
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 115, No. 4, November 2005, pp. 461–476.
© Printed in India

Basic topological and geometric properties of Cesàro–Orlicz
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Abstract. Necessary and sufficient conditions under which the Cesàro–Orlicz sequence
space cesφ is nontrivial are presented. It is proved that for the Luxemburg norm, Cesàro–
Orlicz spaces cesφ have the Fatou property. Consequently, the spaces are complete. It
is also proved that the subspace of order continuous elements in cesφ can be defined in
two ways. Finally, criteria for strict monotonicity, uniform monotonicity and rotundity
(= strict convexity) of the spaces cesφ are given.
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1. Introduction

As usual, R, R+ and N denote the sets of reals, nonnegative reals and natural numbers,
respectively. The space of all real sequences x = (x(i))∞i=1 is denoted by l0.

A map φ: R → [0,+∞] is said to be an Orlicz function if φ is even, convex, left
continuous on R+, continuous at zero, φ(0) = 0 and φ(u) → ∞ as u → ∞. If φ takes
value zero only at zero we will write φ > 0 and if φ takes only finite values we will write
φ < ∞ [1, 13, 17–20].

The arithmetic mean map σ is defined on l0 by the formula:

σx = (σx(i))∞i=1, where σx(i) = 1

i

i∑
j=1

|x(j)|.

Given any Orlicz function φ, we define on l0 the following two convex modulars [18, 19]

Iφ(x) =
∞∑
i=1

φ(x(i)), ρφ(x) = Iφ(σx).
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The space

cesφ = {x ∈ l0 : ρφ(λx) < ∞ for some λ > 0},
where φ is an Orlicz function which is called the Cesàro–Orlicz sequence space. We equip
this space with the Luxemburg norm

‖x‖φ = inf
{
λ > 0 : ρφ

(x
λ

)
≤ 1

}
.

In the case when φ(u) = |u|p, 1 ≤ p < ∞, the space cesφ is nothing but the Cesàro
sequence space cesp (see [5–7, 14, 16, 21]) and the Luxemburg norm generated by this
power function is then expressed by the formula

‖x‖cesp =
[ ∞∑
i=1

(
1

i

i∑
j=1

|x(j)|
)p] 1

p

.

A Banach space (X, ‖·‖)which is a subspace of l0 is said to be a Köthe sequence space, if:

(i) for any x ∈ l0 and y ∈ X such that |x(i)| ≤ |y(i)| for all i ∈ N, we have x ∈ X and
‖x‖ ≤ ‖y‖,

(ii) there is x ∈ X with x(i) �= 0 for all i ∈ N.

Any nontrivial Cesàro–Orlicz sequence space belongs to the class of Köthe sequence
spaces.

An element x from a Köthe sequence space (X, ‖ · ‖) is called order continuous if
for any sequence (xn) in X+ (the positive cone of X) such that xn ≤ |x| and xn → 0
coordinatewise, we have ‖xn‖ → 0.

A Köthe sequence spaceX is said to be order continuous if any x ∈ X is order continu-
ous. It is easy to see that X is order continuous if and only if ‖(0, . . . , 0, x(n+ 1), x(n+
2), . . . )‖ → 0 as n → ∞ for any x ∈ X.

A Köthe sequence space X is called monotone complete if for any x ∈ X+ and any
sequence (xn) in X+ such that xn(i) ≤ xn+1(i) ≤ · · · ≤ x(i) for all i ∈ N and xn → x

coordinatewise, we have ‖xn‖ → ‖x‖.
We say a Köthe sequence spaceX has the Fatou property if for any sequence (xn) inX+

and any x ∈ l0 such that xn → x coordinatewise and supn ‖xn‖ < ∞, we have that x ∈ X
and ‖xn‖ → ‖x‖. For the above properties of Köthe sequence (and function) spaces we
refer to [12] and [15].

We say an Orlicz function φ satisfies the �2-condition at zero (φ ∈ �2(0) for short) if
there are K > 0 and a > 0 such that φ(a) > 0 and φ(2u) ≤ Kφ(u) for all u ∈ [0, a].

A modular ρ (for its definition see [4, 18, 19]) is said to satisfy the �2-condition if for
any ε > 0 there exist constants k ≥ 2 and a > 0 such that ρ(2x) ≤ kρ(x) + ε for all
x ∈ X with ρ(x) ≤ a.

If ρ satisfies the �2-condition for any a > 0 and ε > 0 with k ≥ 2 dependent on a and
ε, we say that ρ satisfies the strong �2-condition (ρ ∈ �S2 for short) (see [4]).

We say a Köthe sequence space X is strictly monotone, and then we write X ∈ (SM),
if ‖x‖ < ‖y‖ for all x, y ∈ X such that 0 ≤ x ≤ y and x �= y.

We say a Köthe sequence spaceX is uniformly monotone, and then we writeX ∈ (UM),
if for each ε > 0 there exists δ(ε) > 0 such that for any x, y ≥ 0 such that ‖x‖ = 1 and
‖y‖ ≥ ε, we have ‖x + y‖ ≥ 1 + δ(ε).
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Let B(X) (resp. S(X)) be the closed unit ball (resp. the unit sphere) of X. A point
x ∈ S(X) is called an extreme point of B(X) if for every y, z ∈ B(X) the equality
2x = y + z implies y = z. Let Ext B(X) denote the set of all extreme points of B(X). A
Banach space X is said to be rotund (write (R) for short), if Ext B(X) = S(X). For these
and other geometric notions of rotundity type and their role in mathematics we refer to the
monographs [1, 8, 19] and also to the papers [2, 3, 10, 11, 22].

We say that u ∈ R is a point of strict convexity of φ if φ
(
v+w

2

)
<

φ(v)+φ(w)
2 , whenever

u = v+w
2 and v �= w. We denote by Sφ the set of all points of strict convexity of φ.

An interval [a, b] is called a structurally affine interval for an Orlicz function φ, or
simply, SAI of φ, provided that φ is affine on [a, b] for any ε > 0 and it is not affine either
on [a − ε, b] or on [a, b + ε]. Let {[ai, bi]}i be all the SAIs of φ. It is obvious that

Sφ = R
∖⋃

i

(ai, bi).

2. Results

First we present necessary and sufficient conditions for nontriviality of cesφ .

Theorem 2.1. The following conditions are equivalent:

1) cesφ �= {0},
2) ∃n1

∑∞
n=n1

φ
(

1
n

)
< ∞,

3) ∀k > 0 ∃nk
∑∞
n=nk φ

(
k
n

)
< ∞.

Proof.

(1) ⇒ (2). Let 0 �= z ∈ cesφ . Since z �= 0, there exists l ∈ N such that z(l) �= 0. Hence
y = (0, . . . , 0, z(l), 0, . . . ) ∈ cesφ , and consequently, x = (0, . . . , 0, 1, 0 . . . ) ∈ cesφ ,
which means that there exists k > 0 such that ρφ(kx) = ∑∞

n=l φ
(
k
n

)
< ∞. We will

consider two cases:

1. k > 1. Then for all n we have 1
n
< k

n
. From monotonicity of the function φ we have

φ( 1
n
) < φ( k

n
) for all n. Therefore

∞∑
n=l

φ

(
1

n

)
<

∞∑
n=l

φ

(
k

n

)
< ∞.

So it is enough to take n1 = l.
2. 0 < k < 1. Then there exists m ∈ N such that 1

m
≤ k, whence 1

mn
≤ k

n
for all n ∈ N

and so,
∑∞
n=l φ

(
1
mn

)
≤ ∑∞

n=l φ(
k
n
). Consequently,

∞∑
n=ml

φ

(
1

n

)
= φ

(
1

ml

)
+ φ

(
1

ml + 1

)
+ · · · + φ

(
1

ml + (m− 1)

)

+ φ

(
1

m(l + 1)

)
+ φ

(
1

m(l + 1)+ 1

)

+ · · · + φ

(
1

m(l + 1)+ (m− 1)

)
+ · · · ≤ φ

(
1

ml

)
+ φ

(
1

ml

)
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+ · · · + φ

(
1

ml

)
+ φ

(
1

m(l + 1)

)
+ φ

(
1

m(l + 1)

)

+ · · · + φ

(
1

m(l + 1)

)
+ · · · = mφ

(
1

ml

)

+mφ

(
1

m(l + 1)

)
+ · · · = m

∞∑
n=l

φ

(
1

mn

)
≤m

∞∑
n=l

φ

(
k

n

)
< ∞.

Taking n1 := ml, we get the thesis of condition (2).

(2) ⇒ (3). Assume that there exists n1 such that
∑∞
n=n1

φ
(

1
n

)
< ∞ and consider two

cases.

1. 0 < k < 1. Then k
n
< 1

n
and

∑∞
n=n1

φ
(
k
n

)
<
∑∞
n=n1

φ
(

1
n

)
< ∞. Taking nk := n1,

we have
∑∞
n=nk φ

(
k
n

)
< ∞.

2. k > 1. Then there exists m ∈ N such that k ≤ m. Defining nk := n1m, we have

∞∑
n=nk

φ

(
k

n

)
≤

∞∑
n=nk

φ
(m
n

)
=

∞∑
n=n1m

φ
(m
n

)
= φ

(
m

n1m

)

+ φ

(
m

n1m+ 1

)
+ · · · + φ

(
m

n1m+ (m− 1)

)
+φ

(
m

(n1 + 1)m

)

+ φ

(
m

(n1 + 1)m+ 1

)
+ · · · + φ

(
m

(n1 + 1)m+ (m− 1)

)
+ · · ·

≤ φ

(
1

n1

)
+ φ

(
1

n1

)
+ · · · + φ

(
1

n1

)

+ φ

(
1

n1 + 1

)
+ φ

(
1

n1 + 1

)
+ · · · + φ

(
1

n1 + 1

)
+ · · ·

= mφ

(
1

n1

)
+mφ

(
1

n1 + 1

)
+ · · · = m

∞∑
n=n1

φ

(
1

n

)
< ∞.

(3) ⇒ (1). Take k = 1. By the assumption that condition (3) holds, there exists n1 ∈ N

such that
∑∞
n=n1

φ
(

1
n

)
< ∞. Define x = (0, . . . , 0,︸ ︷︷ ︸

n1−1 times

1, 0, . . . ). Clearly, x ∈ l0 and

ρφ(kx) = ρφ(x) =
∞∑
n=n1

φ

(
1

n

)
< ∞.

Hence x ∈ cesφ . �

We will assume in the following that cesφ is nontrivial, that is, conditions (2) and (3) from
Theorem 2.1 hold. Our next theorem gives some sufficient conditions for the nontriviality
of cesφ in terms of some lower index for the generating Orlicz function φ.



Basic topological and geometric properties of Cesàro–Orlicz spaces 465

Theorem 2.2. For the conditions:

(a) lim inf t→0
tφ′(t)
φ(t)

> 1,

(b) ∃ε>0∃A>0∃u0>0 ∀0≤u≤u0 φ(u) ≤ Au1+ε ,
(c) ∃n1

∑∞
n=n1

φ
(

1
n

)
< ∞,

we have the implications (a) ⇒ (b) ⇒ (c).

Proof.

(a) ⇒ (b). Although this implication appeared for example in [9] we will present its proof
for the sake of completeness.

By the assumption that lim inf t→0
tφ′(t)
φ(t)

> 1 we know that there exists t0 such that

α := inf0<t≤t0
tφ′(t)
φ(t)

> 1. Then for all 0 ≤ t ≤ t0 we have that tφ′(t)
φ(t)

≥ α, that is,
φ′(t)
φ(t)

≥ α
t
. Take 0 < λ < 1. Then λt < t and so for 0 < t ≤ t0:∫ t

λt

φ′(s)
φ(s)

ds ≥ α

∫ t

λt

ds

s
,

whence

ln
φ(t)

φ(λt)
≥ ln

tα

(λt)α

and consequently

φ(λt) ≤ λαφ(t).

Let us take t = t0. Then, for all 0 < λ < 1, we have φ(λt0) ≤ φ(t0)λ
α , so φ(λt0) ≤

φ(t0)
tα0

· (λt0)α . If we take ε = α − 1, A = φ(t0)
tα0

and u0 = t0, we get (b).

(b) ⇒ (c). Take ε > 0, A > 0 and u0 > 0 such that for all 0 ≤ u ≤ u0, we have
φ(u) ≤ Au1+ε . Since 1

n
→ 0 there exists n1 ∈ N such that 1

n
≤ u0 for all n ≥ n1.

Therefore,
∞∑
n=n1

φ

(
1

n

)
≤

∞∑
n=n1

A

(
1

n

)1+ε
≤ A

∞∑
n=1

1

n1+ε < ∞. �

Lemma (Fatou property). If x ∈ l0, {xn} ⊂ cesφ , sup ‖xn‖ < ∞ and 0 ≤ xn↑x coordi-
natewise, then x ∈ cesφ and ‖xn‖ → ‖x‖.

Proof. Assume that xn ∈ cesφ for all n ∈ N, sup ‖xn‖ < ∞ and 0 ≤ xn(i)↑x(i) for each
i ∈ N. Denote A = supn ‖xn‖. We know that ‖xn‖ ≤ A < ∞ for all n ∈ N, so 0 ≤ xn

A
≤

xn
‖xn‖ for all n ∈ N. Therefore ρφ

(
xn
A

) ≤ 1 and since the modular ρφ is monotone, we get

ρφ

(xn
A

)
≤ ρφ

(
xn

‖xn‖
)

≤ 1.

Then, by the Beppo Levi theorem and the fact that A−1xn(i) → A−1x(i) for each i ∈ N,
we get

ρφ

( x
A

)
= lim
n→∞ ρφ

(xn
A

)
= sup

n
ρφ

(xn
A

)
≤ 1,
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whence x ∈ cesφ and ‖x‖ ≤ A. By the assumption that xn↑x coordinatewise
and by monotonicity of the norm, we get supn ‖xn‖ ≤ ‖x‖. Therefore, we have
‖x‖ = supn ‖xn‖ = limn→∞ ‖xn‖. �

It is known that for any Köthe sequence (function) space the Fatou property implies its
completeness (see [17]). Therefore, cesφ is a Banach space.

Theorem 2.3. Let Aφ = {x ∈ cesφ: ∀k > 0 ∃nk
∑∞
n=nk φ

(
k
n

∑n
i=1 |x(i)|) < ∞}. Then

the following assertions are true:

(i) Aφ is a closed separable subspace of cesφ ,
(ii) Aφ = cl{x ∈ cesφ: x(i) �= 0 only for finite number of i ∈ N},

(iii) Aφ is the subspace of all order continous elements of cesφ .

Proof. It is easy to see that Aφ is a subspace of cesφ . Next we will prove that Aφ is
closed in cesφ . We must show that if xm ∈ Aφ for each m ∈ N and xm → x ∈ cesφ ,
then x ∈ Aφ . Take any k > 0. We will show that there exists nk ∈ N such that∑∞
n=nk φ

(
k
n

∑n
i=1 |x(i)|) < ∞. Since ρφ(k(x − xm)) → 0 for all k > 0, there exists

M ∈ N such that ρφ(2k(x − xM)) < 1. Since xM ∈ Aφ , there exists nM such that∑∞
n=nM φ

(
2k
n

∑n
i=1 |xM(i)|

)
< ∞. As we will see, we can take nk = nM . Indeed,

∞∑
n=nM

φ

(
k

n

n∑
i=1

|x(i)|
)

=
∞∑

n=nM
φ

(
k

n

n∑
i=1

∣∣∣∣2(x(i)− xM(i))

2
+ 2xM(i)

2

∣∣∣∣
)

≤
∞∑

n=nM
φ

(
k

n

n∑
i=1

∣∣∣∣2(x(i)− xM(i))

2

∣∣∣∣+
∣∣∣∣2xM(i)2

∣∣∣∣
)

=
∞∑

n=nM
φ

(
1

2

k

n

n∑
i=1

|2(x(i)− xM(i))| + 1

2

k

n

n∑
i=1

|2xM(i)|
)

≤
∞∑

n=nM

(
1

2
φ

(
2k

n

n∑
i=1

|x(i)− xM(i)|
)

+ 1

2
φ

(
2k

n

n∑
i=1

|xM(i)|
))

= 1

2

∞∑
n=nM

φ

(
2k

n

n∑
i=1

|x(i)− xM(i)|
)

+ 1

2

∞∑
n=nM

φ

(
2k

n

n∑
i=1

|xM(i)|
)

≤ 1

2
ρφ(2k(x − xM)+ 1

2

∞∑
n=nM

φ

(
2k

n

n∑
i=1

|xM(i)|
)
< ∞.

By the arbitrariness of k > 0, we get that x ∈ Aφ , which proves that Aφ is the closed
subspace in the norm topology in cesφ .

Now, we will prove assertion (ii). Let us define the set Bφ = cl{x ∈ cesφ : x(i) =
0 for a.e. i ∈ N}. We will prove that Aφ and Bφ are equal.

First we will show that Bφ ⊂ Aφ . If Bφ = ∅, the inclusion Bφ ⊂ Aφ is obvious. So,
assume that Bφ �= ∅. Take x = (0, . . . , 0︸ ︷︷ ︸

l−1 times

, 1, 0, 0, . . . ) ∈ Bφ and k > 0. We have from

Theorem 2.1 that there exists nk such that
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∞∑
n=nk

φ

(
k

n

)
< ∞.

We can assume that nk ≥ l. Hence x ∈ Aφ , and so, by the fact thatAφ is a linear subspace
of cesφ , we get the inclusion Bφ ⊂ Aφ .

Now, we will show thatAφ ⊂ Bφ . Let x = (x1, x2, . . . , xk, xk+1, . . . ) ∈ Aφ and define
xk = (x1, x2, . . . , xk, 0, 0, . . . ) for any k ∈ N. Obviously xk ∈ Bφ . We will show that
ρφ(α(x − xk)) → 0 for each α > 0. Take any α > 0 and ε > 0. Since x ∈ Aφ , so there
exists k0 ∈ N such that

∞∑
n=k0+1

φ

(
α

n

n∑
i=1

|x(i)|
)
< ε.

Then for any k ≥ k0,

ρφ(α(x − xk)) ≤ ρφ(α(x − xk0)) = ρφ(α(0, . . . , 0, xk0+1, xk0+2, . . . ))

=
∞∑

n=k0+1

φ

(
α

n

n∑
i=k0+1

|x(i)|
)

≤
∞∑

n=k0+1

φ

(
α

n

n∑
i=1

|x(i)|
)
< ε.

Next we will prove assertion (iii). Let x ∈ Aφ . We will show that x is order continuous.
Take any k > 0 and ε > 0. Then there exists nk ∈ N such that

∑∞
n=nk φ

(
k
n

∑n
i=1 |x(i)|) <

ε
2 . Assume that xm ↓ 0 coordinatewise and xm ≤ |x| for all m ∈ N. Denote

φ

(
k

n

n∑
i=1

|x(i)|
)

= α(n)

and

φ

(
k

n

n∑
i=1

|xm(i)|
)

= αm(n) for any n ∈ N.

Since xm ↓ 0 coordinatewise, we get αm(n) → 0 asm → ∞ for any n ∈ N. Consequently,
there ismε ∈ N such that

∑nk−1
n=1 αm(n) <

ε
2 for anym ≥ mε . Moreover,

∑∞
n=nk αm(n) <∑∞

n=nk α(n) <
ε
2 for all n ≥ nk and m ∈ N. Therefore ρφ(kxm) < ε for all m ≥

mε , which means that ρφ(kxm) → 0. By the arbitrariness of k > 0, this means that
‖xm‖ → 0.

Let x ∈ cesφ be an order continuous element. Since

‖(0, . . . , 0, x(n+ 1), x(n+ 2), . . . )‖ → 0 as n → ∞,

so it easy to see that x ∈ cl{x ∈ cesφ: x(i) = 0 for a.e. i ∈ N}.
Finally, we will show that Aφ is separable. Roughly speaking, this follows by the fact

that the counting measure on N is separable and Aφ is order continuous.
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Define the set Cφ = cl{x ∈ cesφ : x(i) = 0 for a.e. i ∈ N and x(i) ∈ Q} which
is countable. It is obvious that Cφ ⊂ Bφ . Now, we will show that Bφ ⊂ Cφ . Let x =
(x(1), x(2), . . . , x(k), 0, 0, . . . ) ∈ Bφ and xm = (xm(1), . . . , xm(k), 0, . . . ) ∈ Cφ will be
such that xm(i) → x(i) as m → ∞. We will show that ‖xm − x‖ → 0.

Let us take any λ > 0. We have

λ(|x(1)− xm(1)| + |x(2)− xm(2)| + · · · + |x(k)− xm(k)|) ≤ 1

for m large enough. Then by convexity of φ,

ρφ(λ(x − xm)) ≤
∞∑
n=1

φ

(
λ

|x(1)− xm(1)| + |x(2)− xm(2)| + · · · + |x(k)− xm(k)|
n

)

≤ λ(|x(1)− xm(1)| + |x(2)− xm(2)| + · · · + |x(k)− xm(k)|)

×
∞∑
n=1

φ

(
1

n

)
→ 0

asm → ∞. By the arbitrariness of λ, we have ‖xm − x‖ → 0 asm → ∞. Consequently,
Bφ = Cφ . Since Bφ = Aφ and the space Cφ is separable, we get the separability of Aφ .

�

Theorem 2.4. If φ ∈ �2(0), then Aφ = cesφ .

Proof. We should only show that cesφ ⊂ Aφ . Let x ∈ cesφ . Then there exists α > 0
such that ρφ(αx) < ∞. We will show that for any λ > 0 there exists nλ such that∑∞
n=nλ φ

(
λ
n

∑n
i=1 |x(i)|) < ∞. We take only λ > α, because for λ < α we have∑∞

n=n1
φ
(
λ
n

∑n
i=1 |x(i)|) < ∑∞

n=n1
φ
(
α
n

∑n
i=1 |x(i)|) < ∞ from monotonicity of the

function φ. Let λ > α. By φ ∈ �2(0), we have that φ ∈ �l(0) for any l > 1, whence for
l := λ

α
there exists k, u0 > 0 such that φ(lu) ≤ kφ(u) for all u ≤ u0. By ρφ(αx) < ∞,

there exists nλ such that α
n

∑n
i=1 |x(i)| < u0 for all n ≥ nλ. Therefore,

∞∑
n=nλ

φ

(
λ

n

n∑
i=1

|x(i)|
)

=
∞∑
n=nλ

φ

(
λα

αn

n∑
i=1

|x(i)|
)

≤ k

∞∑
n=nλ

φ

(
α

n

n∑
i=1

|x(i)|
)
< ∞,

and the proof is finished. �

COROLLARY 2.1

If φ ∈ �2(0), then

(i) the space cesφ is a separable,
(ii) the space cesφ is order continuous.

We will assume in the following that the function φ is finite. We will prove some useful
lemmas.

Lemma 2.1. For any x ∈ Aφ ,

‖x‖ = 1 if and only if ρφ(x) = 1.
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Proof. We need only to show that ‖x‖ = 1 implies ρφ(x) = 1 because the opposite
implication holds in any modular space. Assume that φ < ∞ and take x ∈ Aφ with
‖x‖ = 1. Note that ρφ(x) ≤ 1. Assume that ρφ(x) < 1. Since x ∈ Aφ , we have that
ρφ(kx) < ∞ for all k > 0. Let us define the function f (λ) = ρφ(λx), which is convex
and has finite values. Hence f is continous on R+ and f (1) < 1 by the assumption that
ρφ(x) < 1. Then, by the continuity of f there exists r > 1 such that f (r) ≤ 1, that is,
ρφ(rx) ≤ 1. Then ‖rx‖ ≤ 1, whence ‖x‖ ≤ 1

r
< 1, a contradiction, which shows that

ρφ(x) = f (1) = 1. �

Lemma 2.2. If φ ∈ �2(0), then ρφ ∈ �S2 .

Proof. Take arbitrary ε > 0, a > 0 and ρφ(x) ≤ a. Then ρφ(x) = ∑∞
n=1 φ (σx(n)) ≤ a,

whence φ(σx(n)) ≤ a for any n ∈ N. If b > 0 is the number satisfying φ(b) = a, then
σx(n) ≤ b for any n ∈ N. Since φ ∈ �2(0) and φ < ∞, so φ ∈ �2([0, b]), i.e. there
exists K > 0 such that φ(2u) ≤ Kφ(u) for all u ∈ [0, b]. We have

ρφ(2x) =
∞∑
n=1

φ(σ2x(n)) =
∞∑
n=1

φ(2σx(n))

≤ k

∞∑
n=1

φ(σx(n)) = kρφ(x).

�

Lemma 2.3. Assume that φ ∈ �2(0). Then for any L > 0 and ε > 0 there exists δ =
δ(L, ε) > 0 such that

|ρφ(x + y)− ρφ(x)| < ε

for all x, y ∈ cesφ with ρφ(x) ≤ L and ρφ(y) ≤ δ(L, ε).

Proof. In virtue of Lemma 2.2 it suffices to apply Lemma 2.1 in [4]. �

Lemma 2.4. If φ ∈ �2(0), then for any sequence (xn) ∈ cesφ the condition‖xn‖ → 0
holds if and only if ρφ(xn) → 0.

Proof. It suffices to apply Lemmas 2.2 and 2.3 in [4]. �

Lemma 2.5. If φ ∈ �2(0), then for any x ∈ cesφ ,

‖x‖ = 1 if and only if ρφ(x) = 1.

Proof. The result follows from Lemma 2.2 and Corollary 2.2 in [4]. �

Lemma 2.6. If φ ∈ �2(0), then for any ε > 0 there exists δ = δ(ε) > 0 such that
‖x‖ ≥ 1 + δ whenever x ∈ cesφ and ρφ(x) ≥ 1 + ε.

Proof. The result follows by applying Lemmas 2.2 and 2.4 in [4]. �

Lemma 2.7. Letφ ∈ �2(0). Then for each ε > 0 there exists δ = δ(ε) such that ρφ(x) > δ

whenever ‖x‖ ≥ ε.
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Proof. Suppose for the contrary there exists ε > 0 such that for any δ > 0, there exists x
such that ρφ(x) ≤ δ and ‖x‖ ≥ ε. Take δn = 1

n
and the sequence (xn)n∈N in cesφ satisfying

ρφ(xn) ≤ 1
n

and ‖xn‖ ≥ ε. Consequently ρφ(xn) → 0 as n → ∞. From Lemma 2.4 it
follows that ‖xn‖ → 0, a contradiction finishing the proof. �

Lemma 2.8. If φ ∈ �2(0), then ‖xn‖ → ∞ whenever ρφ(xn) → ∞.

Proof. Suppose (‖xn‖) is a bounded sequence, that is, there exists M > 0 such that
‖xn‖ ≤ M for all n ∈ N. Take s ∈ N such that M ≤ 2s . Then ‖xn‖ ≤ 2s , whence
‖ xn2s ‖ ≤ 1 and ρφ

(
xn
2s
) ≤ 1. Consequently, φ((σ xn2s )(i)) ≤ 1 for all i ∈ N, and then, there

exists some L > 0 such that
(
σ xn2s

)
(i) ≤ L for all i ∈ N. Since φ ∈ �2(0) and φ < ∞,

φ ∈ �2([0, 2s−1L]). We have for all n ∈ N,

ρφ(xn) = ρφ

(
2s
xn

2s

)
≤ ksρφ

(xn
2s

)
≤ ks,

whence ρφ(xn) �→ ∞. �

Lemma 2.9. If φ ∈ �2(0), then for any sequence (xn) in cesφ , we have

‖xn‖ → 1 if and only if ρφ(xn) → 1.

Proof. The implication ρφ(xn) → 1 ⇒ ‖xn‖ → 1 is almost obvious. Namely, we have
ρφ(x) ≤ ‖x‖ if ρφ(x) ≤ 1 and ‖x‖ ≤ ρφ(x) if ρφ(x) > 1. Therefore |‖xn‖ − 1| ≤
|ρφ(xn)−1| and the result follows. Now, assuming that ‖xn‖ → 1, we consider two cases:

1. ‖xn‖ ↑ 1. From Lemma 2.8 we know that the sequence (ρφ(2xn)) is bounded, that is,
there exists A > 0 such that ρφ(2xn) ≤ A for all n ∈ N. Assume for the contrary that
ρφ(xn) �→ 1. We can assume that ‖xn‖ > 1

2 for all n ∈ N and there exists ε > 0 such
that ρφ(xn) < 1 − ε for all n ∈ N. Take an := 1

‖xn‖ − 1. Then an → 0 and an ≤ 1.
By Lemma 2.5, we have

1 = ρφ

(
xn

‖xn‖
)

= ρφ((an + 1)xn)

= ρφ(2anxn + (1 − an)xn) ≤ anρφ(2xn)+ (1 − an)ρφ(xn)

≤ an · A+ (1 − an)(1 − ε) → 1 − ε

as n → ∞, a contradiction.
2. ‖xn‖↓1. Assume that ‖xn‖ ≤ 2 for n ∈ N and there exists ε > 0 such that ρφ(xn) >

1 + ε for all n ∈ N. From Lemma 2.8 we know that there exists B > 0 such that
ρφ(2xn) ≤ B for all n ∈ N. By the assumption we have 0 ≤ 1 − 1

‖xn‖ ≤ 1, 0 ≤
2 − ‖xn‖ ≤ 1. The inequality 1

a
+ a ≥ 2 for any a > 0 yields 0 ≤ (

1 − 1
‖xn‖

)+ (2 −
‖xn‖) = 3 − ( 1

‖xn‖ + ‖xn‖
) ≤ 3 − 2 = 1 for any n ∈ N. Therefore, we have

1 + ε ≤ ρφ(xn) = ρφ

((
1 − 1

‖xn‖
)

· 2xn + (2 − ‖xn‖) xn‖xn‖
)

≤
(

1 − 1

‖xn‖
)
ρφ(2xn)+ (2 − ‖xn‖)ρφ

(
xn

‖xn‖
)

≤
(

1 − 1

‖xn‖
)
B + ρφ

(
xn

‖xn‖
)

→ 1,
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because ρφ
(
xn

‖xn‖
) = 1 for any n ∈ N and 1− 1

‖xn‖ → 0, a contradiction which finishes
the proof. �

Now we will consider monotonicity properties of Aφ and cesφ .

Theorem 2.5. The space Aφ is strictly monotone if and only if φ > 0.

Proof. Denote aφ = sup{t ≥ 0: φ(t) = 0} and assume that aφ > 0. We will show that
under this assumption there exists x, y ∈ cesφ such that x ≤ y, x �= y and ‖x‖ = ‖y‖.
We define the function f (t) = ∑∞

n=1 φ
(
t
n

)
for t ≥ 0. Since aφ > 0, t

n
→ 0 as n → ∞

and aφ > 0, so
∑∞
n=1 φ

(
t
n

)
is convergent for all t ∈ R+. Since φ is a convex function,

so f is convex, too. Then f is continuous on R+ and f (t) → ∞ as t → ∞, whence
f (R+) = R+ and by the Darboux property of f we know that there exists c ∈ R such that
f (c) = ∑∞

n=1 φ
(
c
n

) = 1. Since c+1
n

→ 0 as n → ∞, there exists n0 such that c+1
n0

≤ aφ .
Consider two sequences x = (c, 0, 0, . . . ) and y = (c, 0, . . . , 0︸ ︷︷ ︸

n0−1 times

, 1, 0, . . . ). It is obvious

that x �= y and x < y. Moreover,

ρφ(x) = φ(c)+ φ
( c

2

)
+ φ

( c
3

)
+ · · · = f (c) = 1,

ρφ(y) = φ(c)+ φ
( c

2

)
+ · · · + φ

(
c

n0 − 1

)
+ φ

(
c + 1

n0

)

+ φ

(
c + 1

n0 + 1

)
+ · · · = 1.

Since ρφ(x) = ρφ(y) = 1, we have ‖x‖ = ‖y‖ = 1, which means that Aφ /∈ (SM).
Assume now that aφ = 0, y ≥ x ≥ 0, x �= y and x, y ∈ Aφ . We can assume that

‖x‖ = 1. From Lemma 2.1 we know that ρφ(x) = 1. In order to show that ‖y‖ > 1 we
need to show that ρφ(y) > 1. Note that ρφ(x + y) ≥ ρφ(x) + ρφ(y) for all nonnegative
x, y ∈ Aφ . Therefore

ρφ(y) = ρφ(x + (y − x)) ≥ ρφ(x)+ ρφ(y − x) = 1 + ρφ(y − x) > 1,

because of y − x > 0 and φ > 0, whence ρφ(y − x) > 0. This finishes the proof. �

From the last theorem, we get the following.

COROLLARY 2.2

If the space cesφ is strictly monotone, then φ > 0.

Before formulating the next theorem note that φ > 0 whenever φ ∈ �2(0).

Theorem 2.6. If φ ∈ �2(0), then cesφ is uniformly monotone.

Proof. Let ε > 0 and x, y ≥ 0 be such that ‖x‖ = 1 and ‖y‖ ≥ ε. From Lemma 2.5 we
have ρφ(x) = 1 and from Lemma 2.7 we have that ρφ(y) > η where η > 0 is independent
of y. Then

ρφ(x + y) ≥ ρφ(x)+ ρφ(y) ≥ 1 + η.

By Lemma 2.6, there exists δ > 0 independent of x and y such that ‖x + y‖ ≥ 1 + δ.
�
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Next we consider rotundity of cesφ . In order to be able to prove criteria for rotundity of
cesφ , we need first to prove the following.

Lemma 2.10. Let φ ∈ �2(0) and y, z ∈ S(cesφ) satisfy y+z
2 ∈ S(cesφ). If y �= z, then

there exists i0 ∈ N such that |y(i0)| �= |z(i0)|.
Proof. Assume for the contrary that the assumptions are satisfied, y �= z and |y| = |z|.
Then there is i0 ∈N such that y(i0) �= z(i0), but |y(i0)| = |z(i0)|, whence y(i0)+ z(i0) = 0.
Consequently,

1 = ρφ

(
y + z

2

)
=

∞∑
n=1

φ

(
1

n

n∑
i=1

|y(i)+ z(i)|
2

)

=
∞∑
n=1

φ

(
1

2

n∑
i=1

|y(i)+ z(i)|
n

)
=

∞∑
n=1

φ


1

2

∑
i∈N\{i0}

|y(i)+ z(i)|
n




≤
∞∑
n=1

φ

(
1

2

(
1

n

∑
i∈N\{i0}

|y(i)| + 1

n

∑
i∈N\{i0}

|z(i)|
))

≤
∞∑
n=1

(
1

2
φ

(
1

n

∑
i∈N\{i0}

|y(i)|
)

+ 1

2
φ

(
1

n

∑
i∈N\{i0}

|z(i)|
))

<
1

2
ρφ(y)+ 1

2
ρφ(z) = 1,

a contradiction which finishes the proof. �

Given any Orlicz function φ with values in R+ such that
∑∞
i=1 φ

(
1
i

)
< ∞, define the

function

f (a) = 2φ(a)+
∞∑
i=3

φ

(
2

i
a

)
. (2.1)

Since the function φ is convex, so f is convex as well. By Theorem 2.1 it has finite values.
Therefore f is continuous and f (a) → ∞ as a → ∞, whence we deduce that there exists
α ∈ R such that f (α) = 1.

Theorem 2.7. If φ ∈ �2(0) then cesφ is rotund if and only if φ is strictly convex on the
interval [0, α], where f (α) = 1 and f is defined by formula (2.1).

Proof. Suppose φ is not strictly convex on [0, α]. Then there exists an interval [b, c] ⊂
(0, α) on which φ is affine.

Since c < α, we have

2φ(c)+
∞∑
i=3

φ

(
2c

i

)
< 1.

Take d > 0 such that

2φ(c)+
∞∑
i=3

φ

(
2c + d

i

)
< 1.
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Choose b1, c1 such that b < b1 < c1 < c and

φ(b)+ φ

(
b + c

2

)
= φ(b1)+ φ

(
b1 + c1

2

)
,

b1 − b <
d

2
and c − c1 <

d

2
.

By |b + c − b1 − c1| < d, there is k > 0 for which either b + c = b1 + c1 + k or
b + c + k = b1 + c1.

Without loss of generality, we may assume that b + c + k = b1 + c1, whence

φ(b)+ φ

(
b + c

2

)
+

∞∑
i=3

φ

(
b + c + k

i

)

= φ(b1)+ φ

(
b1 + c1

2

)
+

∞∑
i=3

φ

(
b1 + c1

i

)
.

Take k1 > 0 such that

φ(b)+ φ

(
b + c

2

)
+ φ

(
b + c + k

3

)
+

∞∑
i=4

φ

(
b + c + k + k1

i

)
= 1.

(2.2)

Since b + c + k = b1 + c1, we have

φ(b1)+ φ

(
b1 + c1

2

)
+ φ

(
b1 + c1

3

)
+

∞∑
i=4

φ

(
b1 + c1 + k1

i

)
= 1. (2.3)

Put

x = (b, c, k, k1, 0, 0, . . . )

and

y = (b1, c1, 0, k1, 0, 0, . . . ).

By (2.2) and (2.3), we have ρφ(x) = 1 = ρφ(y). So, Lemma 2.5 yields x, y ∈ S(cesφ).
Again, by (2.2) and (2.3) and the fact that φ is affine on [b, c], we have

ρφ

(
x + y

2

)
= φ

(
b + b1

2

)
+ φ

(
b+c

2 + b1+c1
2

2

)
+ φ

(
b + c + k

3

)

+
∞∑
i=4

φ

(
b + c + k + k1

i

)

= 1

2
(φ(b)+ φ(b1))+ 1

2

(
φ

(
b + c

2

)
+ φ

(
b1 + c1

2

))

+ φ

(
b + c + k

3

)
+

∞∑
i=4

φ

(
b + c + k + k1

i

)
= 1.

Therefore Lemma 2.5 yields
∥∥ x+y

2

∥∥ = 1, which means that cesφ is not rotund.



474 Yunan Cui et al

Conversely, let x ∈ S(cesφ). We need to prove that x is an extreme point. If x is not an
extreme point, then there exists y, z ∈ S(cesφ) such that 2x = y + z and y �= z. We will
prove that |y| = |z| and by Lemma 2.10, we will get a contradiction, finishing the proof.

Since φ ∈ �2(0), Lemma 2.5 yields that ρφ(x) = ρφ(y) = ρφ(z) = 1 and

1 = ρφ(x) = ρφ

(
y + z

2

)
=

∞∑
n=1

φ

(
1

n

n∑
i=1

|y(i)+ z(i)|
2

)

≤
∞∑
n=1

φ

(
1

n

n∑
i=1

|y(i)| + |z(i)|
2

)

≤ 1

2

[ ∞∑
n=1

φ

(
1

n

n∑
i=1

|y(i)|
)

+
∞∑
n=1

φ

(
1

n

n∑
i=1

|z(i)|
)]

= 1

2
[ρφ(y)+ ρφ(z)]

= 1.

Thus for each n ∈ N we have

φ

(
1

n

n∑
i=1

|y(i)| + |z(i)|
2

)
= 1

2

[
φ

(
1

n

n∑
i=1

|y(i)|
)

+ φ

(
1

n

n∑
i=1

|z(i)|
)]

.

(2.4)

Case I. 1
n

∑n
i=1 |x(i)| ≤ α for each n ∈ N. By condition (2.4) and the fact that φ is strictly

convex on the interval [0, α], we have 1
n

∑n
i=1 |y(i)| = 1

n

∑n
i=1 |z(i)| for each n ∈ N.

Consequently, |y| = |z|.

Case II. There exists n such that 1
n

∑n
i=1 |x(i)| > α. We claim that there exists only one

such n. Assume for the contrary that there exists n0 < n1 such that 1
n0

∑n0
i=1 |x(i)| > α

and 1
n1

∑n1
i=1 |x(i)| > α. Then n1 ≥ 2 and we have

1 = ρφ(x) > 2φ(α)+
∞∑

i=n1+1

φ
(n1α

i

)
= 2φ(α)+

∞∑
i=1

φ

(
n1α

n1 + i

)

≥ 2φ(α)+
∞∑
i=1

φ

(
2α

2 + i

)
= 2φ(α)+

∞∑
i=3

φ

(
2α

i

)
= 1,

a contradiction, which proves the Claim. Let n0 be the only natural number for which
1
n0

∑n0
i=1 |x(i)| > α. As in Case I, we can prove that 1

n

∑n
i=1 |y(i)| = 1

n

∑n
i=1 |z(i)| for

each n �= n0. Since ρφ(y) = ρφ(z) = 1, we get
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φ

(
1

n0

n0∑
i=1

|y(i)|
)

= 1 −
∑

n∈N\{n0}
φ

(
1

n

n∑
i=1

|y(i)|
)

= 1 −
∑

n∈N\{n0}
φ

(
1

n

n∑
i=1

|z(i)|
)

= φ

(
1

n0

n0∑
i=1

|z(i)|
)
.

Consequently, |y| = |z|. This finishes the proof. �

Remark 2.1. Note that criteria for rotundity of Cesàro–Orlicz sequence spaces cesφ are
weaker than criteria for rotundity of Orlicz sequence spaces lφ . Namely, we can easily
conclude from [11] that an Orlicz sequence space lφ is rotund if and only if φ attains value
1, φ ∈ �2(0) and φ is strictly convex on the interval [0, a] where φ(a) = 1

2 , which is
smaller from the interval [0, α], where α is defined by (2.1).
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