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Abstract. In this paper we obtain the general solution to the minimal surface equation,
namely its local Weierstrass–Enneper representation, using a system of hodographic
coordinates. This is done by using the method of solving the Born–Infeld equations by
Whitham. We directly compute conformal coordinates on the minimal surface which give
the Weierstrass–Enneper representation. From this we derive the hodographic coordinate
ρ ∈ D ⊂ C and σ its complex conjugate which enables us to write the Weierstrass–
Enneper representation in a new way.

Keywords. Minimal surface; hodographic coordinates; conformal coordinates;
Weierstrass–Enneper representation

1. Introduction

Minimal surfaces are most commonly known as surfaces which have the minimum area
amongst all other surfaces spanning a given closed curve in R

3. Geometrically, the defini-
tion of a minimal surface is that the mean curvature H ≡ 0 at every point of the surface.
If locally one can write the minimal surface in R

3 as (x, y, φ(x, y)) the minimal surface
equation H ≡ 0 is equivalent to

(1 + φ2
y)φxx − 2φxφyφxy + (1 + φ2

x)φyy = 0. (1)

There exists a choice of conformal coordinates (u, v) ∈ � ⊂ R
2 so that the surface

X(u, v) = (x(u, v), y(u, v), φ(u, v)) ∈ R
3 satisfying the minimal surface equation is

given as follows [1]:

|Xu|2 = |Xu|2, 〈 Xu, Xv 〉 = 0, 1(u,v)X = 0.

The general solution of such an equation is called the local Weierstrass–Enneper rep-
resentation. Let D be a simply connected domain in C, f an analytic function and g a
meromorphic function on D. Then,

X(τ) = <
∫ τ

τ0

8 dζ,

where

8 = ((1 − g2)f, i(1 + g2)f, 2fg)
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is a conformal immersion of D into R
3 which is minimal [6]. The immersion is regular

provided that wherever g has a pole of order m, f has a zero of at least order 2m. Moreover,
g is the stereographic projection of the Gauss map.

There is a simpler representation, valid away from the umbilical points of the surface.
Let w = g(τ) and R(w) = f (w)[dg/dτ ]−1. The Gaussian curvature of the surface
is K = −4|R(w)|−2(1 + |w|2)−4. Away from the umbilical points where K vanishes,
dg/dτ 6= 0 and R(w) has no pole. Thus in the neighborhood of a nonumbilic interior
point, any minimal surface can be represented in terms of w as follows [5]:

x(ζ ) = x0 + <
∫ ζ

ζ0

(1 − w2)R(w) dw, (2)

y(ζ ) = y0 + <
∫ ζ

ζ0

i(1 + w2)R(w) dw, (3)

φ(ζ ) = φ0 + <
∫ ζ

ζ0

2wR(w) dw. (4)

In this semi-expository paper we show that a system of hodographic coordinates gives us
the local Weierstrass–Enneper representation of a minimal surface. Our method provides
an easy way of calculating conformal coordinates if the formula for the graph of the
minimal surface is given, locally. This is not given in the standard text books. Hodographic
coordinates are a natural concept in fluid mechanics where velocity fields play the role of
independent variables. It was mentioned in the context of minimal surfaces first in [3] and
was used in the context of Born–Infeld equations in [7]. If one replaces y by iy in the Born–
Infeld equations, one obtains the minimal surface equation. Thus it is natural to expect a
general solution for the minimal surface by following Whitham’s method [7] for the Born–
Infeld equation. Finally we derive the hodographic coordinates ρ, σ , complex conjugates
of each other, which enables us to write the Weierstrass representation in a new way.

2. Hodographic coordinates and Weierstrass–Enneper representation

In the height representation of the minimal surface, or Monge gauge, one writes the minimal
surface equation in R

3 as in (1).
Introducing the complex coordinates z = x + iy and z̄ = x − iy, we define u = φz̄

and v = φz = ū to reduce the second-order differential equation (1) to a pair of first-order
equations:

uz − vz̄ = 0, (5)

v2uz̄ − (1 + 2uv)uz + u2vz = 0. (6)

The hodograph transformation interchanges the dependent and independent variables
(z, z̄) ↔ (u, v). To do this we use[

zu zv

z̄u z̄v

] [
uz uz̄

vz vz̄

]
=

[
1 0

0 1

]
(7)

and find

z̄v − zu = 0, (8)

v2zv + (1 + 2uv)z̄v + u2z̄u = 0. (9)
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Note that we have transformed the nonlinear partial differential equations for u and v into
linear partial differential equations for z and z̄. Thus, it should come as no surprise that the
minimal surface equation has a linear representation. Following [7], we introduce the new
variables ζ = (

√
1 + 4uv − 1)/(2v), ζ̄ = (

√
1 + 4uv − 1)/(2u) to facilitate our solution.

The inverse of this transformation is u = ζ/(1 − ζ ζ ).

PROPOSITION 2.1

In these new coordinates the eqs (8) and (9) are greatly simplified:

ζ 2z̄ζ + zζ = 0. (10)

Proof. Using the inverse transformation u = ζ/(1−ζ ζ ), v its complex conjugate, and the
equalities zζ = zvvζ +zuuζ and z̄ζ = z̄vvζ +z̄uuζ , we obtain z̄ζ = (z̄vζ

2+z̄u)/(1−|ζ |2)2

and zζ = (zvζ
2 + zu)/(1 − |ζ |2)2. Then eq. (10) is equivalent to

ζ 2z̄u + z̄v(ζ ζ )2 + zu + zvζ
2

(1 − ζ ζ )2 = 0. (11)

Using the expression for u and v in terms of ζ and ζ we rewrite (9) as

ζ 2zv + (1 + (ζ ζ )2)z̄v + ζ 2z̄u

(1 − ζ ζ )2 = 0. (12)

Substracting (12) from (11) and using (8) we get zero.
Thus eqs (8) and (9) are equivalent to eq. (10). �

Now taking derivative of eq. (10) with respect to ζ , we obtain

ζ 2z̄
ζζ + z

ζζ = 0. (13)

Using (13) and its complex conjugate we immediately obtain z̄
ζζ = z

ζζ = 0 from
which it follows that

z̄ = z̄0 + F(ζ ) + G(ζ ). (14)

Using (10) we find

ζ 2F ′(ζ ) + Ḡ′(ζ ) = 0, (15)

so

z̄ = z̄0 + F(ζ ) −
∫ ζ

ζ 0

ω̄2F̄ ′(ω̄) dω̄. (16)

Moreover, we have φζ = φz̄z̄ζ + φzzζ = uF ′(ζ ) − vζ 2F ′(ζ ) = ζF ′(ζ ) so that

φ = φ0 +
∫ ζ

ζ0

ωF ′(ω) dω +
∫ ζ

ζ 0

ω̄F̄ ′(ω̄) dω̄. (17)

It is straightforward to check that the coordinates ζ1 = <ζ and ζ2 = =ζ are isothermal so
that |Xζ1 |2 = |Xζ2 |2 and 〈 Xζ1 , Xζ2 〉 = 0.
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Rewriting (16) for x and y, we have

x(ζ ) = x0 + <
∫ ζ

ζ0

(1 − ω2)F ′(ω) dω, (18)

y(ζ ) = y0 + <
∫ ζ

ζ0

i(1 + ω2)F ′(ω) dω, (19)

φ(ζ ) = φ0 + <
∫ ζ

ζ0

2ωF ′(ω) dω. (20)

Letting F ′(ω) = R(ω), eqs (18)–(20) are the Weierstrass–Enneper representation away
from the umbilical points of the surface [5]. At an umbilical point, the Gaussian curvature
K vanishes so φzzφz̄z̄ − φ2

zz̄ = uz̄vz − uzvz̄ = 0, precisely where (7) has no solution.
If F ′(ζ ) 6= 0, we can locally introduce new variables ρ = F(ζ ), σ = G(η). Locally

the inverse exists when the Gaussian curvature is finite. This follows from the fact that
K = −4/(| ∂ρ

∂ζ
|2(1 + |ζ |2)4). If inverse exists, (x, y, φ) can be written as

x = ρ + σ

2
− 1

2

∫ ρ

ρ0

(F−1(ρ̃))2dρ̃ − 1

2

∫ σ

σ0

(G−1(σ̃ ))2dσ̃ , (21)

y = σ − ρ

2i
− 1

2i

∫ ρ

ρ0

(F−1(ρ̃))2dρ̃ + 1

2i

∫ σ

σ0

(G−1(σ̃ ))2dσ̃ , (22)

φ =
∫ ρ

ρ0

F−1(ρ̃)dρ̃ +
∫ σ

σ0

G−1(σ̃ )dσ̃ , (23)

where ζ = F−1(ρ) = ∂φ/∂ρ and ζ = G−1(σ ) = ∂φ/∂σ . Thus

x = ρ + σ

2
− 1

2

∫ ρ

ρ0

(φρ̃)2dρ̃ − 1

2

∫ σ

σ0

(φσ̃ )2dσ̃ , (24)

y = σ − ρ

2i
− 1

2i

∫ ρ

ρ0

(φρ̃)2dρ̃ + 1

2i

∫ σ

σ0

(φσ̃ )2 dσ̃ , (25)

φ = φ(ρ) + φ(σ). (26)

This decomposition is different from that of the isothermal coordinates ζ and ζ . If
ρ = ρ1 + iρ2, then it can be shown that |Xρ1 | = |Xρ2 | and 〈Xρ1 , Xρ2〉 = 0. Thus ρ1, ρ2
are the isothermal coordinates. The ζ system and the ρ system are related by a conformal
map, F(ζ ) and its inverse.

The geometric meaning of φρ is as follows: The unit normal to the surface in the ρ

system is given by

N = Xρ1 × Xρ2

|Xρ1 × Xρ2 |
=

(
2 Re φρ

1 + |φρ |2 ,
2 Im 8ρ

1 + |φρ |2 ,
(|φρ |2 − 1)

1 + |φρ |2
)

.

Thus φρ is the stereographic projection of the Gauss map [6].



The Weierstrass–Enneper representation of a minimal surface 193

3. An example

We consider the helicoid, φ = tan−1(y/x). We have u = i/2z̄ and v = −i/2z so that

z̄ = i

2u
= i

2

[
1

ζ
− η

]
, (27)

z = −i

2v
= −i

2

[
1

η
− ζ

]
, (28)

where η = ζ , from which it follows that the hodographic coordinates are ρ = F(ζ ) = i/2ζ

and σ = G(η) = −i/2η. The solution φ is

φ = − i

2
ln ζ + i

2
ln η

= −i

2
ln

[
z

z̄

]

= tan−1
(y

x

)
. (29)

Finally, note that R(ω) = F ′(ω) = −i/2ω2 is the standard result for the helicoid [5].
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