessness in nuclear physies, sinee it turns out to be
practically independent of both the input parameters », and b,; ¢) the most
significant differences between the predictions contained in table IV and in
table VI concern the dependence on r, and b, of the compressibility modulus K.

In conclusion, the factorable single-particle potential energy (6.21) at the
Fermi surface reads

(7.42a) V(D) #p) = (b, — &) {Jo(o &) [foo3)} P <2y,
(7.420) (D, %) = (b,— &) {exp [~ fin, (6 — 1)]JE}, P>uy,
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TaBLE V. — Numerical values of the parameters of the factorable single-particle potential
energy (6.21) as functions of 7, (in fm wunits) and b,. Quantity Cy(xg)/xp is8 expressed
mn MeV. For the reader’s convenience we have also tabulated the spherical Bessel
functions jo{axg) and f,(asxg).

b, = —14.0 MeV

o Xy Brtp Cy(sty) Oylng) g Jolatsey) falooy)
0.9 1.8830 0.6077 1.7475 —48.78 0.5054 0.4315
1.0 1.9293 0.7230 1.9295 —39.82 0.485¢4 0.4335
1.1 1.9698 0.8304 2.1139 —33.57 0.4678 0.4347
1.2 2.0000 0.9155 2.2714 —29.09 0.4546 0.4354
1.3 2.0489 1.0617 2.5671 —25.43 0.4333 0.4360
1.4 2.0765 1.1499 2.7625 —22.83 0.4213 0.4362

b, = —15.0 MeV

7o oKy B Coly) Og(xg) [#p Jolowty) Jaloeg)
0.9 1.8950 0.6366 1.7915 —48.97 0.5002 0.4320
1.0 1.9418 0.7552 1.9831 —40.14 0.4799 0.4338
1.1 1.9846 0.8714 2.1885 —33.90 0.4613 0.4350
1.2 2.0252 0.9891 2.4158 —29.32 0.4436 0.4357
1.3 2.0621 1.1031 2.6570 —25.90 0.4275 0.4360
1.4 2.0949 1.2110 2.9060 —23.26 0.4133 0.4362

b, = —16.0 MeV

7o X¥p By Cylotg) Os(g) [%p Joloxg) Ja(ouoeg)
0.9 1.9080 0.6688 1.8420 —49.13 0.4946 0.4326
1.0 1.9573 0.7963 2.0537 —40.35 0.4732 0.4343
1.1 2.0000 0.9151 2.2705 —34.21 0.4546 0.4353
1.2 2.0403 1.0352 2.5110 —29.71 0.4370 0.4359
1.3 2.0766 1.1501 2.7631 —26.34 0.4212 0.4361
1.4 2.1102 1.2633 3.0348 —23.74 0.4066 0.4361

where & = p[x,: it should be evident that from eq. (7.42a) one can construct
a variety of descriptions of nuclear matter which fulfil ewactly the saturation
conditions (1.5) and the Hugenholtz and Van Hove theorem (1.15), provided
the parameters ax, and fx, depend on r, and b, according to the numerical
trend given in table V. The saturation of nuclear matter for r,= 1.2 fm
and b,= — 15.0 MeV is shown in fig. 3a; the Hugenholtz and Van Hove
theorem is visualized for the same input parameters in fig. 3b; for the reader’s
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TaBLE VI. — Quantities deduced, consistently with the saturation prescriptions (1.5), from
the factorable single-particle potential energy (7.33). The zero-momentum limit v(0, )
and the compressibility modulus K, evaluated according to eq. (5.23), are expressed
in MeV. The mass ratios have been evaluated according to egs. (7.37) and (7.38).
Length 7, is given in fm units.

b, = — 14.0 MeV

7o v(0, %) M*0)/M M* ()| M MM K

0.9 —140.52 0.407 0.829 0.604 214.80
1.0 —123.98 0.375 0.847 0.590 198.16
1.1 —111.52 0.346 0.870 0.574 183.73
1.2 —101.34 0.322 0.892 0.559 168.49
1.3 — 95.38 0.290 0.946 0.540 167.07
1.4 — 89.15 0.269 0.990 0.523 157.53

b, = —15.0 MeV

7o v(0, %g) M*0)/ M M* (o) | M M+ M K

0.9 —143.98 0.398 0.833 0.600 221.62
1.0 —127.48 0.366 0.853 0.584 204.94
1.1 —115.26 0.335 0.880 0.568 191.71
1.2 —106.11 0.306 0.917 0.550 182.25
1.3 — 99.02 0.280 0.965 0.532 174.60
1.4 — 93.15 0.257 1.028 0.514 167.59

b, = — 16.0 MeV

7o v(0, %) M*(0)/ M M* (o) M M**/DL K

0.9 — 147.63 0.389 0.837 0.596 229.87
1.0 —131.40 0.353 0.862 0.579 214.55
1.1 —119.16 0.324 0.892 0.562 200.84
1.2 —110.00 0.296 0.935 0.543 190.82
1.3 —102.87 0.270 0.990 0.524 182.58
1.4 — 97.29 0.246 1.066 0.505 176.51

convenience we specify the analytic form of the function plotted in fig. 3a, b
(7.43) W(“)/A = (381«/5) 2+ (3/2)(X/“”E)(bv_ &) {jf(“”pX)/jo(dﬂy)jl(“"y)} ’
(7.44) W(D, 1) = £,£2+ (b, — &) {foloee§) [foloty)}

where y = »fx, and & = p/x,. In fig. 3b we have also plotted the momentum

6 — Il Nuovo Cimento A.
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Fig. 3a. — Description of the saturation of infinitely extended nuclear matter derived
from the factorable single-particle potential energy (7.42e), by assuming as input
parameters 7, = 1.2fm and b, = —15.0 MeV. The ordinate is expressed in MeV;
1) T(x)/A, 2) V(x) and 3) W(x)/A4, given by eq. (7.43).

Fig. 3b. — Visualization of the Hugenholtz and Van Hove theorem for the factor-
able single-particle energy (7.42), by assuming ag input parameters r, = 1.2 fm and
b, = —15.0 MeV. The ordinate is expressed in MeV; 1) t(p), 2) egs. (7.42) and 3)
eq. (7.43).

dependence of v(p, »,) predicted by egs. (7.42) for r,= 1.2 and b, = —15.0 MeV,
inside and outside the Fermi sphere.

7°'4. - Our choice of describing the saturation properties of infinite nuclear
matter in momentum space deserves further comments. According to current
opinions, the strong short-range repulsion in the nucleon-nucleon potential
makes the use of co-ordinate space preferable; in fact, short-range repul-
sion is usually approximated by an infinitely repulsive core and one of the
most important properties of the correlated wave functions is that they vanish
inside the hard core: this condition takes a simple form in co-ordinate space,
whereas it turns out to be very complicated in momentum space. We have
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already pointed out at the end of subsect. 5°2 that the single-particle potential
energy, calculated in first-order pertuibation theory, fulfils the hyperbolic
differential equation (5.5), provided the nucleon-nucleon potential is a con-
tinuous function of the internuclear distance: the use of the Heaviside func-
tion in the description of the repulsive hard core would be catastrophic. We
have also mentioned that the treatments used to overcome hard-core difficulties
together with the procedures based on the concept of healing distance violate
the Hungenholtz and Van Hove theorem and, consequently, the differential
equation of nuclear matter. The mathematical troubles brought about by the
hard core have always systematically biassed the theoretical outline of the
nuclear-matter problem: this is indeed disconcerting, because the hard core
is nothing but a phenomenological invention quantum-mechanically incon-
sistent, which compensates our ignorance of the spatial extension of the meson
source: in this connection it is worthwhile to recall that a proper choice of the
meson density distribution leads to nucleon-nucleon potentials which, although
continuous functions of the internucleon distance, simulate the repulsive short-
range properties otherwise grossly attributed to the hard core (**). The funda-
mental implication of our mathematical scheme, based on eq. (5.5), is that two-
nucleon potentials ingide the nuclear matter do not possess a hard core. The
suspicion that hard-core nucleon-nucleon potentials, although fitting the
elastic-scattering data, cannot give the correct volume energy and equilibrium
dengity of nuclear matter was originally expressed by BETHE (%).

8. — The energy dependence of the real part of the optical potential.

The genesis of the real part of the optical potential has been outlined in
gect. 1. Potential VU (F, »,) deduced in such a way contains information on
nuclear matter and inherits its characteristic features: this will be the leit-
motiv of our further considerations.

(45) See ref. (29),

(%) Private communication from H. A. BETHE to B. D. DAy (see B. D. Day: Rev.
Mod. Phys., 4, 719 (1967), p. 743). The opinion expressed by BETHE can be readily
understood in the framework of the effective-mass approximation. Point nucleons
obeying the Pauli exclusion principle have the kinetic energy T(x) due to the filling of
free particle energy levels. The requirement that the wave function should vanish whenever
any two nucleons approach within a separation distance equal to the hard core radius r,
increases the wave function curvature and, hence, the kinetic energy above the Fermi
value at » = xy. The Lenz correction (W. LENz: Z. Phys., 56, 778 (1929), see also
S. D. DreLL and K. HuanNG: Phys. Rev., 91, 1527 (1953)) accounts for this effect: the
kinetic energy turns out to be T'(x) = T(x)(1 - ax), where « is a constant proportional
to r,. It follows that the corrected kinetic energy depends also on a term proportional
to %, This positive term modifies quantitatively the y3-dependence of the total energy
expressed by eq. (7.3la), thus preventing one from obtaining simultaneously the
correct volume energy and equilibrium density.
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According to eq. (1.19) the real optical potential in the N = 1 approxima-
tion is

8.1 CU;,)(Ey Hy) = VD {p(E)y ”F} ’

where vi¥(p, ) is given by eqs. (7.4); it is found that

(8.2a) ‘Ug’(E, ng) = VP (o) + J‘E‘ll)(xF)E,
BWP(5g) M*
(1) _ o \ % — 2 pw
.20 Vo (2w) = 1F¥ 2MB(11)(MF) 173 Bo’(#x) ,
' J,e(l)(” ) = i B () — E* £ —1
VYT {1 + 2MBO(np)} M \M*

Taking into account eqs. (7.8), the explicit expressions of (8.2b), as functions
of the input parameters r, and b, turn out to be

_ &p(Tb, — Bey)

&y — Bb,
(8.3) UG (%g) = " 3e,—5b, ’ AP (p) =

= 3e,—6b,

A real optical potential formally similar to (8.24) has been semi-empirically
deduced by BRUECKNER, EDEN and FrANcCiS (¥) in the framework of their
theory on neutron reactions with nueclei; the potential is

(8.4) V(B) = — 41 MeV + 0.4E .

The mathematical scheme developed in the preceding subsections enables us
to disclose the theoretical contents concealed behind potential (8.4). To this
end we identify V with UY(E) and solve the two equations (8.3) in the un-
known quantities 7, and b, <.e.

(8.5) V(o) = — 41.0 MeV, .fki”(xl,,) =04.
It is found that
(8.6) b,=—263MeV, ¢ =—23942MeV, r,=1.082-10"13cm;

it is seen that the volume energy turns out to be ludicrously small. The very
theoretical scenery disguised by the apparently innocent potential (8.4) is
even worse than may appear from the predicted value of b . In fact, it can
be readily proved that potential (8.4) is the optical transformation of a
single-particle potential energy which is not compatible either with the satu-

(4"} K. A, BRUECENER, R. J. EDEN and N. C. Franois: Phys. Rev., 100, 891 (1955).
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ration prescriptions of nuclear matter or with the Hugenholtz and Van Hove
theorem: thus its value b = — 2.63 MeV is not only too small, but also
physically meaningless because it does not correspond to the minimum of the
total energy at the value 7,, given in eq. (8.6)!

The N = 2 approximation of U_(F) is

(8.7a) UNE, #y) = vO{p(E), 2y} ,

where v®(p, »,) is given by eqs. (7.13); function (8.7a) is the solution of the
quadratic equation

(8.7b) B (L VB, #) 12— BB, 20,) VEE, n,) + By(B, %) =0,

Bng) = (l/e;)%;B(Z)(M ),
(8.7¢) B,(B, n) = 1 + (1)eg) 2 B (s,) + (2/e2) 54 BP (20) B
BB, %) = B?)(%F) + (1/eg) 22 BP () B + (1]eq) 24 B;”(xF)EZ

The physical solutions of eq. (8.7) have to be selected according to the obvious
criterion expressed by the inequalities

(8.8) CUS)(E7 %) <0, ICUg)(E, 2te)| < lcuif)(()’ %) -
The zero limit of VUX(F) is obtained from the equation
(8.9)  (1/e2) % BO () VP ()P — {1 + (1/eg) 22 BD (o)} VD) + BO(rey) =

clearly, UP(x,) # UM (%) if BP(x,) 0. Potential (8.7) has never been con-
sidered in the literature.

The optical transform of the single-particle potential energy (6.21b), obtained
from eq. (5.5) by variable separation, is

(8.10a)  Vn(H, xr) = V{p(H), #x} ,

(8.10b) Ur(E, »y) = Uy(xy) {E?%F:(E > )}* exp [ Brp {E’ Ur(H, % )}*] ’

&p

{8.10¢) Vy(rp) = (by— &5) €Xp [Prn] .
The zero energy limit of potential (8.10) is given by the equation

(8.11) atexp [— fup yl = y*,

where

(8.12) = — Vylre)fep, yi=— U0, Hy)[Ep -

R
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The numerical values of quantities V(%) and UV.(0, »,), consistent with nu-
clear saturation, are given in table VII as functions of r, and b_; use has been
made of the values of parameter fx, listed in table V.

TaBLE VII. — Numerical values of quantities Uy(xg) and Ug(0, xg) (in MeV) as functions
of 7o (in fm wnits) and b,.

T b, =—14.0 MeV b, = —15.0 MeV b, =—16.0 MeV
Uylsx) Ug(0, »p) V() Ug(0, ) Uy(p) U(0, %g)

0.9 —130.41 —64.43 —136.12 —64.67 —142.53 —65.16
1.0 —124.01 —53.17 —130.19 —53.43 —137.87 —53.91
1.1 —119.69 —44.77 —127.10 —45.23 —135.26 —45.64
1.2 —115.08 —38.45 —126.56 —38.68 —135.34 —38.98
1.3 —116.50 —32.98 —127.56 —33.76 —136.86 —33.98
1.4 —118.61 —29.34 —129.43 —29.55 —139.93 —29.73

We ghall show in sect. 9 that the determination of the parameters b,
K and &, (i.e. the length r,) can be carried out, consistently with the saturation
prescriptions and the Hugenholtz and Van Hove theorem, by taking advantage
of the information extracted from the nucleon-nucleon elastic-scattering data.

9. — A criterion for the determination of the compressibility modulus of infi-
nite nuclear matter.

9'1l. — We re-formulate the N — 2 approximation of the single-particle
potential energy by replacing the third of eqgs. (7.20) with the first of eqs. (7.24).
The new system of equations is

7207, C 4 42565 C2) 4 3503 C' = T0b,— 42¢,,
(9.1) 1201 C¥ 4 3045 C¥ + 1542C2 = — 126,
21627 C? |- 6028 C 4 165 CP = 6K — 6e,,

where K® = K; the solutions are

#1C® = (175/96)b, — (7/32)e, + (35/288)K ,
(9.2) 8 C® = (5/4)e,— (35/4)b, — (5/12)K
22 C = (35/4)b, — (9/4)e, + (1/4)K .
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Coefficients (7.18) of v(¥(p, »,) become
BP(x;) = (137/32)b,— (51/32)¢, + (5/96)K ,
(9.3) 12 B® () = (117[144) e, — (245/48)b, — (25/144)K,
x5 BB () = (175/96)b, — (7/32) ¢, + (35/288) K

It is readily verified that potential (7.13), characterized by the coefficients
(9.3), fulfils the Hugenholtz and Van Hove theorem (1.15).

Let us express the real optical potential (8.7) in power series of the incident
energy E; the first three terms of the series are

(9.4) VLB, %) = VUP0te) + AP () B+ A7 () B?

where VP (x,) = VL0, »,) is a solution of eq. (8.9). The coefficients of the
McLaurin expansion are directly obtained from eq. (9.4); one has

(9.5)  AP(qp) = {AVE(E, »,)[AE},,, A (%) = F{A2VE(E, »,) [AE% 5, .
Using eq. (8.7b), we define the two-variable function

(9.6) F(B, V) = B, () [ V]2 — B, (B, 2%,) VD + By (B, »,) = 0;
from the theory of implicit functions one has

9.7a)  {AVE(E, 1) JAE} guo = — [{DFJOB}/{DF/OVEY 5ma

dZCUg)(Ey #y) .
(9.7b) { dEg_}H =
oF i)z_ o:F oF oF _ai(ai
. oE\ovuY OE0VY 0F 0VY ' o0VR*\oE
B { oF }3 )
OUR’ o
Taking into account that
(9.8a) {OFIOE} ., = —1— {OF[0VU®}, = (1/e,) 2 B®(3,) — (2/€2) 26 B ()

(9.80)  {0*F[OER},, = {OFOVEDT,., = — {FAEIVD),_, = (2/e2)d BO ()

it is found that
(1/eg) xFB{”(MF 2/£§‘) ”:’B(Zz)(%li‘) qy&”(”r‘)
1 - (1/ex) 2 B (20r) — (2/e5) 2k BY (26) VP (o05) ’

(1/62) 524 B (325)
{1 + (1/ex) g B (20x) — (2/€0) 25 BR () V@ (5)}*

(9.9a) AP () =

(9.95) AP (o) =
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TaBLE VIII. — Numerical values of the parameters of the real optical potential (9.4) as
functions of 7y (in tm units) and b,. Quantities ep, K and AT{P(xy) are expressed in
MeV and parameter #45¥(x;) in (MeV)-! (see table IV).

b, = —14.0 MeV

7o ép K U () AL (s0) A (o)

0.9 57.02 182.84 —58.36 0.4852 —0.000661
1.0 46.18 140.10 —53.27 0.4748 —0.001 263
1.1 38.17 97.94 —45.26 0.4664 —0.002 290
1.2 32.07 71.79 —39.01 0.4582 —0.003 681
1.3 27.33 55.77 —34.21 0.4470 —0.005 596
1.4 23.56 47.73 —30.28 0.4383 —0.007 942

b, = —15.0 MeV

7y ep K@ Ve () AP (g) A7 (g)

0.9 57.02 265.04 —64.28 0.5116 —0.000 272
1.0 46.18 222,30 —53.17 0.5271 —0.000517
1.1 38.17 180.14 —44.98 0.5342 -—0.000957
1.2 32.07 153.99 —38.61 0.5438 —0.001 444
1.3 27.33 137.97 —33.58 0.5554 —0.001 947
1.4 23.56 129.93 —29.55 0.5701 —0.002 390

b, = —16.0 MeV

o 23 K® Vg (o) AP (%7) A5 (o0)

0.9 57.02 347.24 —64.26 0.5474 0.000 096
1.0 46.18 304.50 —53.04 0.5696 —0.000 084
1.1 38.17 262.34 —44.73 0.5856 —0.000275
1.2 32.07 236.19 —38.30 0.6037 —0.000452
1.3 27.33 220.17 —33.19 0.6236 —0.000 599
1.4 23.56 212.14 —29.07 0.6455 —0.000 685

where, as already pointed out, VP(x,) is given by eq. (8.9). Quantity
VP(%,) and parameters (9.9) are caleulated in table VIII as funetions of 7, by
using the coefficients of the single-particle potential energy (7.22}), listed in
table IV.

Let us suppose that the elastic scattering of neutrons from nuclei are
analysed on the basis of the real optical potential having the empirical form

(9.10) Vo(E) = ay+ bo E + ¢, B?
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where parameters (ao, by, ¢,) are determined by fitting the data. Should such
a circumstance occur, then one could compare potential (9.4) with (9.10) by
putting

(9.11) VPotg) = @, AP() = by, AL(g) = 0,3

clearly, the three quantities (b,, K, &p), deduced from the system of equations (9.11),
are consistent with the saturation prescriptions and with the Hugenhollz and Van
Hove theorem. From the first and second of eqs. (9.11), taking into account

eqs. (8.9) and (9.9a), one obtains
Bflz)(”x«‘) — (ao/e 2 B(m 0/ 2 4B(2) ) = a,,
(9.12) 2 pl2) 4 p(2)
2% B (26) + (2t/e5) o Bz (#5) = yeg

waere ¥ = by/(1 — b,). Substituting into system (9.12) the expressions given
by eqs. (9.3) for the coefficient, the system of linear equations in the unknown
parameters b and K is found to be

(9.13“) aubv—[— alzK = %[1 9 a21bv + agzK = QIz )

(U = 3(411 + 490x - 175x?),  ay = 105(7 - bx)
(9.13b)

(3, = B(3 + 10x -+ 7x?), (ge = B(5 + 7x),

A, = 3(153 + 174x 4 21x¥) ¢, ,
(9.13¢)

W= (117 - 63x — 144p) e, ,

where x = ayfe,. For given values of parameters (aq, by} the solutions of sys-
tem (9.13) are expressed as functions of the Fermi energy only, i.e.

b, = epfi(ap/er) ,

(9.14a)
fix) = 3(9 + 2y) + 2(81 + 10p)x 4+ 7(5 + 2y)x?
1 55 + 98x -+ 35x? ’
K'= — (Bex/5) fy(@ofex) ,

(9.14b)

3(149 - 137y) 4 14(62 + 35y) x + 35(11 + By) x*

flX) = 55 + 98x I 36x ;

the Fermi energy is determined from the third of eqs. (9.11):

Golp = ﬁ;(ao/eF) )

(9.14¢) 1 72 576{9 — T5(b,/ex) — 5(K/en)}

) = (3787 + 21 — 10507 T 5x)0.jor) — 5(6 - X (Klen)}s”

where ratios b /e, and K/e, are given by eqs. (9.14a), (9.145).
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The calculations performed by WILMORE and HoDGsON (%) for nonlocal
potentials, appropriate to & = 1,5,10 and 15 MeV neutrons elastically scat-
tered by nueclei of masses 4 = 50, 100, 150 and 200, have been fitted assuming
an energy-dependent potential well of the form (9.10) with

(9.15)  @y= — 47.01 MeV, by= 0.267, ¢, = 0.00118 (MeV)-.

Using the set of parameters (9.15) in eqgs. (9.14), it is found that the upper limit
of the variability interval of r, is fixed by the quadratic equations

(9.16) filx)) =0,  fi(xs) = 0;
in the considered case (y = 0.2642), the roots of eqs. (9.16) are

(9.17) x, =1, x,=—07278, x,=—09932, x,=—1.3387.
Only roots x, and x, are significant for our purposes: the volume energy b,
turns out to be a positive quantity for x > xi, and the compressibility modulus
is negative for x> x,. The numerical trend of the results thus obtained is
shown in table IX. It is found that eq. (9.14¢) is satisfied for y = — 0.9537;
then, one deduces that

b,=—310MeV, K=61.13MeV,
(9.18)
ep= 49.20 MeV, 7,=0.968-10"%cm .

TaBLE IX. — Numerical results deduced from the Wilmore and Hodgson optical potential.
Quantities g, b, and K are expressed in MeV; length 7, is expressed in fm units.

o &g X b, K Cop fa(x)

0.900 57.02 —0.8244 —19.29 1333.1 0.0673 —0.0926
0.925 53.98 —0.8709 —12.75 436.81 0.0637 —0.0316
0.950 51.18 —0.9185 — 5.79 958.04 0.0604 0.0092
0.975 48.59 —0.9675 — 2.16 35.16 0.0573 0.0748
1.000 46.18 —1.0180 1.13 —23.38 0.0544 0.1083

These horrible results are physically meaningless, but nonetheless mathe-
matically consistent with eqs. (1.5) (the minimum of the total energy of infinite
nuclear matter, evaluated equal to — 3.10 MeV, occurs at r,= — 0.968 fm)
and with eq. (1.15) (the evaluated average volume energy — 3.10 MeV is equal
to the total energy of a single nucleon at the Fermi surface corresponding to

(4%) D. WiMore and P. E. HopesoN: Nucl. Phys., 33, 673 (1964).
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7o = 0.968 fm); thus, the theoretical implications of the saturation problem
are safe and only the predicted values of b, and K are nonsensical. This is
probably due to the fact that ¢, should be a negative quantity: indeed, the
WH. potential implies B{®(x,) > 0, which conflicts with the N = 2 approxima-
tion (see table VIII). Let us tentatively modify the WH potential by assuming

(9.19) ay= —47.01 MeV, b= 0.267, ¢, =— 0.00118 (MeV)1;
from eqs. (9.14) it is found that

b,=—14.43 MeV, K= 782.77T MeV,
(9.20) v
g, = 55.65 MeV , 7o=0.911-10"2% cm ,

a very unsatisfactory result because the value of the compressibility modulus
turns out to be too large. Finally, we consider the set of parameters

(9.21) ay=—47.01MeV, b,=0267, ¢,=0,
which lead to the following result:

b, = —6.82 MeV , K = 203.59 MeV ,
(9.22)
&, = 51.83 MeV , 7o= 0.944-10"% cm .

The reliability of the nuclear-matter quantities (b_, K, ¢,), determined from the
phenomenological parameters of the real optical potential expressed by
eq. (9.10), critically depends on the reliability of the zero-energy limit of the
potential itself. This crucial point should be kept in mind in handling the
criterion previously outlined, which is strictly based on the intimate connec-
tion existing between the optical model and the model of infinitely extended
nuclear matter. The Wilmore and Hodgson analyses are heavily based on the
use of electronic computer techniques: this circumstance prevents one from
reaching a critical understanding of the resuits thus obtained. It would be
desirable to know if set (9.15) is univocally determined and what is the de-
gree of confidence one can attribute to value a,= — 47.01 MeV. Unfortu-
nately, such information is not awvailable.

9°2. -~ Let us express the optical potential (8.10) in power series of the
incident energy E; the first three terms of the series are

(9.23) (B, ) = V(o) -+ Hy(o0) T - o) 12

The values of A(x,) = VU,(0, %) are given in table VII; the coefficients #£,(x,)
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and #A,(x,) of expansion (9.23) are given by
(9'24) Al(xF) = {dCUR(E7 %F)/dE}E—O’ ﬂ2(xl?') = %{chljR(E’ MF)/d‘Ez}FO *

Using eq. (8.10b), we define the two-variable function

F

(9.25)  G(B, Vg) = Vg — Vy(os) {E—_‘%}* exp [- Bty {E - ‘Un}‘] —0.

From the theory of implicit functions one has

(9.26a) {dVU(E, #,) A8} g = — [{0G/OE} {OG/d U} ]pmg 5
A*Ug(E, xg) -
(9.26b) {_@_—}M_
#G(AGY , &G 3G 3G G (a_c-;)2
__|om=\o%y 03V, OF 3V; ' 8V, \OE .
“ o
aclTR E=0
Taking into account that
AUr(H, %) 3G/OE
(0.27a) dE  1_9GjaE’
QUp(By %) *GJOE*
(5.270) dE* {1 —0GjoEp’

TasLe X. — Parameters characterizing the real optical potential (9.23) obtained as optical
transform of the factorable single-particle potential energy (6.21b): the parameters are con-
sistent with the saturation prescriptions and with the Hugenholtz and Van Hove theorem.
Length 7, is expressed in fm units (see tables V and VII).

T b, = —14.0 MeV b, = —15.0 MeV b, = —16.0 MeV
y Brey y Brgy y Bysy
0.9 1.0630  0.6460 1.0649  0.6779 1.0689  0.7149
1.0 1.0730  0.7758 1.0756  0.8123 1.0804  0.8603
1.1 1.0830  0.8993 1.0885  0.9485 1.0935 1.0007
1.2 1.0949 1.0024 1.0982 1.0862 1.1025 1.1413
1.3 1.0985  1.1663 1.1114  1.2260 1.1150 1.2824

1.4 1.1159 1.2832 1.1199 1.3562 1.1233 1.4191
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it is found that

(9.284)

(9.28b)

£, ()

Ay(ty) = —

1+ Brgy
3 +/3”Fy’

3 + 3Pupy® + BPury

exY(3 4 Brpy)®

I

93

where the parameter y is defined in eqs. (8.12). The values of fx,y as func-
tions of 7, and b, are given in table X; in table XI we evaluate, consistently

TABLE X1. — The nuclear-matier quantities b,, K and ep (in MeV) and the coefficients
HAy(%p) (@ = 0,1,2) of the real oplical potential (9.23) are evaluated as functions of 7,
(tn fm wnits), consistently with the saturation prescriptions and the Hugenholiz and Van
Hove theorem. Quantities A(xy) and Ay(x;) are given in MeV and, respectively, in

(MeV)-1, (See tables V, VI and VIIL)

b, = —14.0 MeV

o ep K Ho(2y) Ay (xg) Hy(20p)

0.9 57.02 374.28 —64.43 0.4514 —0.001 856
1.0 46.18 320.87 —53.17 0.4703 —0.002271
1.1 38.17 283.09 —44.77 0.4871 —0.002721
1.2 32.07 249.57 —38.45 0.5003 —0.003203
1.3 27.33 228.99 —32.98 0.5195 —0.003722
1.4 23.56 207.60 —29.34 0.5330 —0.004 246
b, = —15.0 MeV

%o 23 K #o(2ew) 7y (%) Fog(%x)

0.9 57.02 380.60 —64.67 0.4582 —0.001 853
1.0 46.18 328.97 —53.43 0.4754 —0.002 265
1.1 38.17 286.62 —45.23 0.4975 —0.002 707
1.2 32.07 258.84 —38.68 0.5093 —0.003 156
1.3 27.33 232.26 —33.76 0.5267 —0.003 682
1.4 23.56 211.48 —29.55 0.5409 —0.004217
b, =—16.0 MeV

o Ep K Ho(rp) #,(%5) Hy(%p)

0.9 57.02 387.53 —65.16 0.4616 —0.001 847
1.0 46.18 336.29 —53.91 0.4819 —0.002 255
11 38.17 296.19 —45.64 0.5001 —0.002 693
1.2 32.07 265.22 —38.98 0.5170 —0.003138
1.3 27.33 240.42 —33.98 0.5330 —0.003 662
1.4 23.56 220.43 —29.73 0.56474 —0.004192
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with the saturation prescriptions and the Hugenholtz and Van Hove theorem,
the coefficients of the real optical potential, expressed by eq. (9.23).

Let us suppose that the elastic-scattering data of nucleons by nuclei has
been fitted using a real optical potential having the empirical form

(9.29) ViB) = a,+ b, E + ¢, B2 .

We arbitrarily assume that such an analytical expression is valid also in the
energy intervals where the N = 2 approximation certainly fails: for this reason
we have modified the notation adopted for the empirical potential (9.10).
The comparison between potentials (9.23) and (9.29) leads to the system of
equations

(9.30) Ay = a,, A =b,, A =c¢.

The basic idea of the criterion devised for penetrating theoretically into the
Fermi sphere, using the experimental data concerning the elastic scattering
of neutrons by nuclei, consists in determining the parameters y, fix, and &, from
the phenomenologically known parameters (a,, b;, ¢,) and, then, using eq. (6.20),
determining parameter ax, (see table V). From the second of eqgs. (9.30) one has

(9.31) Brey = (30— 1)[(1 — by);
gince y >0, eq. (9.31) implies that it must be
(9.32) i<bh < 1.

Inequality (9.32) shows that the Wilmore and Hodgson potential, discussed
in subsect. 9'1, conflicts with the optical scheme constructed on the basis of
the factorable single-particle potential energy (6.216), not only because ¢, > 0
(note that #,(x,) is a negative quantity, as is shown in table XI), but also
because b, < 3. In conclusion, it is found that y depends on the parameters
(@y, by, ¢;) through the quadratic equation

(9.33a) y4+&y+&5=0,

_1—b,  (8b,—1)*(1 —b,) — 8as0;

(9.33) b=g =1 &= 3@,—Da—b)p

then, parameter fx, is given by eq. (9.31) and the Fermi energy is obtained
from the relation

(9.34) &p= — G[y*.
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GIANNINI, Ricco and ZUccHIATTI () have successfully fitted the energy
dependence of the real optical potential up to F ~ 140 MeV by using the
analytical formula (9.29) with

(9.35) a,=—485MeV, b,=0.36, ¢ =~ 0.000855 (MeV)-.

From eq. (9.31) it follows that fx, Y = 0.1250: from table X it is seen that
this value is not compatible with nuclear stability. The description of nuclear
matter inferred sic et simpliciter from the set of parameters (9.35) looks cum-
bersome; in faet, from eqs. (9.31), (9.32) and (9.34) it is found that

(9.36) y=0.3968, fr,=0.3160, s, — 308.03(!) MeV .

The paradoxical results in (9.36) show that the GRZ formula, although useful
for fitting the data in a relatively wide energy interval, is deprived of any phys-
ical meaning in the energy region where the McLaurin expansion of any fune-
tion describing the energy dependence of the real part of the optical potential
is presumably valid: of course, this is also true for the optical transform (8.10)
of the factorable potential (6.21b). We give credit to the analyses performed
by GIANNINI, R1icco and ZUcCHIATTI and restrict the validity of their formula
up to £ = 50.0 MeV. As is shown in table XI, the nuclear stability implies that

(9.37) 0.400 < A, () < 0.550;

then, taking into account prescription (9.37), we specify the GRZ potential
with the following sets of parameters:

set I:  a,=— 49.16 MeV, b, = 0.400, ¢, = — 0.001 387 (MeV)-!;
set II: a,= — 49.57 MeV, b, = 0.425, ¢,= — 0.001 723 (MeV)—*;
set IIT: a, = — 50.00 MeV , b, = 0.450, ¢, = — 0.002 053 (MeV)~1;
(9:58) set IV: a;= — 50.41 MeV, b; = 0.475, ¢, = — 0.002389 (MeV)~1;

set Vi a,= — 50.83 MeV , b, = 0.500, ¢, = — 0.002720 (MeV)~1;

set VI: a,= — 51.66 MeV, b, = 0.550, ¢, = — 0.003 387 (MeV)-1,

Except at the zero-energy limit, sets (9.38) lead to the same results otherwise
obtainable by using the original GRZ formula. It is worthwhile to point out
that the GRZ formula, modified by sets (9.38), looks like a perturbed optical

(**) M. M. GIANNINI, G. Rrcco and A. ZuccHiATTI: Microscopic Optical Potentials,

Proceedings of the Hamburg Conference, edited by H. V. voN GErRaMB (Berlin, 1978),
p. 126.
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transform of the single-particle potential energy described in the effective-
mass approximation: this is a very naive clue for understanding many con-
ceptually twisted treatments of the optical model (which, incidentally, have
never produced significant results). The parameters expressed by egs. (9.31),
(9.32) and (9.34), calculated using sets (9.38), are given in table XII. The
comparison of table XII with tables X and XI shows that the values of the
parameters (a,, by, ¢;) consistent with nuclear stability and with the Hugen-
holtz and Van Hove theorem are included between those characterizing set IV
and those characterizing set V. Taking into account table VI, one finds that
it must be

ro= (1.1 £ 0.1)-10-3¢cm ,
(9.39) b,=— (15.0 4-1.0) MeV ,
K =~220.0 + 50.1.

TaBLE XII. — Parameters (9.31), (9.33) and (9.34), characterizing the McLaurin expan-
sion of the real optical potential (8.10), are evaluated as functions of sets (9.38).

Set y Prpy i £
I 0.6597 0.3333 0.5052 112,96
11 0.8089 0.4783 0.5912 75.76
11T 0.9437 0.6364 0.6743 56.14
v 1.0715 0.8095 0.7555 43.91
Vv 1.1930 1.0000 0.8382 35.71
VI 1.4382 1.4444 1.0043 24.97

This result is very gratifying; we shall not bother to determine the exact value
of the nuclear-matter parameters (b, K, &).
We shail now examine the real optical potential (8.10):

(9.40a) VB, %) = 0,(,) {B — VU (B, 2)}H exp [— 0,(6,) {B — V(B )}1]
(9.40b) wl(”p) = CUO(NF) \/a’ wz(”p) = /3”1*/\/-8; .

The unknown parameters w,(»,) and w,(x;) have been determined by minimizing
the mean square deviation

(9.41) Mo(ar, 03) = f (Vi(B) — VB, n)}?dE

where V,(#) is the GRZ potential and E,= 140 MeV. Several mathematical
difficulties have been overcome in order to deduce in explicit form the system
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of equations

(9.42) OMfow; = 0,
where ¢ = 1,2. A lengthy calculation has led to the solutions
(9.43) o, (%) = — 899.82 (MeV)},  o,(x,) = 0.1310 (MeV)-*.

The minimum of eq. (9.41) is found to be A= 55.98 (MeV)3; it is worth-
while to point out that the minimum becomes M= 1.50 (MeV)? if the
integral is ecalculated by assuming F > 50.0 MeV. The numerical values of
potential (9.40) are given in table XIII;the behaviour of the potential, governed
by parameters (9.43), is plotted in fig. 4a), b) vs. the incident energy F (*).

TasLE XIII. ~ Numerical values (in MeV) of the real optical potential (9.40) governed by
parameters (9.43).

) Up(FE, x%g) b Ur(H, xg)
0 —50.20 25.0 —40.96
2.5 —49.22 30.0 —39.27
5.0 —48.25 50.0 —33.00

10.0 —46.35 100.0 —20.89

15.0 —44.50 150.0 —13.86

20.0 —42.71 200.0 —11.26

We have now sufficient information for the determination of the nuclear-
matter parameters (b, K, ¢;). From (9.43), taking into account definitions
(9.40b), one has

(9.44) Vi, (,) By = — 117.88 MeV .

The same quantity is evaluated in table XIV, by using U,(x,) and fx, given
in tables VIL and, respectively, V. It is seen that for b = — 14.0 MeV
value (9.44) corresponds to 7, included between 1.1 and 1.2fm, for b, =
= — 15.0 MeV it corresponds to r, varying in the intcrval between 1.1 and 1.0 fm
and for b, = — 16.0 MeV r, appears to be included between 1.0 :md 1.1 fm,
These results are substantially consistent with the values of the nuclear-matter
quantities given by eq. (9.39). We shall not seek for exact numerical solutions
and assume b = — 15.0 MeV. The final result, obtained by means of tables V

(°*) The real optical potentials, so far considered, do not reproduce with the same set
of parameters the low- and high-energy data; this circumstance was first noticed by
FrauN (W. E. FRAHN: Nuovo Cimento, 5, 393 (1957); see also W. E. Fraux: Nuovo
Cimento, 4, 314.(1956)).
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a) b

I
o] 25 £ 90 ¢ 100 £ 200

Fig. 4. — Energy dependence of the real part of the optical potential (9.40) charac-
terized by parameters (9.43); a) energy interval 0 < E < 50 MeV: potential (9.40) is
expressed by curve 1); the empirical potential of Giannini, Ricco and Zucchiatti and
the empirical potential of Wilmore and Hodgson are represented by curves 2) and 3),
respectively; b) potential (9.40) in the energy interval 0 < E < 200 MeV. The ordinate
scale is given in MeV.

TasLe XIV. — Numerical values (in MeV) of quantity Uy(xg)Prp calculated consi-
stently with nuclear saturation and with the Hugenholtz and Van Hove theorem, by using
the values of “Uy(xp) and Pry given in table VII and, respectively, in table V. Length r,
is given in fm units.

o Up(eg) frep
b, = —14.0 MeV b, = —15.0 MeV b, =—16,0 MeV

0.9 — 79.25 — 86.65 — 95.32
1.0 — 96.59 — 98.32 —108.78
1.1 — 99.39 —110.75 —123.78
1.2 —105.35 —125.18 —140.10
1.3 —123.69 —140.71 —157.40
1.4 —136.39 —156.74 —176.77

and VII and using eqgs. (6.20), (5.23) and (7.41), is

b,=—15.0MeV, 7, =1171-10"%cm, 3, =1.3008-10*cm?,
(9.45) g,=3b5.08 MeV, ax,= 2.0184, Br. = 0.9276 ,

v(0, %) = — 109.00 MeV, K= 187.48 MeV .

In conclusion, apart from conceptually irrelevant numerical approximations,
quantities (9.45) are inferred from the phenomenological information on the
elastic seattering of nucleons by nuclei according to an exaet mathematical
procedure consistent with the saturation prescriptions (1.5) and the Hugen-
holtz and Van Hove theorem (1.15). The obtained result is very satisfactory;
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it should be eclear that this goal has been achieved only by virtue of the dif-
ferential equation of nueclear matter (5.5).
The total energy (7.34) can be written as

(9.46)  W(x)/A = 3o, x* + £{(b, — &) o} {330ty 1) [Fo o) I (0wee)} 1

where y = »/x,. Function (9.46), calculated with parameters (9.45), is plot-
ted vs. y in fig. Ha: it is seen that W(x)/A possesses a minimum equal to
b,= — 15.0 MeV at 7,==1.171fm. The momentum dependence of the fac-
torable single-particle potential energy (7.42), calculated at the minimum of
the total energy, is shown in fig. 5b.

h]
-
0 L A 1 I A A
15.0F 3
L ~25.01
1)
0 1 | 1
2) k)
—50.0-
2) \3 %0
-15.0 B
~750F
—30.0 ]
-100.0}
—45.0 1 ! L L ! 1
0 05 10 15 0 0.4 08 1.2
x/o%g pix;
Fig. 5a. Fig. 6b.

Fig. ba. ~ The saturation of infinitely extended nuclear matter described by the total
energy (9.46), calculated using parameters (9.45) deduced from the analysis of the
real optical potential. The ordinate is expressed in MeV. Curves 1), 2) and 3) cor-
respond to T(x)/4, V(x)/A and W(x)/4, respectively,

Fig. 5b. -~ The momentum dependence of the single-particle potential energy (7.42)
at the minimum of the total energy expressed by eq. (9.46) (see fig. 2b). The Hugen-
holtz and Van Hove theorem is also visualized. The ordinate is expressed in MeV.
Curves 1), 2) and 3) refer to t(p)= ep&?, v(p, »y) and w(p, %), respectively.
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10. — The energy dependence of the imaginary part of the optical potential.

The pessimistic perspectives of sophisticated theories of the imaginary
part of the optical potential ('), and the scanty results obtained from them,
will probably stimulate the revival of the theoretical outlook on which the
so-called frivolous models (°2) are based. Our purpose is to re-formulate the
simple model constructed by CLEMENTEL and VILLI (°%) and calculate U (K, ;)
consistently with the saturation requirements of infinitely extended nuclear
matter and with the Hugenholtz and Van Hove theorem. The achievement
of this ambitious goal has never been attempted before: of course, it is signifi-
cant only as a test of the internal logic of the whole nuclear-matter problem.

10'1. — Ag is well known, according to the clouded erystal ball model ()
the nucleon-nucleus scattering problem is reduced to a one-body problem by
describing the nucleus by means of a complex attractive potential

(10.1) V(EB, #,) = VU (B, %) — iV(E, %) ,

acting upon the incoming particle. It is easy to see from the continuity equa-
tion that the introduction of a negative imaginary potential energy in the
Schrodinger equation is a theoretical device for describing absorption of par-
ticles: in fact, the optical potential (10.1) corresponds to an absorption prob-
ability 29U,/ per unit time as long as the particle is within the nucleus. It
follows that the target nucleus can act upon the incoming nucleon as a potential
well, because the formation of a compound state, described by the potential
U, (E, %,) as an absorption, occurs inside the nucleus with a probability smaller
than unity. In terms of the mean free path 4, the absorption probability per
unit time is given by v»(E)/A, where v(E) is the velocity in nuclear matter of a
nucleon incident on the target nucleus with energy E. Trivial statistical con-
siderations and elementary quantum-mechanical arguments lead to the general
conclusion that the imaginary part of the optical potential depends on the
density ¢ of nuclear matter, on the nucleon velocity v(E) and on the neutron-
proton eross-section <o, averaged over the A nucleons of the nucleus and

(%) B. SinmaA: Phys. Rep. C, 20, 1 (1975).

(52)A E. CLEMENTEL and C. VILLI: Nuovo Cimento, 1, 176 (1955); A. M. LaNe and C. F.
WANDEL: Phys. Rev., 98, 1524 (1955); I thank Prof. F. Zarp1 for a useful discussion on
the recent developments of this topie.

(53) J. P. JENKENUE, A. LEJEUNE and C. Manavx: Nuclear Optical Model Potential,
edited by S. Borrr and G. PassaTorE (Berlin, 1976), p. 72; B. SixHA and F. DucGan:
Phys. Lett. B, 47, 389 (1973); B. SinHA and F. DUGGAN: Nucl. Phys. 4, 226, 31 (1974).
(%) H. FesmBacu, C. E. PorTER and V. F. WEIsskoPF: Phys. Rev., 96, 448 (1954).
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over their momenta within the Fermi sphere, according to the relation
(10.2) U, (E, »,) = (5/16)}fipv(E){o,,> ,

where (¢ > is evaluated in the centre-of-mass system; potential (10.2) has
been deduced taking into account the implications of charge symmetry and
charge independence and assuming

(10.3) o,=0,.=(1/4)a,,
where o, and ¢, are the elastic proton-proton and, respectively, neutron-neutron
cross-sections. The validity of conditions (10.3) is a decreasing function of the
scattering energy and is based upon the fact that the integral cross-section
related to the pure isobaric spin state 7' = 0 is negligible as compared with
that corresponding to the pure isobaric spin state T = 1.

Let p and q be the momenta of the nucleon incident on the nucleus with
cnergy F = k?/2M in the laboratory system (p > x,) and, respectively, the
momentum of a nucleon embedded in nuclear matter (g <x,); the momentum p
will be defined according to the dispersive relation

(10.4) p = p(B) = k{1l — VU(H, )/ B},

already introduced in sect. 8. The relative momenta of the two-nucleon sys-
ten s before and after the elastic collision are

(10.5) P—-ip—9q, P=3%p—4q)

the energy conservation requires that

(10.6) P=P=4}|p—gql.

The cross-section ¢, depends on P and on the angle between P and P’, i.e.
(10.7) ¢,, = 0,,(P, P-P).

The procedure for calculating (o, > is the following: a) quantity (10.7) is
multiplied by the flux of incident particles of velocity |p— q|/M; b) the
quantity thus obtained is integratcd over the solid angle dQ = sinxdedf
defined by the relative momenta P and P’, keeping momenta p and gq
fixed; ¢) then, by averaging over the Fermi sphere one obtains the number of
particles scattered per unit time in the whole solid angle for any value of q;
d) finally, such a result has to be divided by the flux of incident particles
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corresponding to the velocity k/M. In conclusion, it is found that

(10.8) <0,,> = (1/p)3/smet) [|Ip— qlo,,(P, P-P')dqdQ.

The calculation of eq. (10.8) cannot be performed without resorting to an elec-
tronic computer: a prospect which, at least for me, holds little excitement.
At this stage, to avoid nonessential refinements, we shall simplify eq. (10.8)
by neglecting the angular dependence of the neutron-proton cross-section and
use the total cross-section, <.e.

(10.9) o, (P; P-P') — (1/4n)0_(P);

consequently, eq. (10.8) becomes
(10.10) (0,,> = (1/p)3/16723) [|p — ql0,,(P) dgd2.

Let us define the vector

(10.11) Q=p+gq,

which, owing to the conservation of the total momentum, turns out to be an
axis of cylindrical symmetry. From the relation

(10.12) P=pt+tq—qa=1Q+F

one readily obtains, taking into account prescription (10.6),
(10.13) cosa = (2p'2— p*— ¢*)/|p + qllp— ql;
then, one has

7
i 8 4n(p — P3)
1014) |d@ =2 dog = —— -.fd rny — 2P ,
— f nfsm“ *“lptaip—al) ") =+ alp—q
k)

The lower limit of integration is given by

(10.15) Do= %g5
the physical meaning of equality (10.15) will be discussed later. The upper

limit p? is determined by the Pauli principle and by the principle of energy
conservation: in fact, the latter requires that

(10.16) pr=p*+ ¢— ¢
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it follows that the maximum of p’ is obtained by putting into eq. (10.16)

¢' = %,, which is the minimum value of ¢’ compatible with the exclusion prin-
ciple, i.e.

(10.17) PP=p"+ ¢ — x;.
The previous considerations ensure that p;>pi. Equation (10.10) becomes
10.18) (g, = (p)3Mmd) [{(p*+ ¢~ 24)/lp + ql}o,,(P)dg -

Let dg = ¢*dgsin6dfdg be the volume element in momentum space. We
identify 0 with the angle between p and g. From the relation

(10.19) Q*= |p—q|*=p*+ ¢*— 2pgcos 0

one obtains sin§df = (Q/pg)dQ; the analytic expression of the relative mo-
mentum (10.6) turns out to be

(10.20) P = §(2p*+ 24— Q%)}.

Consequently, eq. (10.8) becomes

(10.21a) (0,0 = (1/p*)(3/2x%2) f q(p*+ ¢*~ 2x;) 8(p, @) dg ,
»+a o
(10.215) 8(p, q) = f 0,{3 (29> + 2¢°— @2} dQ,

where ¢, > g, and p > g because p > », and g<x,; the limits of integration are

% = (Do + 72— pAi<q<n, = ¢q,, PE<24,
(10.22)
9 =0<q<n=gq,, PP>2k; .

In conclusion, the imaginary part of the optical potential reads

(10.23) (B, x,) = (6/162*) {o(B)/p*(E)} [a(p* + ¢*— 22 8(p, ) g ,

L)

where the equilibrium density of nuclear matter has been expressed by means
of the corresponding Fermi momentum,

(10.24) 0= A|Q = 3[dnrl = (2/37%) xS .
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Although completely unphysical, the assumption that the total neutron-
proton cross-section ¢, (P) is a constant has been widely used in order to cal-
culate (o >. In this case one has 8(p, q) = 20,9 and from eq. (10.21) and
prescriptions (10.22) one obtains

(10.25q) {Oup) = 0 [1 — ; {2}, P> 23,

(10.25b = l—zC2 24‘22 L\f 2 Dok
-4 ) <Unp>_00 5 +5 ( —E)]7 PE<axp,

where

(10.26) { = {(E) = n;[p(E) .

Equation (10.27a) has been derived by GOLDBERGER (**) following a different
procedure and eq. (10.27h) has been obtained by YAMAGUCHI (*).

A deep insight into equality (10.15) is provided by the following theorem:
the real optical potential, calculated at the average volume energy of nuclear matter,
identifies with the single-particle potential energy at the Fermi surface. To this
end we consider the equation

(10.27) e = P(Eo) ,

where E, is an unknown energy and x, is the Fermi momentum corresponding
to the minimum of the total energy of infinitely extended nuclear matter.
From eq. (10.27) taking into account eq. (10.4), one has

(10.28) E,= e, + VU, (E,), x,) .

According to eq. (1.19), the optical transform of the single-particle potential
encrgy v(p, x,) is

(10.29) V(E, x,) = v{p(E), %,};
it follows that at £ = F, eq. (10.28) becomes
(10.30) Ey= e+ v, %,) .

The only physically meaningful value of E,, satisfying eq. (10.31) consistently
with the saturation prescriptions (1.5), is given by the Hugenholtz and Van

(%%) M. L. GOLDBERGER: Phys. Rev., 74, 1269 (1948).
(%) Y. YamagucHi: Progr. Theor. Phys., 5, 332 (1950); the formula obtained by this
author contains some analytical mistakes.
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Hove theorem (1.15), ¢.c.
(10.31) Ey=b_;

in conelusion, the following identity holds:

(10.32) Ugld,, 2,) = v(xg, %) .

From theorem (10.32) one deduces that the minimum value of p(®) is
(10.33) #e=1p(b) =p,.

It should be clear that the validity of the preceding proof relies entirely on
the fact that v(p, ») is a solution of the differential equation (5.5).

10°2. — In the following discussion we shall consider only the real optical
potential (9.40), obtained as optical transform of the factorable single-particle
potential energy (7.42): in this way the frivolous model, expressed by eq. (10.23),
is logically included in the theoretical description of nuclear matter based
on the hyperbolic differential equation (5.5).
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Fig. 6. — Experimental values (in barn) of the total neutron-proton cross-section as
functions of energy E (in MeV), measured in the laboratory system of reference.
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The calculation of ‘U (E, »,) requires a careful use of the experimental values
of the total neutron-proton cross-section in order to obtain reliable numerical
values for (o >, given in eq. (10.21). For the sake of completeness we list in
table XV the values of o, (F) as functions of the energy E in the laboratory
system of reference (7); the energy dependence of the total neutron-proton cross-
section is plotted in fig. 6. We shall now determine the interval of variation
of ¢, (P) in the centre-of-mass system and in nuclear matter as a function of

TasLeE XV. — Experimental values (in barn) of the total meutron-proton cross-section as
functions of the energy E (in MeV), measured in the laboratory system of reference..

E 0.(B) E 0o B) E 6o(B)

0 — 2.28 2.70 4 0.06 15.00 0.63

0.024 18.15 + 0.05 2.40 2.39 16.00 0.66

0.035 16.74 4 0.41 2.50 1.80 + 0.40 18.00 0.56

0.095 13.46 + 0.39 2.60 2.60 -+ 0.05 19.50 0.52

0.130 11.85 4 0.15 2.76 2.40 4 0.06 19.93 0.504 + 0.001
0.140 10.50 -+ 0.90 2.80 2.17 4 0.10 21.00 0.41

0.157 11.10 2.90 1.80 + 0.20 25.00 0.39 +0.06
0.160 12.00 = 0.30 3.00 2.23 +0.13 27.00 0.36

0.180 11.30 4- 0.20 3.10 2.18 £ 0.13 39.00 0.223 +0.07
0.200 10.0 3.50 2.09 4 0.09 40.00 0.170

0.220 9.60 -+ 0.40 4.00 1.85 + 0.09 64.50 0.126 + 0.003
0.245 0.20 4.10 1.73 -+ 0.06 90.00 0.082

0.265 9.12 4 0.24 4.50 1.83 £ 0.10 95.00 0.073 + 0.0015
0.32 8.70 4.75 1.69 + 0.06 97.00 0.074 + 0.010
0.35 7.15 + 0.24 5.00 1.63 + 0.05 117.00 0.0616

0.40 8.70 4 0.90 5.50 1.48 £ 0.06 140.00 0.0485

0.60 5.85 4 0.25 6.00 1.32 +0.12 156.00 0.0493

0.72 5.22 4+ 0.12 6.50 1.40 + 0.11 160.00 0.0512

0.83 5.00 4 0.10 9.30 0.92 4 0.08 169.00 0.0492 + 0.0016
0.90 5.50 - 1.10 10.60 0.78 + 0.08 180.00 0.044

1.00 4164 0.15 12.50 0.69 + 0.10 220.00 0.0411

1.34 3.64 + 0.04 12.80 0.83 + 0.09 260.00 0.035

1.60 3.36 4 0.08 13.50 0.69 - 0.019 270.00 0.038 -+ 0.0015
2.00 2.96 + 0.07 14.00 0.71 280.00 0.036

2.14 2.76 + 0.06 14.80 0.61 4 0.07 400.00 0.0336

(57) More complete information is given in the review paper by L. BEreTTA, C. VILLI
and F. FERRARI: Nuovo Cimento, Suppl., 12, 499 (1954).
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the kinetie energy E of the nucleon incident on the target nucleus. The kinetic

energy involved in the collision between a nucleon of momentum p(E) > x,
with a nucleon having in the Fermi sea momentum ¢<x, is

(10.34) ¢ =e(P)= P M = |p— ql*)/[4 M .

The interval of maximum variability of the relative momentum is
(10.35) Py=}(p—»)<P<}(p+ %) =P

it follows that e,<e<e,, where

(10.36a) e = e(Py) = }{(VE—U(E, %) — Ve }?,

(10.36b) .= o(P,) = }{(VE—U(E, %) 4 Ve .

TaBLE XVI. — Auziliary parameters required for the calculation of the imaginary part
of the optical potential given by eq. (10.23). Quantities F, ¢,, e, and ¢, are expressed in
MeV, and ¢, in b-MeV (see tables XIII and XV; the Fermi energy is assumed to
be ¢, = 33.68 MeV).

E € e, ¢ B
0 0.82 83.06 4.1651 0.4109
2.5 0.96 84.43 4.1895 0.3792
5.0 1.11 85.81 4.2130 0.3456
10.0 1.45 88.58 4.2468 0.2661
15.0 1.83 01.35 4.2836 0.1814
20.0 2.24 94.15 4.3260 0.0970
25.0 2.69 96.95 4.3530 —0.0008
30.0 3.17 99.77 4.3855 —0.0976
50.0 5.47 111.21 4,5842 0.56994
100.0 13.48 141.09 5.5618 4.8878
150.0 24.48 173.06 6.4567 8.8188
200.0 38.12 206.82 8.3629 45.8345

Energies (10.36) are cvaluated in table XVI, using the values of the real
optical potential given in table XIII. We simulate the energy dependence
of 0 ,(¢) by means of the two-parameter formula

(10.37) s(e) = a/{e.+ e(P)}
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and minimize the mean square deviation

(10.380) Ny, ¢) = f {0,,(2¢) — s(e)}2de,

(2]

(10.38b) eNfee, = 0,

where ¢ = 1, 2. The values of parameters ¢, and ¢, are listed in table X VI ().
If we take into account eqs. (10.20) and (10.34), the empirical formula
(10.37) becomes

(10.39) 3(p, ¢; @) = 4 Me)/(4Me, + 2p* + 2p* — Q7).

From table XVI it is seen that the approximation ¢,= 0 is not correct,
except for F ~ 25 MeV (%).
The function defined in eq. (10.215) reads

(10.40) 809, 0) = [+(p, 0 20;

>
a straightforward calculation gives
. 2Me, .
V2(2Me, + p* + ¢°)
Mo, + p* + 3¢* + 2¢V22 Mo, p* + )
4Mo, + p* + 3¢* —2qV2(2 Mo, + PP + ¢°)

(10.41)  8(p, @) =

‘In

Since in the interval p — ¢<@<p + ¢ it results that @2 < 2(2Me,+ p*+ ¢%),
from eq. (10.40) one also obtains

2Me,
(10.42)  S(p __ 2o )
) »o = \/Z2M02—}—p2—l—q)
ftgh 1 — _ﬁ_.q_ —— —tgh™! ! ;
22Me,+ p*+ ) V2(2Me, + p* + ¢*)

by means of trivial manipulations eq. (10.42) can be written in the following
analytical form, which for numerical computations is more convenient than

(%8) §. Hayaxawa, M. Kawar and K. Kixvcui: Progr. Theor. Phys., 13, 415 (1955);
the approximation ¢, — 0 has been adopted also by B. SiNHA: Phys. Rev. C, 11,
1546 (1975).
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that expressed by eq. (10.41), i.e.

2 Mo, 2qV2(2Me, + p* + ¢°)
10.43 = tgh! -
( ) S(p9) V2@ Mo, + p* 1 ¢) g Mo, + p* -+ 3¢

In conclusion, the imaginary optical potential (10.23) turns out to have the
following analytical form:

(10.44a) VUE, %,) = C,{E — UL(E, %)} 9(E, %) ,
(10.44b) C, = C,(B) = (5/4n*)(M[li*)e,(E) ,

(10.44c¢) 9(E, »y)

_ 212(22—/4) ¢ h—1(22V222+f)d
Vorta o Bzty—1)"
(10.44d)  p = p(B, ) = 20— 1, v =o(E, %) = 2{1 + (/e) {%;

the limits of integration are

(10.44e) u>0: zy=Vu<z<{ =1z, u<0: z,

!

0<Z<E ‘Zly

Il

{ being the energy-dependent parameter defined in (10.26): model (10.38) is
consistent with the saturation prescriptions of nuclear matter, provided Uy (E, )
ts the optical transform of a single-particle solution of the differential equation (5.5).
The numerical values of the parameters y, », z, and z, as functions of the inci-
dent energy FE are given in table XVII, assuming that the nuclear matter is

TapLe XVII. — Energy dependence of the parameters involved by the imaginary optical
potential (10.44). Energy FE is expressed in MeV. (See tables XIII and XV.)

E u y Z, 2z, O;
0 0.3418 2.0164 0.5847 0.8191 1.2762
2.5 0.3021 2.0147 0.5497 0.8069 1.2833
5.0 0.2649 2.0129 0.5147 0.7953 1.2909
10.0 0.1954 2.0094 0.4420 0.7731 1.3012
15.0 0.1321 2.0060 0.3634 0.7523 1.3125
20.0 0.0741 2.0030 0.2723 0.7328 1.3255
25.0 0.0212 2.0000 0.1457 0.7146 1.3337
30.0 —0.0276 1.9972 0 0.6972 1.3437
50.0 —0.1884 2.0144 0 0.6370 1.4046
100.0 —0.4428 2.0808 0 0.5278 1.7041
150.0 —0.5889 2.1076 0 0.4534 1.9783
200.0 —0.6811 2.4339 0 0.3993 2.5624
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characterized by the parameters (9.45) and using the energy dependence of
the real part of the optical potential given in table XIII. Taking into account
eq. (10.27), one has

(10.45) Zy(b,) == z,(b,) =1,
and, consequently,

(10.46) VU (b, x

: P =0;

property (10.46), possessed by the imaginary potential (10.44), is consistent with
the shell model basic assumption that the nucleons in the nucleus should be em-
bedded in a real potential well.

10°'3. — The imaginary potential (10.44) cannot be evaluated analytically
because of the complicated integral g(F, ».). For our purposes it is preferable
to perform the numerical integration by using the Gauss method (%), which
is as precise as other methods, but entails much less work. Let us re-write
eq. (10.44c¢)

(10.47a) 9B, %) = [f2)dz,
(10.47b) i(z) == 2028 —p) 4 22V22" v,

2z 4 322 4+y—1’

the usefulness of the Gauss method is due to the fact that in the considered
case the interval of integration is very limited and the positive function f(z) is
well behaved. In applying the method, it is convenient to change the limits of
integral (10.47a) by making the substitution

(10.48) Z=Zy+ (z:— Zy) 73

consequently, one has

1
(10.49) 9B, ) = (21— z0) [F(r) dr,

1}
where we have put f{z,+ (z,— z,)t} = F(r). The final result obtained by
Gauss’ method is

(10.50) 9B, %) > GE, ) = (Zy— Z) D, G Fm s

m=0

(**) H. MarGENAT and G. M. Mctreuy: The Mathematics of Physics and Chemistry
(New York, N.Y., 1943).
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where F,, means the numerical value of F(1) calculated for a value 7, of the
new variable t; values 7, and coefficients a,, are determined in such a way
that the difference between ¢(F,x,) and G(E,x,) be a minimum. For the
reader’s convenience we report in table XVIII the values of 7, and a, cor-
responding to the approximations of order » = 2, 3,4 and 5.

TaBLE XVIII. — Parameters required for performing numerical integrations using the
Gauss method in n = 2, 3,4 and 5 approximation.

n=2 n=3

m T ap, m T a,

0 0.112702 0.277778 0 0.069 432 0.173 927

1 0.5 0.444 444 1 0.330009 0.326 072

2 0.887298 0.277778 2 0.669 990 0.326 072
3 0.930 568 0.173 927

n =4 n=>=5

m T a,, m T a,,

0 0.046 910 0.118463 0 0.033 765 0.085 662

1 0.230 765 0.239 314 1 0.169 395 0.180 381

2 0.5 0.284 444 2 0.380 690 0.233 957

3 0.769235 0.239314 3 0.619 309 0.233 957

4 0.953 090 0.118463 4 0.830 605 0.180 381
5 0.966 235 0.085 662

The numerical values of U (X, x,) expressed by eqs. (10.44), calculated
using the n = 5 approximation of Gauss’ method, are given in table XIX;
the energy behaviour is shown in fig. 7. The zero-cnergy limit of VU, (I, »,)
turns out to be (with a very high degree of approximation) a linear funection

TaBLE XIX. — Energy dependence of the imaginary port of the optical potential, expressed
by eq. (10.44). The ordinate of the plot and the energy K are given in MeV. (See
table XVI.)

E VL, %) 1)) VULE, %p)

0 2.33 25.0 5.66

2.5 2.66 30.0 6.28

5.0 3.01 50.0 8.01
10.0 3.68 100.0 10.71
15.0 4.36 150.0 12.33

20.0 5.06 200.0 11.85
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of the zero-energy limit of the real part of the potential: as pointed out in
sect. 9, the value of U_(0, %) is a very crucial one in order to extract reliable
information on the nuclear-matter parameters (b, K,r,) from the elastic-
scattering data of nucleons from nuclei. The maximum of VU/(F, »,) occurs
at an ineident energy included in the interval (100 -200) MeV: it arises mainly
from the competing effects due to the decrease, with increasing incident energy,

O UMY TR TR U S A S| L 1 L
0 25 £ 50 0 100 £ 200

Fig. 7. — Energy dependence of the imaginary part of the optical potential. The or-
dinate is expressed in MeV.

of the restrictions brought about by the Pauli principle (which tend to
augment U (E, »,)) and to the decrease of the neutron-proton total cross-section
(which tends to reduce the value of U (H, %,)). The position of the maximum
is influenced by the energy dependence of the real optical potential: it is
gratifying to note that the outlined version of the Clementel and Villi model,
although conceptually and numerically more refined, leads to values of
— U(F, ,) which are in substantial agreement with those obtained on the
basis of the older model (*2). The predicted energy dependence of U/(E, x,),
although consistent (except at low energies) with the behaviour of the real
optical potential obtained by GIANNINT, R1cco and ZUCCHIATTI (see subsect. 9°2)
deviates markedly from the imaginary part of the potential given by these
authors (®): the occurrence of a maximum between E = 20MeV and
E = 60 MeV together with the predicted high-energy behaviour cannot be
reproduced by our model. It would be interesting to compare the results given
in table XIV with those obtained (or obtainable) using the models based on

(%) M. M. G1aNNINI, G. Ricco and A. ZUCCHIATTI: Ann. Phys. (N.Y.), 124, 208 (1980),
fig. 11. For a comparison with earlier calculations of the imaginary optical potential
we refer to P, E. Hopasox: The Optical Model of Elastic Scattering (Oxford, 1963),
fig. 10,5, p. 180. See also E. A. GrasscoLp, W. B. Cueston, M. L. StEIN, S. B.
SuouLpT and G. W. Ericson: Phys. Rev., 106, 1207 (1957).
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the assumption that the absorption arises entirely from the forward elastic
nucleon-nucleon scattering amplitudes: unfortunately, these models are re-
ported in the literature in a rather elusive theoretical manner and with scanty
numerical details (°1). Finally, it is worthwhile to point out that the model,
outlined in this subsection consistently with the saturation prescriptions of
infinitely extended nuclear matter, can easily be re-formulated with the pur-
pose of calculating the imaginary part of the optical potential related to the
scattering of pions and kaons from nueclei (62).

11. - Concluding remarks.

Our program of extracting the maximum of theoretical information on the
overall behaviour of infinite nuclear matter from the saturation prescriptions
and the Hugenholtz and Van Hove theorem with a minimum of physical as-
sumptions has been accomplished. The discovery of the differential equation
(56.5) has allowed us to develop a mathematical scheme entirely free from any
detailed description of the nucleon-nucleon interaction. This approach makes
realigtically irrelevant the very many heuristic shadows arising from the fol-
lowing paralysing doubt: since scabtering experiments are all carried out on
the energy shell, do they give all the information needed in the nuclear-matter
problem, where matrix elements off the energy shell play a crucial role? Argu-
ments have been proposed to support Bethe’s opinion that two-body potentials
with a hard core are not compatible with a consistent description of nuclear
matter: they contribute to so-called re-arrangement energy, which in our scheme
is exactly equal to zero. In conclusion, one might be forgiven for regarding
the variety of nucleon-nucleon forces introduced into the nuclear-matter prob-
lem as a trick for opening a Pandora’s box. The solutions of the differential
equation of nuclear matter provide an unconventional answer to the self-
consistent field problem of finding the single-particle potential energy, which
is the major point in Brueckner’s theory. Many distinguished physicists who
have dealt with this ecrucial aspect of the theory, have devised and so far
unsueccessfully, though unwillingly, played a sort of «nuclear-matter game »,
whose rules are well summarized by DAY (%3) «... the single-particle potential

(®1) The relations existing between nucleon-nucleus and nucleon-nucleon scattering
are reviewed by W. B. RIESENFELD and K. M. WATSON: Phys. Rev., 102, 1157 (1956),
It has to be noted that according to this kind of model the real part of the potential
can be constructed as the optical transform of the single-particle potential energy (2.1),
the incertitudes arising from the use of the nucleon-nucleon asymptotic phase shifts
have been pointed out in subsect. 7°2,

(%2) R. M. FrANK, J. L. GamMver and K. M. WarsoN: Phys. Rev., 101, 891 (1956);
R. M. STERNHEIMER: Phys. Rev., 106, 1027 (1957).

(%3) B. D. DAY: Rev. Mod. Phys., 39, 719 (1967), p. 738. The function indicated by this
author with the symbol U(k) corresponds to our v(p, x).

8 ~ Il Nuovo Cimento A.
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energy is at our disposal; it is to be chosen with a view towards making the
summation of the Brueckner-Goldston series as easy as possible. Certain dia-
grams contain U interactions and, if U(k) is appropriately defined, these diagrams
may cancel other diagrams. This cancellation reduces the number of diagrams
that must be explicitly evaluated. This is the basic idea underlying any de-
finition of U(k). How one chooses U(k), therefore, depends on which diagrams
one decides to cancel by this choice. In making this decision, one should keep
two points in mind. First, only certain types of diagrams are eonveniently
cancelled by diagrams involving U(k). Second, choosing U to cancel the
magimum number of diagrams is not necessarily the best procedure. One should
have an idea of which diagrams are appreciable and which are negligible. Then,
U should be defined so as to cancel as many of the important diagrams as
possible. We, therefore, see that the choice of U is closely related to the
question of the convergence of the Brueckner-Goldstone expansion.» Thus
the theoretical game looks more like a conceptual gamble! This paper,
which was first coneeived with a pragmatic view, has been aiming in itinere
more and more at finding a way out of such an astonishing approach to the
nuclear-matter problem.

Our basic idea underlying the definition of U(k) = v(p, ») is that such a
function has to be a particular integral of the differential equation of nuclear
matter: such a definition, however approximate it may be, is nevertheless well
grounded, because the Hugenholtz and Van Hove theorem, concealed within
the mathematieal structure of eq. (5.5), turns out to be exactly fulfilled by any
single-particle potential energy consistent with the saturation requirements of
infinitely extended nuclear matter. The choice of the physically significant v(p, x)
is determined by the energy dependence of the real optical potential. The
criterion developed in sect. 7 for the simultaneous determination of the average
volume energy, nuclear radius and compressibility modulus from the phenom-
enological evidence extracted from the nucleon-nucleus scattering exper-
iments provides, if adroitly handled, a valnable heuristic tool so far com-
pletely ignored in the literature. It represents an attempt to patch up several
fragmentary aspects of the nuclear-matter problem which have contributed
to making it appear rather chaotic. The real and imaginary parts of the
optical potential have been constructed consistently with eq. (5.5): in per-
forming the related calculations we have put aside all formal theories together
with their theoretical subtleties which generally prevent one from obtaining
clear-cut numerical results. The extension of the differential equation of
nuclear matter to finite nuclei is promising: a detailed account will be
published in a forthcoming paper (%4).

(84) The differential equation (5.5) can be used to obtain the single-particle potential
energy in a strongly degenerated nucleon gas at a nuclear temperature 7' =0,
provided the limiting momentum x is assumed to be temperature dependent, i.e. % = »(T).
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Recalling to mind the many years I have been engaged in this research,
through the various events of my life, I feel I have somehow fared like biblical
king Saul. Saul while looking for some donkeys found a kingdom; I merely
wanted o perform some numerical calculations and came across the differential
equation of nuclear matter: unicuique suum!

* % k

I thank Dr. L. SALVADORI for continuous assistance through the prepara-
tion of this paper and for taking care of its publication.

I am also grateful to Mrs. A. SpALLA, for earefully and patiently typing
and re-typing the manuscript, and to Mrs. M. EVANS PROSPERI FLAVIANI,
who helped to solve some linguistic subtleties.

From the normalization condition it is found, up to terms in 72 (I. E. MaYER and
M. G. MaYER: Statistical Mechanics (New York, 1950))

wp(T) = 2y {1 — (n2/24)(T[e5)2},

where x, = %(0) is the Fermi momentum consistent with nuclear saturation. The
total energy of infinite nuclear matter reads

34 p? 1
W(T, xg) = P fp2 [2—}—{ +3 v(p, x(T))] ple, T)dp,
0
where g(e, T') is the Fermi-Dirac¢ distribution function and e = p2?/2M. For illustrative
purposes we assume the effective-mass approximation (7.4). The excitation energy,
up to terms in 7%, is found to be

E(T, wg) = W(T, xp) — W(0, xz) = b, T2,
by = ap{1— (xf/4ex) C¥ + (x5/1065) CV},

where ay = n% 4 /4¢y is the level density parameter of the conventional statistical theory;
using eqs. (7.7) one also has

by = {(¢p—b,)/2ep}ap < @5 .

The inequality b, < ap has an important role in the thermodynamical description of
the bulk properties of excited heavy nuclei; its physical meaning is that the momentum
dependence of the single-particle potential energy reduces the specific heat of the ex-
cited Fermi sea as compared with that of a strongly degenerated nucleon gas moving
in a constant potential well: consequently, the degrees of freedom of the nuclear-matter
system as a whole are also reduced. Tt has been ascertained that such a correlated model,
constructed on the basis of the factorable single-particle potential energy (6.21), provides
a systematic explanation of the empirical adjustements of the nuclear-matter param-
eters required for fitting several experimental data (principal resonances in y-ray
absorption, rotational levels, average spacing of excited levels, de-excitation processes,
evaporation spectra, etc.).
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® RIASSUNTO

Scopo di questa nota & di delineare uno schema matematico per la descrizione del
eomportamento globale della materia nucleare infinita. Esso & stato concepito con lo
scopo pragmatico di fornire un semplice strumento analitico per eseguire calcoli nume-
riei attendibili. A questo scopo sono stati anche riesaminati alcuni aspetti finora insuf-
ficientemente esplorati di ben note teorie che sembrano essere del tutto ignorate dai
pit recenti sviluppi teorici.

MaremaTuuecknif Hoaxoa K npodaeMe AJEPHOrO BelecTBa.

Pe3iome (*). — Lens 3T0ii cTaThbN — pa3BUTHE MATEMATAYECKOH CXEMBI ISl OIIMCAHHS IOBE-
IeHus1 OeCKOHEYHOrO SAepHOIrO BemlecTBa. IIpeaoXeHHBIH NOAXOHN Pa3BUT C IparMaTH-
9YeCKOH IeNIpI0 MOMYYEHHA NPOCTOr0 METOHA I HNPOBEICHHSA PEAJIACTHYHEIX YHCICHHBIX
BBIYUCTICHHIH,

(*) Ilepesedeno pedaxyueii.



