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Abstract. We define the Hermite–Sobolev spaces naturally associated to the harmonic
oscillator H = −� + |x|2. Structural properties, relations with the classical Sobolev
spaces, boundedness of operators and almost everywhere convergence of solutions of
the Schrödinger equation are also considered.
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1. Introduction

We consider the second-order differential operator

H = −�+ |x|2, x ∈ Rd . (1)

This operator is self-adjoint on the set of infinitely differentiable functions with compact
support C∞c , and it can be factorized as

H = 1

2

d∑
j=1

AjA−j + A−jAj , (2)

where

Aj = ∂

∂xj
+ xj and A−j = A∗j = −

∂

∂xj
+ xj , 1 ≤ j ≤ d.

In the last few years several authors have been concerned with the harmonic analysis
associated to the operator H (see for instance [5,10,12]). In this analysis the operators
Aj play the role of the partial derivative operators ∂/∂xj in the classical Euclidean case.
Hence it seems natural to study the spaces of functions in Lp(Rd) whose derivatives
also belong to Lp(Rd). Following this idea, we introduce the Hermite–Sobolev spaces
Wk,p (Definition 1). These spaces are Banach spaces and the set of linear combinations
of Hermite functions is dense in any of them (Proposition 1). The spaces Wk,p were
previously studied in [14] for p = 2 and in [7] for p �= 2.

Once we have the Laplacian H , it is also natural to consider the potential spaces L
p
a =

H−a/2(Lp(Rd)) (Definition 3). In other words, the range of the Hermite fractional integral
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operator H−a/2 in Lp(Rd). In order to have a satisfactory description of these potential
spaces we need a sharp analysis of the operatorH−a, for a > 0. Such analysis is contained
in Proposition 2 and Lemma 3. It turns out that, for k ∈ N, the spaces L

p
k and Wk,p

coincide (see Theorem 4). The proof of this theorem uses the boundedness in Lp(Rd) of
the Riesz transforms naturally associated toH.These Riesz transforms were introduced by
Thangavelu in [12], and some of their boundedness properties can be found in [5] and [10].

Observe that, in some sense, Theorem 4 allows us to say that the spaces L
p
a are the spaces

of functions in Lp(Rd) for which their derivatives of order a also belong to Lp(Rd).
Once we have a satisfactory definition of Hermite–Sobolev (or Hermite potential) spaces

and hence of fractional derivatives, we study their relationship with the corresponding
classical Euclidean spaces. We show in Theorem 3 that although the Hermite–Sobolev
spaces coincide locally with the Euclidean Sobolev spaces, they are in fact different. In §5,
we show that the Hermite–Riesz transforms are bounded on the Hermite–Sobolev spaces
while the classical Hilbert transform is not bounded on these spaces. From the careful
analysis of the kernel of H−a, we also obtain certain inequalities of Poincaré type for the
derivativesAj in Theorem 9. Finally, in §7 we give an application to the almost everywhere
convergence of the solution of the Schrödinger equation (42) to the initial data.

Our work was heavily inspired in the paper by Thangavelu [14], where the spaces L2
a

were defined. These spaces were also considered in [6].
As we said above, in order to develop this work, some nontrivial estimates of the Hermite

fractional integral operator (Definition 2) were needed. However, it is not the aim of this
paper to make an exhaustive study of this operator. Hence, other natural questions like
weak and strong boundedness in the extreme points or BMO-type boundedness of the
operator H−a are left aside and they will be the motivation of a forthcoming paper.

2. Hermite–Sobolev spaces

Let n ∈ N0 = N ∪ {0} and consider the Hermite function of order n,

hn(t) = (−1)n

(2nn!π1/2)1/2
Hn(t) e−t

2/2, t ∈ R,

where Hn denotes the Hermite polynomial of degree n (see [12]). Given a multi-index
α = (αj )dj=1 ∈ Nd0 , we consider the Hermite function, hα , as

hα(x) =
d∏
j=1

hαj (xj ), x = (x1, . . . , xd) ∈ Rd .

These functions are eigenvectors of the Hermite operator H defined in (1). In fact

Hhα = (2|α| + d) hα,

where |α| =∑d
j=1 αj . Moreover, for 1 ≤ j ≤ d,

Ajhα =
√

2αj hα−ej , A−j hα =
√

2(αj + 1) hα+ej ,

where ej is the j th coordinate vector in Nd0 . The operators Aj and A−j are called annihi-
lation and creation operators respectively.
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DEFINITION 1

Given p ∈ (1,∞) and k ∈ N, we define the Hermite–Sobolev space of order k, denoted
by Wk,p, as the set of functions f ∈ Lp(Rd) such that

Aj1 · · ·Ajmf ∈ Lp(Rd), 1 ≤ |j1|, . . . , |jm| ≤ d, 1 ≤ m ≤ k,

with the norm

‖f ‖Wk,p =
∑

1≤|j1|,...,|jm|≤d, 1≤m≤k
‖Aj1 · · ·Ajmf ‖p + ‖f ‖p.

We will show that the set of finite linear combinations of Hermite functions, denoted
by F, is dense in the Hermite–Sobolev spaces. We shall need the following lemmas. Their
proofs may be found in [10] and [12], respectively.

Lemma 1. Let m ∈ N0 and f ∈ C∞c . There exists a constant Cm,f > 0 such that

|〈f, hα〉| ≤ Cm,f (|α| + 1)m, α ∈ Nd0 .

Lemma 2. As n→∞ the Hermite functions satisfy the estimates

(i) ‖hn‖p ∼ n
1

2p− 1
4 , 1 ≤ p < 4,

(ii) ‖hn‖p ∼ n− 1
8 log(n), p = 4,

(iii) ‖hn‖p ∼ n
1

6p− 1
12 , 4 < p ≤ ∞.

PROPOSITION 1

Let p be in the range 1 < p < ∞ and k ∈ N. The set Wk
p is a Banach space. Moreover,

the sets F and C∞c are dense in Wk,p.

Proof. To see thatW 1,p is complete, observe that if {fn}n≥1 is a Cauchy sequence inW 1,p,
then {

∂fn

∂xj

}
n≥1

and {xjfn}n≥1, 1 ≤ j ≤ d, (3)

are Cauchy sequences in Lp(Rd). If we call f the limit in Lp(Rd) of {fn}n≥1, it is easy
to see that ∂f /∂xj and xjf are respectively the limits in Lp(Rd) of (3) (see [8], p. 122).

Now we shall see that C∞c is a dense set in W 1,p. Let ψ be a function in C∞c such that∫
Rd
ψ = 1. For every ε > 0, consider

ψε(x) = 1

εd
ψ
(x
ε

)
.

Given f in W 1,p, define fε = f ∗ ψε . Following the ideas in p. 123 of [8], we have

‖f − fε‖p → 0 and

∥∥∥∥ ∂

∂xj
fε − ∂

∂xj
f

∥∥∥∥
p

→ 0, 1 ≤ j ≤ d.
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On the other hand, for 1 ≤ j ≤ d , we call φj (x) = xj ψ(x) and φjε (x) = 1
εd
φj
(
x
ε

)
, then

the function φj ∈ C∞c , and for ε > 0,

‖(xjf ) ∗ ψε − xjfε‖pp =
∫

Rd

∣∣∣∣
∫

Rd
f (y)(yj − xj ) 1

εd
ψ

(
x − y
ε

)
dy

∣∣∣∣
p

dx

= εp
∫

Rd

∣∣∣∣
∫

Rd
f (y)

1

εd
φj
(
x − y
ε

)
dy

∣∣∣∣
p

dx

= εp ‖f ∗ φjε ‖pp. (4)

Moreover, since xjf belongs to Lp(Rd),

‖(xjf ) ∗ ψε − xjf ‖p → 0. (5)

Equations (4) and (5) imply xjfε → xjf in Lp(Rd). Therefore, we conclude that
fε ∈ W 1,p and fε → f in the W 1,p-norm.

The functions fε do not necessarily have compact support, but they can be modified as
in the classical case (see [8], p. 123).

It remains to prove that any function in C∞c can be approximated in the W 1,p-norm by
a function in F. In fact, we will show that any f ∈ C∞c is the limit, in the Wp,1-norm, of
a subsequence of the partial sums

SNf =
∑
|α|≤N
〈f, hα〉hα .

In [10], it is proved that there exists a subsequence of the previous sequence converging
to f in the Lp-norm. Hence, it is enough to show that there exists a subsequence of
{Aj(SN(f ))}N≥1 = {SN(Ajf )}N≥1 converging to Ajf in the Lp-norm, for every j with
1 ≤ |j | ≤ d .

Let us fix j to be in 1 ≤ j ≤ d (the case −d ≤ j ≤ −1 is similar). The sequence
{SN(Ajf )}N≥1 converges to Ajf in the L2-norm. Hence we can take a subsequence
{SNk (Ajf )}k≥1 converging to Ajf almost everywhere. Since

SN(Ajf ) =
∑
|α|≤N
〈Ajf, hα〉hα =

∑
|α|≤N
〈f,A−j hα〉hα

=
∑
|α|≤N

√
2(α−j + 1)〈f, hα+ej 〉hα,

by Lemma 1 and Hölder’s inequality,

|SN(Ajf )|p ≤ C
( ∑
|α|≤N

√
2(α−j + 1)(|α| + 2)−M |hα|

)p

≤ C
( ∑
|α|≤N

(|α| + 1)−M+1|hα|
)p
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≤ C
( ∑
|α|≤N

(|α| + 1)−M+1

)p/p′∑
|α|≤N

(|α| + 1)−M+1|hα|p

≤ C
∑
α

(|α| + 1)−M+1|hα|p.

From Lemma 2, it is easy to see that the function
∑
α(|α| + 1)−M+1|hα|p belongs to

L1(Rd , dx), and the dominated convergence theorem gives that {SNk (Ajf )}k≥1 converges
toAjf in theLp-norm. Now we can repeat the argument for every j , taking a subsequence
of the previous subsequence in each step.

For k > 1 we leave the details to the reader. �

3. Fractional integral

With the ideas in [8] and [10], we introduce the following operator.

DEFINITION 2

Given a > 0, we define for f ∈ F, the operator

H−af (x) = 1

�(a)

∫ ∞
0

e−tH f (x) ta
dt

t
, x ∈ Rd , (6)

where {e−tH }t≥0 is the heat semi-group associated to H .

Remark 1. If a > 0 and α ∈ Nd0 , by using the � function and the fact

e−tH hα = e−t (2|α|+d)hα,

we have

H−ahα(x) = 1

�(a)

∫ ∞
0

e−tH hα(x) ta
dt

t
= (2|α| + d)−ahα(x), x ∈ Rd .

PROPOSITION 2

The operator H−a has integral representation

H−af (x) =
∫

Rd
Ka(x, y) f (y) dy, x ∈ Rd , (7)

for all f ∈ F. Moreover, there exist 	a in L1(Rd) and a constant C such that

Ka(x, y) ≤ C 	a(x − y), for all x, y ∈ Rd . (8)

Proof. If f ∈ F, then for x ∈ Rd ,

H−af (x) = 1

�(a)

∫ ∞
0

e−tH f (x) ta
dt

t

= 1

�(a)

∫ ∞
0

∫
Rd
Gt (x, y) f (y) dy ta

dt

t
,
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where

Gt(x, y) = (2π sinh 2t)−d/2e−
1
2 |x−y|2 coth 2t−x·y tanh t ,

for x, y ∈ Rd , (see [10]). Therefore, if we show that for some constant C,

1

�(a)

∫ ∞
0

Gt(x, y) t
a dt

t
≤ C 	a(x − y), for all x, y ∈ Rd ,

where 	a ∈ L1(Rd), then by Fubini’s theorem,

H−af (x) =
∫

Rd
Ka(x, y) f (y) dy, x ∈ Rd ,

with

Ka(x, y) = 1

�(a)

∫ ∞
0

Gt(x, y) t
a dt

t
. (9)

We perform the change of variables

t = 1

2
log

(
1+ s
1− s

)
,

then

Ka(x, y) = 1

�(a)(4π)d/22a−1

∫ 1

0
ζa(s) e

− 1
4

(
s|x+y|2+ 1

s
|x−y|2

)
ds

s
, (10)

where

ζa(s) =
(

1− s2

s

) d
2−1

log

(
1+ s
1− s

)a−1

.

We split Ka as Ka = Ka,0 +Ka,1, where

Ka,0(x, y) = 1

�(a)(4π)d/22a−1

∫ 1/2

0
ζa(s) e

− 1
4

(
s|x+y|2+ 1

s
|x−y|2

)
ds

s
. (11)

Since the integral∫ 1

1/2
ζa(s)

ds

s
<∞,

we have

Ka,1(x, y) = 1

�(a)(4π)d/22a−1

∫ 1

1/2
ζa(s) e

− 1
4

(
s|x+y|2+ 1

s
|x−y|2

)
ds

s

≤ C e−
1
4 |x−y|2 e−

1
8 |x+y|2 . (12)

It is easy to see that there exists a constant C1 which depends on d and a such that

s−
d
2+a

C1
≤ ζa(s) ≤ C1s

− d2+a for 0 < s < 1/2. (13)
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Therefore

Ka,0(x, y) ≤ C1

∫ 1/2

0
s−

d
2+a e−

1
4s |x−y|2 ds

s
.

If |x − y| ≥ 1, the last expression is bounded up to a constant by

e−
1
4 |x−y|2

∫ 1/2

0
s−

d
2+a e−

1
8s

ds

s
,

hence,

Ka,0(x, y) ≤ C e−
1
4 |x−y|2 . (14)

Let us study now the region |x − y| < 1. By a change of variables,

∫ 1/2

0
s−

d
2+a e−

1
4s |x−y|2 ds

s
= 1

|x − y|d−2a

∫ ∞
2|x−y|2

s
d
2−a e−

s
4

ds

s
.

In the case a < (d/2), we get

Ka,0(x, y) ≤ C

|x − y|d−2a
. (15)

For the case a = (d/2),
∫ ∞

2|x−y|2
e−

s
4

ds

s
=
∫ 2

2|x−y|2
ds

s
+
∫ ∞

2
e−

s
4

ds

s

= log

(
1

|x − y|2
)
+
∫ ∞

2
e−

s
4

ds

s

≤ 2 log

(
e

|x − y|
)(

1+
∫ ∞

2
e−

s
4

ds

s

)
.

Then,

Ka,0(x, y) ≤ C log

(
e

|x − y|
)

. (16)

Finally, when a > (d/2),

∫ ∞
2|x−y|2

s
d
2−a e−

s
4

ds

s
≤
∫ 2

2|x−y|2
s
d
2−a ds

s
+
∫ ∞

2
s
d
2−a e−

s
4

ds

s

≤ 1

22a−d (a − d
2

) |x − y|2a−d +
∫ ∞

2
s
d
2−a e−

s
4

ds

s
.

Thus,

Ka,0(x, y) ≤ C. (17)
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Therefore, from (12), (14)–(17), if we define for x ∈ Rd ,

	a(x) =




χ{|x|<1}(x)
|x|d−2a + e

−|x|2
4 χ{|x|≥1}(x), if a < d

2 ,

log
(
e
|x|
)
χ{|x|<1}(x)+ e

−|x|2
4 χ{|x|≥1}(x), if a = d

2 ,

χ{|x|<1}(x)+ e
−|x|2

4 χ{|x|≥1}(x), if a > d
2 ,

(18)

we have proved (8). �

Theorem 1. The operator H−a defined by (6), is well-defined and bounded on Lp(Rd),
for all p ∈ [1,∞]. Moreover, for all f in Lp(Rd) and α ∈ Nd0 , we have∫

Rd
H−af hα = (2|α| + d)−a

∫
Rd
f hα. (19)

Proof. The boundedness of the operator H−a on Lp(Rd) is due to the fact that the kernel
Ka is bounded by an integrable function. To see (19), let α ∈ Nd0 . By Proposition 2 and
Hölder’s inequality,∫

Rd

∫
Rd
|Ka(x, y)| |f (y)| |hα(x)| dy dx

≤ C
∫

Rd

∫
Rd
|	a(x − y)| |f (y)| |hα(x)| dy dx

≤ C ‖f ‖p‖hα‖p′ ,
where the constant C depends on α. Therefore, by Fubini’s theorem,∫

Rd
H−af hα =

∫
Rd
f H−ahα = (2|α| + d)−a

∫
Rd
f hα.

�

Lemma 3. Let p ∈ [1,∞] and a > 0, then the operator

|x|2aH−af (20)

is bounded on Lp(Rd).

Proof. We will see that the kernel of (20) satisfies

|x|2a
∫

Rn
Ka(x, y) dy ≤ C (21)

and ∫
Rn
|x|2aKa(x, y) dx ≤ C, (22)

where the constant C depends only on d and a. Thus, |x|2aH−af is bounded on Lp(Rd)
for all p ∈ [1,∞] (Theorem 6.18 in [4]).
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We deal first with (21). From (8) and (18) we see that there exists a constant C such that
(21) is valid for all |x| < 2.

Assume that |x| < 2|x − y|. By using eq. (10) we obtain

Ka(x, y) ≤ e−
|x−y|2

8

�(a)(4π)d/22a−1

∫ 1

0
ζa(s) e

− 1
8

(
s|x+y|2+ 1

s
|x−y|2

)
ds

s

= e−
|x−y|2

8 Ka

(
x√
2
,
y√
2

)
.

Therefore, for some constant C,∫
{|x|<2|x−y|}

|x|2aKa(x, y) dy ≤
∫

Rd
|x − y|2ae−

|x−y|2
8 Ka

(
x√
2
,
y√
2

)
dy

≤ C
∫

Rd
Ka

(
x√
2
,
y√
2

)
dy,

which is bounded by a constant independent of x.
It remains to consider integral (21) restricted to the set Ex = {y: |x| > 2|x − y|} when
|x| > 2. Observe that in this part, due to the identity |x + y|2 = 2|x|2 − |x − y|2 + 2|y|2,
we have

|x| < |x + y|. (23)

As in the proof of Proposition 2, we consider Ka = Ka,0 +Ka,1. Then, by using (23),

|x|2a
∫
Ex

Ka,1(x, y)dy ≤ C|x|2ae−
1
8 |x|2

∫
Rd

e−
1
4 |x−y|2 dy ≤ C,

where in the last inequality we have used that for each positive b, there exists a constant
Cb such that |x|be−|x| ≤ Cb.

In order to handle Ka,0, from (13) and (23), after some changes of variables we obtain∫
Ex

Ka,0(x, y)dy ≤ C
∫
Ex

∫ 1/2

0
s−

d
2+ae

− 1
4

(
s|x|2+ 1

s
|x−y|2

)
ds

s
dy

= C |x|d−2a
∫
Ex

∫ |x|2/2
0

u−
d
2+ae

− 1
4

(
u+ 1

u
(|x||x−y|)2

)
du

u
dy

= C |x|−2a
∫ |x|2/2

0

∫ |x|2/2
0

u−
d
2+ae

− 1
4

(
u+ r2

u

)
du

u
rd

dr

r
.

The last double integral is bounded by∫ ∞
0

∫ ∞
0

u−
d
2+ae

− 1
4

(
u+ r2

u

)
du

u
rd

dr

r
=
∫ ∞

0
u−

d
2+ae−

u
4

∫ ∞
0

e−
r2
4u rd

dr

r

du

u

=
∫ ∞

0
e−

u
4 ua

du

u

∫ ∞
0

e−
r2
4 rd

dr

r
,

and both integrals clearly converge.
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Finally we shall prove (22). We split∫
Rd
|x|2aKa(x, y) dx =

(∫
{|y|>2|x−y|}

+
∫
{|y|<2|x−y|}

)
|x|2aKa(x, y) dx.

(24)

Since |x| ≤ 3
2 |y| when |y| > 2|x − y| and the kernelKa is symmetric, the first integral of

(24) is less than or equal to

(
3

2
|y|
)2a ∫

{|y|>2|x−y|}
Ka(y, x) dx,

which can be bounded, in the same way as (21), by a constant depending only on d and a.
For the second term of (24), we have∫

{|y|<2|x−y|<4}
|x|2aKa(x, y) dx ≤ C

∫
Rd
Ka(x, y) dx.

On the other hand, by estimate (8) and the expression (18),∫
{|y|<2|x−y|, 4<|x−y|}

|x|2aKa(x, y) dx ≤ C
∫
{4<|x−y|}

|x − y|2ae−
|x−y|2

8 dx

≤ C
∫
{4<|x|}

|x|2ae−
|x|2

8 dx

≤ C.

Then, we have proved (22). �

4. Potential spaces

DEFINITION 3

Given p ∈ [1,∞) and a > 0, we define the space

L
p
a = H−a/2(Lp(Rd)),

with a norm given by

‖f ‖Lpa = ‖g‖p,

where g is such that H−a/2g = f .

Remark 2. The space L
p
a is well-defined for p ∈ [1,∞) and a > 0, since H−a/2 is one-

to-one. As F = H−a/2(F) then F is a dense space of L
p
a .

Due to the boundedness of the operator H−a , the space L
p
a is a subspace of Lp(Rd).

Moreover, we have the following theorem.
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Theorem 2. Let 0 < a < b, then

(i) L
p
b ⊂ L

p
a ⊂ Lp and the inclusions are continuous.

(ii) L
p
a and L

p
b are isometrically isomorphic.

Proof. SinceH−b/2 = H−a/2 ◦H−γ , where γ = (b−a)/2, we see that (i) easily follows
from the definition of L

p
a and L

p
b , and the boundedness of H−γ . From Definition 3 and

the fact that H−γ is one-to-one, it is easy to verify that H−γ : L
p
a �→ L

p
b is an isometric

isomorphism, and this gives (ii). �

The members of L
p
a have a special decay at infinity, as the following proposition shows.

PROPOSITION 3

If p ∈ [1,∞), a > 0 and f ∈ L
p
a , then |x|af (x) belongs to Lp(Rd).

Proof. By Definition 3, we have f = H−a/2g with g ∈ Lp(Rd). Then it is enough to
apply Lemma 3. �

We remind the classical Sobolev spaces Lpa , with p in the range 1 ≤ p <∞ and a > 0,
defined by

L
p
a = (I −�)−a/2(Lp(Rd)). (25)

In this case, the norm for f ∈ Lpa is given by

‖f ‖Lpa = ‖g‖p,

where the function g ∈ Lp is such that (I − �)−a/2g = f (see [8]). In the following
theorem we describe the relation between the spaces Lpa and L

p
a .

Theorem 3. Let a > 0 and p ∈ (1,∞), then

(i) L
p
a ⊂ Lpa .

(ii) L
p
a �= Lpa .

(iii) If f ∈ Lpa and has compact support, then f belongs to L
p
a .

Proof. To see (1) we follow the argument in [14]. Namely, the symbol of

(I −�)a/2H−a/2

belongs to the class S0
1,0 and so it defines a bounded operator onLp(Rd) (see [9]). Let f ∈

L
p
a , thenh = [(I−�)a/2H−a/2](Ha/2f ) is a function ofLp(Rd)with (I−�)−a/2h = f .

Hence f belongs to Lpa .
In order to see (ii) let

g(x) = 1

(1+ |x|)1/p+a and f = (I −�)−a/2g.
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Since g ∈ Lp(Rd), then f ∈ Lpa . We will see that f is not in L
p
a . From Proposition 3, if f

were in L
p
a we would have |x|af ∈ Lp(Rd). However, if Ga is the kernel of (I −�)−a/2,

Ga(x) = 1

(4π)a/2�(a/2)

∫ ∞
0

e−
π |x|2
t
− t

4π t
−d+a

2
dt

t
,

then

f (x) = (I −�)−a/2g(x) =
∫

Rd
Ga(y)g(x − y) dy

≥
∫
{|y|<1}

Ga(y) g(x − y) dy ≥ (2+ |x|)−1/p−a
∫
{|y|<1}

Ga(y) dy.

Thus, |x|af is not in Lp(Rd).
Finally, (iii) is a direct consequence of the following inequality,∫

Rd
|Ha(ψf )|p ≤ C(ψ)

∫
Rd
|(−�+ I )af |p,

where ψ ∈ C∞c and C(ψ) is a constant depending on ψ . This inequality was proved in
[14] for p = 2 and the same proof works for p in the range 1 < p <∞. �

Theorem 4. Let k ∈ N and p ∈ (1,∞), then

Wk,p = L
p
k

and the norms ‖ · ‖Wk,p and ‖ · ‖Lpk are equivalent.

We first present some technical results that we shall need for the proof of this theorem.

Lemma 4. Let b ∈ R, then for all f in F, we have

AjH
bf = (H + 2)bAjf, 1 ≤ j ≤ d, (26)

AjH
bf = (H − 2)bAjf, −d ≤ j ≤ −1, (27)

HbAjf = Aj(H − 2)bf, 1 ≤ j ≤ d, (28)

and

HbAjf = Aj(H + 2)bf , − d ≤ j ≤ −1, (29)

whereHbhα = (2|α| + d)bhα and (H + 2)bhα = (2|α| + d + 2)bhα , for all α ∈ Nd0 , and
(H − 2)bhα = (2|α| + d − 2)bhα , for all α ∈ Nd0 with |α| ≥ 1.

Proof. Let 1 ≤ j ≤ d and α ∈ Nd0 , then

AjH
bhα = (2|α| + d)b Ajhα =

√
2αj (2|α| + d)b hα−ej

= √2αj (2(|α| − 1)+ d + 2)b hα−ej =
√

2αj (H + 2)bhα−ej

= (H + 2)bAjhα ,

and this gives (26) by linearity. In the same way we obtain (27) and (29). We are assuming
in (28) that f is a linear combination of Hermite functions with order |α| ≥ 1. �
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The Hermite–Riesz transforms associated to H are defined as

Rj = AjH−1/2, 1 ≤ |j | ≤ d
and the Hermite–Riesz transform vector

R = (R−d , R−d+1, . . . , R−1, R1, . . . , Rd−1, Rd).

These operators were introduced by Thangavelu in [12] (see also [10]). He proved that
they are bounded on Lp(Rd) for 1 < p <∞, and of weak type (1, 1). Given m ∈ N the
Hermite–Riesz of order m is defined as

Rj1,j2,...,jm = Aj1Aj2 · · ·AjmH−m/2, (30)

where 1 ≤ |jn| ≤ d , for every 1 ≤ n ≤ m.
For further references, we enounce the following crystallized theorem of known facts

about the Hermite–Riesz transforms.

Theorem 5.

(a) The Hermite–Riesz transforms Rj , 1 ≤ |j | ≤ d , are pseudo-differential operators
whose symbols belong to S0

1,0. In particular, they are bounded in the classical Sobolev
spaces (25).

(b) Let m ∈ N and p ∈ (1,∞). Then there exists a constant Cp,m not depending on the
dimension d , such that∥∥∥∥∥∥

( ∑
1≤|j1|,...,|jm|≤d

|Rj1,...,jmf |2
)1/2

∥∥∥∥∥∥
p

≤ Cp,m ‖f ‖p.

Proof. For the proof of (a) see [13]. For (b) see [5] (see also [10] and [12] for the case
m = 1). �

Now we have the following proposition.

PROPOSITION 4

For f and g in F, we have∫
Rd
fg = 2

∫
Rd

∑
1≤|j |≤d

Rjf Rjg.

Let p ∈ (1,∞). Then there exists a constant C such that for all f in F, we have

‖f ‖p ≤ C
∥∥∥∥∥∥
( ∑

1≤|j |≤d
|Rjf |2

)1/2
∥∥∥∥∥∥
p

. (31)

Proof. For 1 ≤ |j | ≤ d , we have

R∗j Rj = H−1/2A∗jAjH
−1/2 = H−1/2A−jAjH−1/2.
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Then by formula (2),

∑
1≤|j |≤d

R∗j Rj = H−1/2

( ∑
1≤|j |≤d

A−jAj

)
H−1/2 = 2I.

Therefore, if f and g are in F,

∑
1≤|j |≤d

∫
Rd
Rjf Rjg =

∑
1≤|j |≤d

∫
Rd
R∗j Rjfg =

∫
Rd

( ∑
1≤|j |≤d

R∗j Rjf

)
g

= 2
∫

Rd
fg.

In order to prove (31), by Hölder’s inequality, we get

‖f ‖p = sup
{g∈F: ‖g‖p′=1}

∫
Rd
fg = 1

2
sup

{g∈F: ‖g‖p′=1}

∑
1≤|j |≤d

∫
Rd
Rj (f )Rj (g)

≤ 1

2
sup

{g∈F: ‖g‖p′=1}

∥∥∥∥∥∥
( ∑

1≤|j |≤d
|Rj (f )|2

)1/2
∥∥∥∥∥∥
p

∥∥∥∥∥∥
( ∑

1≤|j |≤d
|Rj (g)|2

)1/2
∥∥∥∥∥∥
p′

≤ C
∥∥∥∥∥∥
( ∑

1≤|j |≤d
|Rj (f )|2

)1/2
∥∥∥∥∥∥
p

,

where in the last inequality we have used Theorem 5(b). �

Proof of Theorem 4. Since F is dense in both spaces it is enough to show the equivalence
of the norm for functions in F. Let f ∈ F, and let f = H−k/2g. Then by Theorem 5(b)
and Theorem 1, we obtain

‖f ‖Wk,p =
∑

1≤|j1|,...,|jk |≤d, 1≤m≤k
‖Rj1,...,jmH

−(k−m)/2g‖p + ‖H−k/2g‖p

≤ Ck,d ‖g‖p = Ck,d ‖f ‖Lpk .

To prove the converse inequality, we first consider the case k = 1. By Proposition 4, we
get

‖f ‖Lp1 = ‖H
1/2f ‖p ≤ C

∑
1≤|j |≤d

‖Ajf ‖p ≤ C ‖f ‖W 1,p .

Now we shall use an inductive argument. Suppose we have

‖f ‖Lpm = ‖Hm/2f ‖p ≤ Cm‖f ‖Wm,p ,

for f ∈ F, with m < k. Since for some constants c1, c2, . . . ,ck−1,

∑
1≤|j1|,...,|jk |≤d

A∗jk · · ·A∗j1
Aj1 · · ·Ajk = 2kHk +

k−1∑
m=1

cm H
m,



Sobolev spaces associated to the harmonic oscillator 351

and, since H is autoadjoint, for all f, g ∈ F,

‖f ‖Lpk = ‖H
k/2f ‖p = sup

{g∈F: ‖g‖p′=1}

∫
Rd
(Hk/2f ) g

= sup
{g∈F: ‖g‖p′=1}

∫
Rd
(Hkf ) (H−k/2g).

Now by using formula (4) and the definition (30) of the Hermite–Riesz transform of
higher order, we have

2k
∫

Rd
Hkf H−k/2g

=
∫

Rd

( ∑
1≤|j1|,...,|jk |≤d

A∗jk · · ·A∗j1
Aj1 · · ·Ajk −

k−1∑
m=1

cm H
m

)
f H−k/2g

=
∑

1≤|j1|,...,|jk |≤d

∫
Rd
Aj1 · · ·AjkfRj1...,jk g −

k−1∑
m=1

cm

∫
Rd
Hm/2f H−

(k−m)
2 g.

Thus, by Hölder’s inequality the last expression is bounded by∑
1≤|j1|,...,|jk |≤d

‖Aj1 · · ·Ajkf ‖p‖Rj1...,jk g‖p′

+
k−1∑
m=1

|cm| ‖Hm/2f ‖p‖H−
(k−m)

2 g‖p′ . (32)

From Theorem 5(b), Theorem 1, the induction hypotheses and Definition 1, there exists a
constant C such that (32) is bounded by(

C

k−1∑
m=1

|cm|
)
‖f ‖Wk,p .

5. Boundedness of some operators on L
p
aL
p
aL
p
a

Theorem 6. Let p ∈ (1,∞), a > 1 and 1 ≤ |j | ≤ d. Then Aj is bounded from L
p
a into

L
p

a−1.

Proof. Let 1 ≤ j ≤ d (the case −d ≤ j ≤ −1 is similar). If f ∈ F, by Lemma 4,

Ajf = H−(a−1)/2
(

H

H + 2

)(a−1)/2

Rj H
a/2f. (33)

As the function m(λ) = (λ/(λ+ 2))(a−1)/2 satisfies the hypotheses of Theorem 4.2.1 in
[12], the operator (H/(H + 2))(a−1)/2 is bounded on Lp(Rd). Hence, by Theorem 5(a)
and Theorem 1, the operator

H−(a−1)/2
(

H

H + 2

)(a−1)/2

Rj (34)
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is bounded on Lp(Rd). If f ∈ L
p
a , then Ajf = RjH

−(a−1)/2Ha/2f . Since operators
(34) and RjH−(a−1)/2 coincide in F, both are bounded on Lp(Rd) and F is dense in L

p
a ,

formula (33) also works for all f ∈ L
p
a .

Therefore, if f ∈ L
p
a , the function h = (H/(H + 2))(a−1)/2Rj H

a/2f belongs to
Lp(Rd) and by (33), we have

‖Ajf ‖Lpa−1
= ‖h‖p ≤ C‖Ha/2f ‖p = C‖f ‖Lpa .

�

Theorem 7. If p ∈ (1,∞), a > 0 and 1 ≤ |j | ≤ d , then the operators Rj are bounded
on L

p
a .

Proof. By Theorem 2,H−1/2 is bounded from L
p
a into L

p

a+1. Hence, Theorem 6 gives the
desired result. �

Remark 3. As the Hermite–Riesz transforms are pseudo-differential operators with sym-
bols in the class S0

1,0 (see Theorem 5(a)), they map the classical Sobolev spaces Lpa into
themselves for all p ∈ (1,∞) and a > 0. However, the classical Riesz transforms are not
bounded on L

p
a for any a > (1/p′) as the following proposition shows.

PROPOSITION 5

Let p be in the range 1 < p < ∞. The Hilbert transform on R is not bounded in L
p
a for

any a > (1/p′).

Proof. Let H be the Hilbert transform on the line, that is

Hf (x) = lim
ε→0

∫
|y|>ε

f (x − y)
y

dy.

Consider the function f in L
p
a given by

f (x) = exp(−|x|2).
Given ε > 0 and x > 2, we have∫

|y|>ε
f (x − y)

y
dy =

(∫
ε<|y|<1

+
∫ −1

−∞
+
∫ ∞

1

)
f (x − y)

y
dy. (35)

By the mean value theorem, the first integral of the last expression can be written as∫
ε<|y|<1

e−|x−y|2

y
dy = −

∫
ε<|y|<1

e−|x|2 − e−|x−y|2

x − (x − y) dy

= −2
∫
ε<|y|<1

θ(x, y) e−θ(x,y)
2

dy,

where x − 1 < x − y < θ(x, y) < x if ε < y < 1, and x < θ(x, y) < x − y < x + 1 if
−1 < y < −ε. Thus∣∣∣∣∣

∫
ε<|y|<1

e−|x−y|2

y
dy

∣∣∣∣∣ < 2

∣∣∣∣
∫
ε<|y|<1

θ(x, y) e−θ(x,y)
2

dy

∣∣∣∣
≤ 4(x + 1) e−|x−1|2 . (36)
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For the second integral of (35),∣∣∣∣∣
∫ −1

−∞
e−|x−y|2

y
dy

∣∣∣∣∣ ≤ e−|x|
2
∫ −1

−∞
e−|y|2

|y| dy. (37)

Finally, since x > 2,∣∣∣∣∣
∫ ∞

1

e−|x−y|2

y
dy

∣∣∣∣∣ ≥ 1

x

∫ x

1
e−|x−y|

2
dy ≥ 1

x

∫ 1

0
e−|u|

2
du. (38)

Therefore, from (36)–(38), there exist constants C and M independent of ε, such that∣∣∣∣
∫
|y|>ε

f (x − y)
y

dy

∣∣∣∣ ≥ Cx for all x > M .

Thus, for any a > (1/p′), |x|a Hf is not in Lp(R), and by Proposition 3, Hf is not in
L
p
a . �

6. Poincaré inequalities

This section is devoted to some Poincaré-type inqualities.

Remark 4. Observe that by formula (18), if a < d and we take a positive function f , then

H−a/2f (x) ≤ C
∫

Rd

f (y)

|x − y|d−a dy.

Therefore, in the case a < d the operator H−a/2 inherits the boundedness properties
of the fractional integral. In particular, H−a/2 is bounded from Lp(Rd) into Lq(Rd) for
1
q
= 1

p
− a

d
, where 1 < p < q <∞.

Next theorem gives the behavior ofH−a/2 onLp(Rd), for p ≥ 1. Inequality (21) allows
us to obtain some boundedness of the operator H−a/2 that has a different flavor from the
boundedness of the classical fractional integral.

Theorem 8. Let a, d such that 0 < a < d, then

(i) There exists a constant C, such that

‖H−a/2f ‖q ≤ C‖f ‖1,
for all f ∈ L1(Rd) if and only if 1 ≤ q < d/(d − a).

(ii) There exists a constant C, such that

‖H−a/2f ‖∞ ≤ C‖f ‖p,

for all f in Lp(Rd) if and only if p > d
a

.
(iii) There exists a constant C, such that

‖H−a/2f ‖q ≤ C‖f ‖∞,
for all f ∈ L∞(Rd) if and only if q > (d/a).
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(iv) There exists a constant C, such that

‖H−a/2f ‖1 ≤ C‖f ‖p,

for all f ∈ Lp(Rd) if and only if 1 ≤ p < d/(d − a).
(v) If 1 < p < ∞, 1 < q < ∞ and 1

p
− a

d
≤ 1

q
< 1

p
+ a

d
, then there exists a constant

C, such that

‖H−a/2f ‖q ≤ C‖f ‖p,

for all f ∈ Lp(Rd).

Proof. By Minkowski’s integral inequality,∫
Rd
(H−a/2f )q =

∫
Rd

(∫
Rd
Ka/2(x, y)f (y) dy

)q
dx

≤
(∫

Rd
f (y)

(∫
Rd
Ka/2(x, y)

q dx

)1/q

dy

)q
,

for all f ∈ L1(Rd). From inequalities (8) and (18), we get∫
Rd
Ka/2(x, y)

q dx ≤ C
(∫
{|x|<2}

dx

|x|q(d−a) +
∫
{|x|>2}

e−q
|x|2

4 dx

)
,

and this integral is finite if 1 ≤ q < d/(d − a), proving (i). Conversely, by (13) and a
change of variables, if |x − y| < 1,

Ka/2(x, y) ≥ e−|x+y|2

C1�(a/2)(4π)d/22a/2−1

∫ 1/2

0
s−

d−a
2 e−

1
4s |x−y|2 ds

s

≥
∫ 1

2|x−y|2
0 s−

d−a
2 e−

1
4s ds
s

C1�(a/2)(4π)d/22
a
2−1

e−|x+y|2

|x − y|d−a

≥
∫ 1

2
0 s−

d−a
2 e−

1
4s ds
s

C1�(a/2)(4π)d/22
a
2−1

e−|x+y|2

|x − y|d−a . (39)

Now, let fn, n ≥ 0, be an approximation to the identity. Suppose that inequality (i) holds
for all f ∈ L1(Rd), then by inequality (39) there exists a constant C, such that

C ≥
∫

Rd

(∫
Rd

χ{|x−y|<1}(y)e−|x+y|
2

|x − y|d−a fn(y) dy

)q
dx,

for all n ≥ 0, so that

C ≥
∫
{|x|<1}

e−q|x|2

|x|q(d−a) dx,

but this is false when q(d − a) ≥ d .
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To obtain inequality (ii), by Hölder’s inequality,

∣∣∣∣
∫

Rd
Ka/2(x, y) f (y) dy

∣∣∣∣ ≤ ‖f ‖p
(∫

Rd
Ka/2(x, y)

p′ dy

)1/p′

,

and in the same manner as we dealt with (i), the last integral is finite when p > (d/a). To
see that p > (d/a) is necessary, let ε > 0 and

f (x) =

|x|

−a
(

log 1
|x|
)−(a/d)(1+ε)

if |x| ≤ 1/2,

0 if |x| > 1/2.

Then f ∈ Lp(Rd) for all p ≤ (d/a). However, H−af is essentially unbounded as by
estimate (39),

H−a/2f (0) ≥ C
∫
|x|≤1/2

|x|−d
(

log
1

|x|
)−(a/d)(1+ε)

= ∞,

when ε is small enough.
To see (iii), let f in L∞(Rd), then

∫
Rd
|H−a/2f |q ≤ ‖f ‖q∞

∫
Rd

(∫
Rd
Ka/2(x, y) dy

)q
dx

≤ ‖f ‖q∞
[∫
{|x|≤1}

+
∫
{|x|>1}

(∫
Rd
Ka/2(x, y) dy

)q
dx

]
.

The first integral of the last expression is finite due to estimate (8). By inequality (21), the
second integral is

∫
{|x|>1}

(∫
Rd
Ka/2(x, y) dy

)q
dx ≤ Cq

∫
{|x|>1}

dx

|x|qa ,

which is finite when q > (d/a).
To see the converse, let f ≡ 1. Then,

∫
Rd
|H−a/2f |q =

∫
Rd

(∫
Rd
Ka/2(x, y) dy

)q
dx, (40)

and we will see that there exists a constant c such that∫
Rd
Ka/2(x, y) dy ≥ c |x|−a, for all |x| > 2. (41)

Thus, integral (40) is infinite when q ≤ (d/a).
To see (41), let x ∈ Rd with |x| > 2. If |x − y| < 1/|x|, then |x + y| < 5

2 |x|, and

e
− 1

4

(
s|x+y|2+ 1

s
|x−y|2

)
≥ e
−2
(
s|x|2+ 1

s
|x−y|2

)
.
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Therefore, from (13) and a change of variables, we have∫
Rd
Ka(x, y) dy ≥

∫
{|x−y|< 1

|x| }
Ka,0(x, y) dy

≥ 1

C1

∫
{|x−y|< 1

|x| }

∫ 1/2

0
s−

d
2+a e

−2
(
s|x|2+ 1

s
|x−y|2

)
ds

s
dy

= C
∫ 1/|x|

0

∫ 1/2

0
s−

d
2+a e

−2
(
s|x|2+ r2

s

)
ds

s
rd

dr

r

= C |x|−2a
∫ 1

0

(∫ |x|2/2
0

u−
d
2+a e

−2
(
u+ t2

u

)
du

u

)
td

dt

t

≥ C |x|−2a
∫ 1

0

(∫ 1

0
u−

d
2+a e

−2
(
u+ t2

u

)
du

u

)
td

dt

t
.

Thus, we have proved (41).
In order to show (iv), let f ∈ Lp(Rd) with 1 ≤ p < d

d−α . By Fubini’s theorem, (18)
and Hölder’s inequality,∫

Rd
|H−a/2f | ≤

∫
{|x|≤1}

∫
Rd
Ka/2(y, x) dy |f (x)| dx

+
∫
{|x|>1}

∫
Rd
Ka/2(y, x) dy |f (x)| dx

≤ C ‖f ‖p + ‖f ‖p
∫
{|x|>1}

(∫
Rd
Ka/2(y, x) dy

)p′
dx.

By the symmetry of Ka/2, inequality (21) and p < d/(d − a), the last integral is finite.
On the other hand, if p ≥ d/(d − a) and

f (y) =
{|y|−d+a(log |y|)−1 for |y| > 2,

0 otherwise,

then f belongs to Lp(Rd) but, from (41),∫
Rd
|H−a/2f | ≥

∫
{|y|>1}

∫
Rd
Ka/2(x, y) dx |f (y)| dy

≥
∫
{|y|>1}

|y|−d(log |y|)−1 dy = ∞.

Finally, (v) is a consequence of Remark 4, (i), (ii), (iii), (iv) and the Riesz–Torin inter-
polation theorem. �

As a consequence of the last theorem we have the following Poincaré-type inequalities.

Theorem 9. Let d > 1. Define the Hermite gradient as

∇Hf = (A−df, . . . , A−1f,A1f, . . . , Adf ).
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Let p, q in the range 1 < p, q <∞ such that 1
p
− 1

d
≤ 1

q
< 1

p
+ 1

d
. Then

‖f ‖q ≤ C ‖∇Hf ‖Lp
R2d
,

for all f ∈ L
p

1 .

Proof. It is enough to prove the result for f ∈ F. From inequality (31), we see that

‖f ‖q ≤ C
∑

1≤|j |≤d
‖Rj (f )‖q,

so that, by Lemma 4,

Rjf =
(

H

H + 2

)1/2

H−1/2Ajf,

where 1 ≤ j ≤ d .
We have already seen in the proof of Theorem 6, that the operator (H/(H + 2))1/2 is

bounded on Lq(Rd). Hence, by using Theorem 8(v),

‖Rjf ‖q ≤ C ‖Ajf ‖p,

where 1
p
− 1

d
≤ 1

q
< 1

p
+ 1

d
. �

7. Some applications to Schrödinger solutions

In this section we deal with the unidimensional Schrödinger equation
i
∂u(x, t)

∂t
= Hu(x, t) x, t ∈ R

u(x, 0) = f (x)
(42)

for some initial data f .
We are interested in where we have to pick the function f in order to have almost

everywhere convergence of the solution

u(x, t) = eitH f (x)

of (42) to f as t tends to 0.
In [1] and [3] the problem with the classical Laplacian is considered. In [2] the problem

for a more general operator is studied. From that work, it can be derived, forH as a particular
case, that if f belongs to L

p
a with a > 1, then we have almost everywhere convergence.

Next theorem gives convergence for orders of differentiability greater than 1/2.

Theorem 10. If a > 1/2 and f belongs to L2
a(R), then eitHf converges to f almost

everywhere as t tends to 0.

Proof. If f is a finite linear combination of Hermite functions,

lim
t→0

eitH f (x) = f (x)
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everywhere. Since this kind of functions are dense in L2
a , it is enough to prove that the

maximal function

T ∗f = sup
t>0
|eitH f |

satisfies the inequality∫
I

T ∗f ≤ C ‖f ‖L2
a
,

for all compact interval I of the real line not containing the origin, and C a constant that
may depend on the interval I but not on f .

In order to see this property, we will use the following estimate of Hermite functions
that can be found in [11] (Theorem 8.91.3, p. 236).

If I is a bounded interval and does not contain the origin, there exist constants C and
k0 such that

|hk(x)| ≤ C

k1/4
(43)

for all x ∈ I and k ≥ k0.
Let f be in L2

a . As f belongs to L2(R) it can be written as

f (x) =
∞∑
k=0

ak hk(x).

By Tonelli’s theorem, estimate (43) and Hölder’s inequality, we get

∫
I

|T ∗f (x)| dx ≤
∫
I

sup
t>0

∣∣∣∣∣
∞∑
k=0

ak eit (2k+1) hk(x)

∣∣∣∣∣ dx

≤
∞∑
k=0

|ak|
∫
I

|hk(x)| dx

≤ C
(
C +

∞∑
k=k0

1

k1/2(2k + 1)a

)1/2 ( ∞∑
k=0

a2
k (2k + 1)a

)1/2

≤ C
(
C +

∞∑
k=k0

1

k1/2+a

)1/2

‖f ‖L2
a
.

Since a > 1/2, we have 1/2+ a > 1 and the last series is convergent. �

Theorem 11. If a < 1/4, then there exists a function f in L2
a(R) such that

lim
t→0

e−itH f (x) = ∞

for almost every x ∈ R.
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Proof. For a < 1/4, in [3] the authors find an f belonging to the classical Sobolev space
L2
a and compactly supported so that

lim inf
t→0

|e−it�f (x)| = ∞. (44)

Since f is compactly supported, it follows from Theorem 3(iii) that f belongs to L2
a .

Then, it is sufficient to compare the kernels of e−it� and e−itH for small values of t . In fact,

e−it�f (x) =
∫

R

Wit (x − y) f (y) dy,

with

Wz(x) = 1√
4πz

exp

(−|x|
4z

)
, z ∈ C

and

e−itH f (x) =
∫

R

Git (x, y) f (y) dy,

where

Gz(x, y)

= 1√
2π sinh(2z)

exp

(
−1

2
|x − y|2 coth(2z)− x · y tanh(z)

)
, z ∈ C.

Then, for a fixed x ∈ R, we have

lim
t→0
|Wit (x − y)−Git (x, y)|

= 1√
2π

lim
t→0

∣∣∣∣∣∣
ei
|x−y|2
2 tan(2t)−ix·y tan(t)

√
sin(2t)

− ei
|x−y|2

4t√
2t

∣∣∣∣∣∣ = 0

uniformly for y in a compact subset of R. Thus, by (44) we also have

lim inf
t→0

|e−itH f (x)| = ∞.
�
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