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Abstract. In a series of papers of which this is the first we study how to solve
elliptic problems on polygonal domains using spectral methods on parallel computers.
To overcome the singularities that arise in a neighborhood of the corners we use a
geometrical mesh. With this mesh we seek a solution which minimizes a weighted
squared norm of the residuals in the partial differential equation and a fractional Sobolev
norm of the residuals in the boundary conditions and enforce continuity by adding a term
which measures the jump in the function and its derivatives at inter-element boundaries,
in an appropriate fractional Sobolev norm, to the functional being minimized. Since the
second derivatives of the actual solution are not square integrable in a neighborhood of
the corners we have to multiply the residuals in the partial differential equation by an
appropriate power of rk , where rk measures the distance between the point P and the
vertex Ak in a sectoral neighborhood of each of these vertices. In each of these sectoral
neighborhoods we use a local coordinate system (τk, θk) where τk = ln rk and (rk, θk)
are polar coordinates with origin at Ak , as first proposed by Kondratiev. We then derive
differentiability estimates with respect to these new variables and a stability estimate for
the functional we minimize.

In [6] we will show that we can use the stability estimate to obtain parallel precondi-
tioners and error estimates for the solution of the minimization problem which are nearly
optimal as the condition number of the preconditioned system is polylogarithmic in N ,
the number of processors and the number of degrees of freedom in each variable on each
element. Moreover if the data is analytic then the error is exponentially small in N .

Keywords. Corner singularities; geometrical mesh; modified polar coordinates; quasi-
uniform mesh; fractional Sobolev norms; stability estimate; polylogarithmic bounds.

1. Introduction

This is the first part of a series of four papers, the other three being, h-p Spectral element
methods for Dirichlet problems on parallel computers [6], h-p Spectral element methods
for mixed problems on parallel computers [7] and h-p Spectral element methods for elliptic
boundary value problems – The general case [8].

Current formulations of spectral methods to solve elliptic problems in nonsmooth
domains allow us to recover only algebraic convergence [10]. One method, which yields
relatively fast convergence, makes use of a conformal mapping of the form z = ξα to
smooth out the singularity that occurs at the corner and is referred to as the method of
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auxiliary mapping. However, ‘even though the conformal mapping is an effective way of
enhancing convergence, exponential convergence cannot be fully recovered’ [10].

A method for obtaining a numerical solution to exponential accuracy for elliptic prob-
lems with analytic coefficients posed on curvilinear polygons whose boundary is piece-
wise analytic with mixed Neumann and Dirichlet boundary conditions, was first proposed
by Babuska and Guo [1,2] within the framework of the finite element method. They
were able to resolve the singularities which arise at the corners by using a geometrical
mesh.

We also use a geometrical mesh to solve the same class of problems to exponential accu-
racy using h-p spectral element methods but with an important difference. The geometrical
mesh becomes geometrically fine in a neighborhood of each of the corners. In a neighbor-
hood of the corner Ak we switch to new variables (τk, θk) where τk = ln rk and (rk, θk)
are polar coordinates with origin at Ak . In doing so the geometrical mesh is reduced to a
quasi-uniform mesh in a sectoral neighborhood of the corners and so Sobolev’s embedding
theorems and the trace theorems for Sobolev spaces apply for functions defined on mesh
elements in these new variables with a uniform constant. These new variables, which we
shall refer to as modified polar coordinates, were first used by Kondratiev in his seminal
paper [11]. Away from these sectoral neighborhoods of the corners we retain (x, y) vari-
ables for our coordinate system. Thus we also use the auxiliary map z = log ξ to remove
the singularities at the origin and this enables us to obtain the solution with exponential
accuracy.

By subtracting an analytic function from the solution if necessary, we may assume that
the Dirichlet data vanishes at the corners. We seek an approximate solution which vanishes
at the corner-most elements and is a sum of tensor product of polynomials of degree N
in τk and θk in the remaining elements of the sectoral neighborhood of the corners. The
remaining quadrilateral elements are mapped to the unit square S and the approximate
solution is represented as a sum of tensor products of polynomials of degreeN in ξ and η,
the transformed variables. If Neumann boundary conditions are imposed on both the sides
which meet at the corner, the approximate solution at corner-most elements is represented
by a constant, instead of zero.

We now seek a solution as in [4] which minimizes the sum of the squares of a weighted
squared norm of the residuals in the partial differential equation and the sum of the squares
of the residuals in the Dirichlet boundary conditions in an appropriate Sobolev norm and
enforce continuity by adding a term which measures the sum of the squares of the jump in
the function and the squares of the jump in its derivatives across inter-element boundaries
in appropriate Sobolev norms to the functional being minimized as a penalty term. Since
the residuals in the partial differential equation blow up in a neighborhood of the corners,
we have to multiply these residuals by an appropriate power of rk , where rk measures the
distance between the point P and Ak . All these computations are done using modified
polar coordinates in a sectoral neighborhood of the corners and a global coordinate system
elsewhere.

In [6,7] we restrict ourselves to examining the Poisson’s equation with Dirichlet bound-
ary conditions on a polygon. In this paper we obtain differentiability estimates in modified
polar coordinates and prove the stability theorem 3.3 on which our method is based. Since
the statement of this theorem may appear complicated we try and provide motivation for
it by stating the stability theorem 3.1 for a simpler case.

For the Dirichlet problem we use spectral element functions which are nonconforming.
To solve the minimization problem we have defined, we need to solve the normal equations
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for the least-squares problem corresponding to collocating the partial differential equation
and boundary conditions at an over-determined set of collocation points and enforcing
continuity of the function and its derivatives at the collocation points at inter-element
boundaries, suitably weighted. However, we do not need to compute and store any matrices,
like the mass and stiffness matrices, to compute the residual in the normal equations [5].

We can precondition the normal equations by using a preconditioner which is of block
diagonal form and which allows the solutions for different elements to decouple completely.
Moreover, this is nearly optimal as the condition number of the preconditioned system is
polylogarithmic in N , which is proportional to the number of processors and the number
of degrees of freedom in each variable on each element. Finally we show that the error
we commit is exponentially small in N and provide computational results for a model
problem.

In [7] we will examine how to solve the Poisson’s equation with mixed Dirichlet and
Neumann boundary conditions. For the purely Dirichlet problem our spectral element
functions were nonconforming and hence there were no common boundary values to solve
for. This no longer holds for problems with mixed boundary conditions. Here our spectral
element functions are essentially nonconforming except that they are continuous at the
vertices of the elements on which they are defined. Hence our set of common boundary
values are the values of the function at the vertices of the elements. Thus the cardinality of
the set of common boundary values is proportional to the number of elements and is much
smaller than the cardinality of common boundary values for the finite element method,
which is the set of values of the functions along the edges of their elements.

In order to solve the system of normal equations we need to be able to compute a pre-
conditioner for the Schur complement system corresponding to the common boundary
values. Since the dimension of the system is small we can compute an accurate approx-
imation to the Schur complement. This is in contrast to the methodology for the finite
element method where complex techniques have to be used to obtain a preconditioner for
the Schur complement matrix. Moreover the computational complexity for our scheme is
less than for finite element methods. Thus the method we propose can be thought of as a
vertex based method. Once again we provide computational results for a model problem.

In [8] we will generalize all our results to elliptic problems with analytic coefficients,
posed on curvilinear polygons with piecewise analytic boundaries, which satisfy the
Babuska–Brezzi inf-sup conditions. We should mention that once we have obtained our
approximate solution consisting of nonconforming spectral element functions we can
make a correction to it so that the corrected solution is conforming and is an expo-
nentially accurate approximation to the actual solution in the H 1 norm over the whole
domain.

Computational results for a model problem with Dirichlet boundary conditions have
been provided in [6]. Again in §5 of [7] computational results have been provided for a
model problem with mixed Neumann and Dirichlet boundary conditions.

2. Function spaces and a priori estimates

Let� be a polygon with veticesA1, A2, . . . , Ap and corresponding sides 01, 02, . . . , 0p
where 0i joins the points Ai−1 and Ai (figure 1). In addition let the angle subtended at Aj
be ωj . In this paper we shall examine the solution of the problem

1u = f for (x, y) ∈ �, (2.1a)
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Figure 1.

with Dirichlet boundary conditions

u = gj for (x, y) ∈ 0j ,
or

u = g[0] for (x, y) ∈ 0[0] = ∂�. (2.1b)

Let Z denote the point Z = (x, y). We now need to review a set of a priori estimates
proved in [1]. Let Hm (�) denote the completion of the space of infinitely differentiable
functions with respect to the norm

‖v‖2
m,� =

∑
|α|≤m

∫ ∫
|Dαv|2d x dy.

Let ρi denote the Euclidean distance between Ai and Z, i.e., ρi = |Z − Ai |. We then
define ri = min(1, ρi). We shall let β denote the multi-index β = (

β1, β2, . . . , βp
)
.

Further, we define 8β (Z) = 5
p

i=1r
βi
i (Z). By Hm,l

β (�) we denote the completion of
infinitely differentiable functions with respect to the norm

‖v‖2
H
m,l
β (�)

= ‖v‖2
Hl−1(�)

+
m∑

k=l,|α|=k

∥∥Dαv8β+k−l
∥∥2
L2(�)

, l ≥ 1

as defined in [1].

LetHm−1/2,l−1/2
β

(
0j
)

be the space of functions φj such that there exists f ∈ Hm,l
β (�)

so that f |0j = φj and define

‖φj‖Hm−1/2,l−1/2
β (0j )

= inf
f∈Hm,l

β (�)

‖f ‖
H
m,l
β (�)

.

Let

ψlβ (�) = {u (Z) |u ∈ Hm,l
β (�) ,m ≥ l}
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and

Bl
β (�) = {u (Z) |u ∈ ψlβ (�) , ‖|Dαu|8β+k−l‖L2(�) ≤ Cdk−l (k − l)!

for |α| = k = l, l + 1, . . . , d ≥ 1, C independent of k}.

Let Q ⊆ R
2 be an open set with a piecewise analytic boundary ∂Q and let γ be part or

whole of the boundary ∂Q. Finally let Bl−1/2
β (γ ) , 0 ≤ l ≤ 2, be the space of all functions

ϕ for which there exists f ∈ Bl
β (Q) such that f = ϕ on γ .

We now cite the important regularity theorem 2.1 of [1]. Let f ∈ B0
β, g

[0] ∈
B

3/2
β

(
0[0]

)
, β = (

β1, β2, . . . , βp
)
, 0 < βi < 1, βi > 1 − π/ωi . Then Problem (2.1)

has a unique solution in H 1(�) and u ∈ B2
β (�).

Now in §4 of [2] it has been shown that when g[0] is analytic on every closed arc 0i and
g[0] is continuous on 0[0] then g[0] ∈ B

3/2
β (0[0]). Further if f is analytic then it belongs

to B0
β .

Next as in [2] we introduce the space C2
β :

C2
β = {u ∈ H 2,2

β (�) ||Dαu (Z) | ≤ Cdkk!(8k+β−1 (Z))
−1,

|α| = k = 1, 2, . . . , C ≥ 1, d ≥ 1 independent of k}.

The relationship between C2
β and B2

β is given by Theorem 2.2 of [2] which we state as
follows:

B2
β (�) ⊆ C2

β.

Finally we need one last result from [2], viz. Lemma 2.1 which is stated below.
Let u ∈ H 2,2

β (�). Then u is continuous on � and

‖u‖C(�) ≤ C ‖u‖
H

2,2
β (�)

.

Since we are assuming that the data, g1, . . . , gp are analytic and compatible at the vertices
the values of u at the vertices A1, A2, . . . , Ap are well-defined. Thus if we subtract from
u an analytic function which assumes these values at the vertices then the difference would
satisfy (2.1) with a modified set of analytic data and the Dirichlet boundary data would
assume the value zero atA1, A2, . . . , Ap. Hence without loss of generality we may assume
gj−1

(
Aj
) = gj

(
Aj
) = 0 for j > 1 and gp (A1) = 0.

We now define one last norm which will be needed in the sequel. Let

‖u(τj , θj )‖2
m,(−∞,lnµ)×(ψjl ,ψju )

=
∑

|α|≤m

∫ ψ
j
u

ψ
j
l

∫ lnµ

−∞
|Dα1

τj
D
α2
θj
u|2dτj d θj .

(2.2)

LetSµj = {(x, y) : 0 < rj < µ, ψ
j
l < θj < ψ

j
u } and let S̃µj denote its image in

(
τj , θj

)
coordinates. We now obtain an asymptotic estimate on ‖u (τj , θj ) ‖2

m,S̃
µ
j

as µ → 0.
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Theorem 2.1. There exists a positive constant µ0 such that for all 0 < µ ≤ µ0 the
estimate

‖u(τj , θj )‖2
m,S̃

µ
j

≤ Cµ2(1−βj )(Cdm−2 (m− 2)!)2 (2.3)

holds, where C and d are constants independent of m.

We estimate the terms in the right-hand side of eq. (2.2) when |α| ≥ 2.
For

∑
2≤|α|≤m

∫ ψ
j
u

ψ
j
l

∫ lnµ

−∞
(u
τ
α1
j θ

α2
j
)2dτjd θj

≤ µ2(1−βj ) ∑
2≤|α|≤m

∫ ψ
j
u

ψ
j
l

∫ lnµ

−∞
(u
τ
α1
j θ

α2
j
)2e−2(1−βj )τj dτjd θj

≤ µ2(1−βj ) ∑
2≤|α|≤m

∫ ψ
j
u

ψ
j
l

∫ µ

0
(rj )

2α1(u
r
α1
j θ

α2
j
)2(r

−2+βj
j )2rjdrjd θj

≤ µ2(1−βj )(Cdm−2 (m− 2)!)2. (2.4)

Here we have used the fact that u ∈ B2
β (�) and Theorem 1.1 of [1] to obtain the above

result. Next we bound the terms when |α| = 1. Since u ∈ C2
β (�) we have

|Dαu (Z) | ≤ Cd(8β (Z))
−1 when |α| = 1. (2.5)

Moreover we have∫ ψ
j
u

ψ
j
l

∫ lnµ

−∞
(u2
τj

+ u2
θj
)dτjd θj =

∫
S
µ
j

∫
(u2
x + u2

y)dx dy.

Here

S
µ
j = {(x, y) : 0 < rj < µ,ψ

j
l < θj < ψ

j
u }.

Hence by the above relation∫
S
µ
j

∫
(u2
x + u2

y)dxdy ≤ 2C2d2
∫ ψ

j
u

ψ
j
l

∫ µ

0
r
−2βj
j rjdrjd θj

≤ (Kd)2 µ2(1−βj ). (2.6)

Finally we have to estimate∫ ψ
j
u

ψ
j
l

∫ lnµ

−∞
|u(τj , θj )|2dτjd θj .

Since u vanishes at Aj

u(τj , θj ) =
∫ τj

−∞
uη(η, θj )dη.
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Hence

|u(τj , θj )| ≤
∣∣∣∣∫ rj

0
uρ(ρ, θj )dρ

∣∣∣∣ .
Here ρ = eη and rj = eτj . Since u ∈ C2

β (�) we obtain

|u(τj , θj )| ≤ Cdr
−βj+1
j = Cde(1−βj )τj .

And integrating the above with respect to τj and θj gives

∫ ψ
j
u

ψ
j
l

∫ lnµ

−∞
|u(τj , θj )|2dτjd θj ≤ (Kd)2 µ2(1−βj ). (2.7)

Combining (2.4), (2.6) and (2.7) we get the required estimate

∑
|α|≤m

∫ ψ
j
u

ψ
j
l

∫ lnµ

−∞
|u
τ
α1
j θ

α2
j

|2dτjd θj ≤ µ2(1−βj )(Cdm−2 (m− 2)!)2. 2 (2.8)

Remark. Estimate (2.8) can be proved directly using the relation 0 < 1 − βj < π/ωj .

3. Stability estimate

We first need to divide � into subdomains. Thus we divide � into p subdomains
S1, S2, . . . , Sp, where Si denotes a domain which contains the vertex Ai and no other,
and on each Si we define a geometric mesh as has been done in [2].

Let Sk = {�ki,j , j = 1, . . . , Jk, i = 1, . . . , Ik,j } be a partition of Sk and let S =⋃p

k=1 Sk . Then S satisfies the following conditions :

1. �ki,j are curvilinear quadrilaterals or triangles and the intersection of any two �ki,j is
one common vertex or one entire side or is empty.

2. Let hki,j and hki,j be the maximal and minimal length of the sides of �ki,j . We shall
assume there is a constant independent of i, j, k and of the partition such that

hki,j

hki,j

≤ λ. (3.1)

3. Let M = {Mk
i,j , 1 ≤ i ≤ Ik,j , 1 ≤ j ≤ Jk, 1 ≤ k ≤ p} in which Mk

i,j is a one-to-
one mapping of the closed standard master square S = [0, 1] × [0, 1] {respectively

standard master triangle T = {(ξ, η)|0 ≤ η ≤ 1 − ξ, 0 ≤ ξ ≤ 1} onto �
k

i,j .

Let P ki,j,l and γ ki,j,l denote the vertices and sides of �ki,j , then (Mk
i,j )

−1(P ki,j,l) and

(Mk
i,j )

−1(γ ki,j,l) denote the vertices and sides of S (respectively T ), 1 ≤ l ≤ 4 (respec-

tively 1 ≤ l ≤ 3). Moreover if Mk
i,j and Ml

m,n map the closed standard square S

onto elements �
k

i,j and �
l

m,n with common side γ = P1P2, then for any P ∈ γ ,
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dist((Mk
i,j )

−1(P ), (Mk
i,j )

−1(Pt )) = dist((Ml
m,n)

−1(P ), (Ml
m,n)

−1(Pt )), 1 ≤ t ≤ 2.

We will assume Mk
i,j can be written in the form

x = Xki,j (ξ, η), (ξ, η) ∈ S (respectively T ) (3.2)

y = Y ki,j (ξ, η),

with Xki,j and Y ki,j being analytic functions on S (respectively T). Further we assume
that for |α| ≤ 2

|Dαx|, |Dαy| ≤ Chki,j , (3.3a)

and

C1(h
k
i,j )

2 ≤ J ki,j ≤ C2(h
k
i,j )

2 (3.3b)

for all i, j and k with constants C,C1,C2 independent of i, j and k and J ki,j being the

Jacobian of the mapping Mk
i,j .

Let µ = (
µ1, . . . , µp

)
with 0 < µi < 1. Then Sµ is called a geometrical mesh

with ratios µ = (
µ1, . . . , µp

)
when in addition the following condition is fulfilled.

4. Let �ki,j ∈ S and dki,j denote the distance between �ki,j and Ak . Then dki,j and hki,j
satisfy

C1 (µk)
N−j ≤ dki,j ≤ C2 (µk)

N−j , 1 < j ≤ N, 1 ≤ i ≤ Ik,j , (3.4a)

C3ρ ≤ dki,j ≤ C4ρ, N < j ≤ Jk, 1 ≤ i ≤ Ik,j , 1 ≤ k ≤ p, (3.4b)

dki,1 = 0, 1 ≤ i ≤ Ik,1, 1 ≤ k ≤ p, (3.4c)

K1d
k
i,j ≤ hki,j ≤ hki,j ≤ K2d

k
i,j (3.4d)

for 1 < j ≤ Jk, 1 ≤ i ≤ Ik,j , 1 ≤ k ≤ p, where Cl for 1 ≤ l ≤ 4 and Kl for
1 ≤ l ≤ 2 are constants independent of i, j and k. Moreover Jk = N +O(1).

We now put some restrictions on S. Let (rk, θk) denote polar coordinates with center at
Ak . Let τk = ln rk . We choose ρ so that the sector Skρ with sides 0k and 0k+1, center at Ak
and radius ρ satisfies

Skρ ⊆
⋃

�ki,j∈Sk

�
k

i,j .

Skρ may be represented as

Skρ = {(x, y) : 0 < rk < ρ,ψkl < θk < ψku}. (3.5a)

Let {ψki }i=1,... ,Ik+1 be an increasing sequence of points such thatψk1 = ψkl andψkIk+1
= ψku .

Let 1ψki = ψki+1 − ψki . We choose these points so that

max
k
(max

i
1ψki ) ≤ λmin

k
(min
i
1ψki ) (3.5b)
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for some constant λ. Let

σk1 = 0, (3.5c)

and

σkj = ρ (µk)
N+1−j for 2 ≤ j ≤ N + 1. (3.5d)

Finally we define

ηkj = ln σkj for 1 ≤ j ≤ N + 1. (3.6)

Let

�ki,j = {(x, y) : σkj < rk < σkj+1, ψ
k
i < θk < ψki+1} for 1 ≤ i ≤ Ik,

1 ≤ j ≤ N. (3.7)

We assume there exists a number ν such that

�ki,N+1 = {(x, y) : ρ < rk < ν,ψki < θk < ψki+1} for 1 ≤ i ≤ Ik. (3.8)

In other words Ik,j is independent of j for j ≤ N + 1. We shall let Ok denote

Ok = {�ki,j , 1 ≤ i ≤ Ik, 1 ≤ j ≤ N} for 1 ≤ k ≤ p. (3.9)

Let

Op+1 = {�ki,j : 1 ≤ i ≤ Ik,j , N + 1 ≤ j ≤ Jk, 1 ≤ k ≤ p}. (3.10)

We shall relabel the elements of Op+1 and write

Op+1 = {�p+1
l , 1 ≤ l ≤ L}, (3.11)

where L denotes the cardinality ofOp+1. We shall let �k denote the sector with vertex at
Ak given by

�k = {(x, y) : 0 < rk < ρ,ψkl < θk < ψku} (3.12a)

and

�p+1 = � \
{

p⋃
k=1

�
k

}
. (3.12b)

Note that all the sets �k are open sets.
Henceforth to keep our notation simple we will assume that �ki,j are quadrilaterals for

1 ≤ k ≤ p,N + 1 ≤ j ≤ Jk, 1 ≤ i ≤ Ik . Moreover we assume Ik,j ≤ I for all k and
j . Here I is a small integer, and this fact plays a fundamental role in allowing us to use
nonconforming spectral elements to solve the Dirichlet problem. Further let γ ki,j,l denote

the sides of the quadrilateral �ki,j , 1 ≤ l ≤ 4. Then we assume (figure 2)
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Figure 2.

γ ki,j,l :

{
x = hki,jφ

k
i,j,l(ξ),

y = hki,jψ
k
i,j,l(ξ),

0 ≤ ξ ≤ 1, l = 1, 3 (3.13)

γ ki,j,l :

{
x = hki,jφ

k
i,j,l(η),

y = hki,jψ
k
i,j,l(η),

0 ≤ η ≤ 1, l = 2, 4 (3.14)

where φki,j,l , ψ
k
i,j,l are analytic functions for all i, j, k and l. We wish to obtain a stability

estimate for the functionu, given by a nonconforming finite dimensional representationuki,j
on each domain�ki,j , for the entire polygonal domain�. Now, as stated in the introduction

we partition the open set� intop open sets S1, S2, . . . , Sp such that each Si contains only
the singularity at the vertexAi . Let Sk be one of these open sets. Then Sk = �k

⋃
Bkρ
⋃
T k

where �k is the open sector with center at Ak and radius ρ, Bkρ is the circular arc which
bounds �k , and T k is the open set defined as T k = Sk \ (�k⋃Bkρ).

The domain Sk is as shown in figure 3. Two of its sides are the straight lines0k+1
⋂
∂Sk

and 0k
⋂
∂Sk . The remaining side ∂Skc consists of piecewise analytic arcs. The subscript

c in ∂Skc denotes curvilinear. S
k

is partitioned by a set of arcs {γl}l into subdomains.
Now

�ki,j = {(x, y) : σkj < rk < σkj+1, ψ
k
i < θk < ψki+1}

for 1 ≤ i ≤ Ik, 1 ≤ j ≤ N .

Figure 3.
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Let τk = ln rk . Define

�̃ki,j = {(τk, θk) : ηkj < τk < ηkj+1, ψ
k
i < θk < ψki+1} (3.15)

for 1 ≤ i ≤ Ik, 1 ≤ j ≤ N .
Let ω be a smooth function. Then

ωxx + ωyy = 1

r2
k

(
rk
∂

∂rk
rk
∂ω

∂rk
+ ωθkθk

)
= e −2τk (ωτkτk + ωθkθk ).

Hence ∫
�ki,j

∫
r2
k (ωxx + ωyy)

2dxdy =
∫ ψki+1

ψki

∫ ηkj+1

ηkj

(ωτkτk + ωθkθk )
2dτkdθk.

Now using integration by parts repeatedly we can show that∫ ψki+1

ψki

∫ ηkj+1

ηkj

((ωτkτk )
2 + 2(ωτkθk )

2 + (ωθkθk )
2)dτkdθk (3.16)

=
∫ ψki+1

ψki

∫ ηkj+1

ηkj

(ωτkτk + ωθkθk )
2dτkdθk + 2

∫ ψki+1

ψki

ωτkθkωθk (η
k
j+1, θk)dθk

− 2
∫ ψki+1

ψki

ωτkθkωθk (η
k
j , θk)d θk − 2

∫ ηkj+1

ηkj

ωτkτkωθk (τk, ψ
k
i+1)dτk

+ 2
∫ ηkj+1

ηkj

ωτkτkωθk (τk, ψ
k
i )dτk.

Moreover ∫
�ki,j

∫
−ω(ωxx + ωyy)dxdy

= −
∫ ψki+1

ψki

∫ ηkj+1

ηkj

ω(ωτkτk + ωθkθk )dτkdθk

=
∫ ψki+1

ψki

∫ ηkj+1

ηkj

((ωτk )
2 + (ωθk )

2)dτkdθk −
∫ ψki+1

ψki

ωωτk (η
k
j+1, θk)dθk

+
∫ ψki+1

ψki

ωωτk (η
k
j , θk)dθk −

∫ ηkj+1

ηkj

ωωθk (τk, ψ
k
i+1)dτk

+
∫ ηkj+1

ηkj

ωωθk (τk, ψ
k
i )dτk.

And this gives us the following inequality:∫ ψki+1

ψki

∫ ηkj+1

ηkj

((ωτk )
2 + (ωθk )

2)dτkdθk
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≤ K

2

∫ ψki+1

ψki

∫ ηkj+1

ηkj

ω2dτkdθk + 1

2K

∫ ψki+1

ψki

∫ ηkj+1

ηkj

(ωτkτk + ωθkθk )
2dτkdθk

+
∫ ψki+1

ψki

ωωτk (η
k
j+1, θk)d θk −

∫ ψki+1

ψki

ωωτk (η
k
j , θk)dθk

+
∫ ηkj+1

ηkj

ωωθk (τk, ψ
k
i+1)dτk −

∫ ηkj+1

ηkj

ωωθk (τk, ψ
k
i )dτk. (3.17)

Let uki,j (τk, θk) be a set of nonconforming elements, defined on �̃ki,j the image of �ki,j in
(τk, θk) coordinates, given by

uki,j (τk, θk) =
N∑
n=0

N∑
m=0

am,nτ
m
k θ

n
k

for j > 1. We shall choose uki,1 ≡ 0 for all k and i.
Let

[uki,j ](ηkj+1, θk) = (uki,j+1 − uki,j )(η
k
j+1, θk),

[uki,j ](τk, ψ
k
i+1) = (uki+1,j − uki,j )(τk, ψ

k
i+1),

denote the jump in u across inter-element boundaries.
Recollect thatBkρ denotes the circular arc with radius ρ and centerAk . Let B̃kρ denotes its

representation in (τk, θk) coordinates, i.e., B̃kρ = {(τk, θk) : τk = ln ρ, ψkl < θk < ψku}.
Similarly let 0̃k, 0̃k+1 denote the representation of the sides 0k and 0k+1 in (τk, θk)
coordinates. Recollect that �̃k is an open set and ∂�̃k denotes its boundary. Let γl be a
side of �ki,j for some i and j and let γ̃l denotes its representation in (τk, θk) coordinates.

We now state and prove a stability theorem which will help to motivate the stability
theorem 3.3 on which our numerical scheme is based.

Theorem 3.1. For the sectoral domain �̃k the following stability estimate holds.

N∑
j=2

Ik∑
i=1

‖uki,j (τk, θk)‖2
2,�̃ki,j

≤ C(lnN)2
{

N∑
j=2

Ik∑
i=1

‖1uki,j (τk, θk)‖2
0,�̃ki,j

+
∑
γ̃l⊆�̃k

(‖[(uk)]‖2
0,γ̃l + ‖[(uk)τk ]‖2

1/2,γ̃l + ‖[(uk)θk ]‖2
1/2,γ̃l )

+
∑
γ̃l⊆B̃kρ

(‖(uk)‖2
0,γ̃l + ‖(uk)θk‖2

1/2,γ̃l )

+
k+1∑
m=k

∑
γ̃l⊆∂�̃k

⋂
0̃m

(‖(uk)‖2
0,γ̃l + ‖(uk)τk‖2

1/2,γ̃l )

 . (3.18)

Here ‖.‖s,γ̃l denotes the fractional Sobolev norm as defined in [9] when s is not an integer.
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Adding a weighted combination of (3.16) and (3.17) and summing over i and j gives

N∑
j=1

Ik∑
i=1

{∫ ψki+1

ψki

∫ ηkj+1

ηkj

((uki,j )
2
τkτk

+ 2(uki,j )
2
τkθk

+ (uki,j )
2
θkθk

)dτkdθk

+ R

∫ ψki+1

ψki

∫ ηkj+1

ηkj

(((uki,j )τk )
2 + ((uki,j )θk )

2)dτkdθk

}
≤ (I)+ (II)+ (III)+ (IV)+ (V)+ (VI)+ (VII)+ (VIII)+ (IX) . (3.19)

Here the terms indicated by roman numerals given above are as follows:

(I) =
N∑
j=1

Ik∑
i=1

(
KR

2

∫ ψki+1

ψki

∫ ηkj+1

ηkj

(uki,j )
2dτkd θk

+
(

1 + R

2K

)∫ ψki+1

ψki

∫ ηkj+1

ηkj

((uki,j )τkτk + (uki,j )θkθk )
2dτkd θk

)
,

(II) =
N−1∑
j=1

Ik∑
i=1

(∫ ψki+1

ψki

−2[(uki,j )θk (u
k
i,j )τkθk ](η

k
j+1, θk)d θk

)
,

(III) =
Ik∑
i=1

2
∫ ψki+1

ψki

(uki,N )θk (u
k
i,N )τkθk (ln ρ, θk)d θk,

(IV) =
Ik−1∑
i=1

N∑
j=2

(∫ ηkj+1

ηkj

2[(uki,j )θk (u
k
i,j )τkτk ](τk, ψ

k
i+1)dτk

)
,

(V) =
N∑
j=1

(
2
∫ ηkj+1

ηkj

(uk1,j )θk (u
k
1,j )τkτk (τk, ψ

k
1 )dτk

−2
∫ ηkj+1

ηkj

(ukIk,j )θk (u
k
Ik,j
)τkτk (τk, ψ

k
Ik+1)dτk

)
,

(VI) = −R
N−1∑
j=1

Ik∑
i=1

(∫ ψki+1

ψki

[(uki,j )(u
k
i,j )τk ](η

k
j+1, θk)d θk

)
,

(VII) = R

Ik∑
i=1

∫ ψki+1

ψki

(uki,N )(u
k
i,N )τk (ln ρ, θk)d θk,

(VIII) = R

N∑
j=1

Ik−1∑
i=1

(
−
∫ ηkj+1

ηkj

[(uki,j )(u
k
i,j )θk ](τk, ψ

k
i+1)dτk

)
,

and

(IX) = R

N∑
j=1

(∫ ηkj+1

ηkj

(ukIk,j )(u
k
Ik,j
)θk (τk, ψ

k
Ik+1)dτk

−
∫ ηkj+1

ηkj

(uk1,j )(u
k
1,j )θk (τk, ψ

k
1 )dτk

)
. (3.20)
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Now using Lemma 4.1 we can conclude that

N∑
j=1

Ik∑
i=1

∫ ηkj+1

ηkj

∫ ψki+1

ψki

(uki,j )
2dτkd θk

≤ C

(
N∑
j=1

Ik∑
i=1

∫ ηkj+1

ηkj

∫ ψki+1

ψki

((uki,j )θk )
2dτkd θk

+
N∑
j=1

Ik−1∑
i=1

∫ ηkj+1

ηkj

[(uki,j )]
2(τk, ψ

k
i+1)dτk

+
N∑
j=1

∫ ηkj+1

ηkj

(ukIk,j )
2(τk, ψ

k
Ik+1)dτk +

∫ ηkj+1

ηkj

(uk1,j )
2(τk, ψ

k
1 )dτk

)
,

(3.21)

where

C = 2 max
k

{
max

(
(ψkIk+1 − ψk1 )

2

2
, (Ik + 1)(ψkIk+1 − ψk1 )

)}
.

Choosing R large enough and adding

2C

(
N∑
j=1

∫ ηkj+1

ηkj

(ukIk,j )
2(τk, ψ

k
Ik+1)dτk +

∫ ηkj+1

ηkj

(uk1,j )
2(τk, ψ

k
1 )dτk

+
N∑
j=1

Ik−1∑
i=1

∫ ηkj+1

ηkj

[(uki,j )]
2(τk, ψ

k
i+1)dτk

)

to both sides of (3.19) and then applying (3.21) and choosing K small enough we get the
inequality

N∑
j=1

Ik∑
i=1

{∫ ψki+1

ψki

∫ ηkj+1

ηkj

(((uki,j )τkτk )
2 + 2((uki,j )τkθk )

2

+ ((uki,j )θkθk )
2)dτkd θk

+
∫ ψki+1

ψki

∫ ηkj+1

ηkj

((uki,j )
2
τk

+ (uki,j )
2
θk
)dτkd θk

}

+
∫ ψki+1

ψki

∫ ηkj+1

ηkj

(uki,j )
2dτkd θk

≤ T

N∑
j=1

Ik∑
i=1

∫ ψki+1

ψki

∫ ηkj+1

ηkj

((uki,j )τkτk + (uki,j )θkθk )
2dτkd θk
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+ 2C

(
N∑
j=1

∫ ηkj+1

ηkj

(ukIk,j )
2(τk, ψ

k
Ik+1)dτk

+
∫ ηkj+1

ηkj

(uk1,j )
2(τk, ψ

k
1 )dτk

+
Ik−1∑
i=1

N∑
j=1

∫ ηkj+1

ηkj

[(uki,j )]
2(τk, ψ

k
i+1)dτk

)
+ (II)+ (III)+ (IV)+ (V)+ (VI)+ (VII)+ (VIII)+ (IX) . (3.22)

We shall now estimate the terms indicated by roman numerals on the right hand side of
(3.22) using Theorem 4.1. We begin by estimating

|(II)| =
∣∣∣∣∣N−1∑
j=1

Ik∑
i=1

(
−
∫ ψki+1

ψki

2[(uki,j )θk ][(u
k
i,j )τkθk ](η

k
j+1, θk)dθk

−
∫ ψki+1

ψki

2[(uki,j )θk ](u
k
i,j )τkθk (η

k
j+1, θk)dθk

−
∫ ψki+1

ψki

2(uki,j )θk [(u
k
i,j )τkθk ](η

k
j+1, θk)dθk

)∣∣∣∣∣ .
Now by Theorem 4.1∣∣∣∣∣

∫ ψki+1

ψki

2[(uki,j )θk ](u
k
i,j )τkθk (η

k
j+1, θk)dθk

∣∣∣∣∣ (3.23)

≤ 2C (lnN) ‖[(uki,j )θk ](η
k
j+1, θk)‖1/2,(ψki ,ψ

k
i+1)

× ‖(uki,j )τk (ηkj+1, θk)‖1/2,(ψki ,ψ
k
i+1)

≤ (C lnN)2

K
‖[(uki,j )θk ](η

k
j+1, θk)‖2

1/2,(ψki ,ψ
k
i+1)

+K‖(uki,j )τk (ηkj+1, θk)‖2
1/2,(ψki ,ψ

k
i+1)

for any postive K .
By the trace theorem for Sobolev spaces there exists a constant M , such that

‖(uki,j )τk (ηkj+1, θk)‖2
1/2,(ψki ,ψ

k
i+1)

≤ M‖(uki,j )(τk, θk)‖2
2,�̃ki,j

.

Choosing K = 1/32M we have∣∣∣∣∣
∫ ψki+1

ψki

2[(uki,j )θk ](u
k
i,j )τkθk (η

k
j+1, θk)dθk

∣∣∣∣∣
≤ T (lnN)2 ‖[(uki,j )θk ](η

k
j+1, θk)‖2

1/2,(ψki ,ψ
k
i+1)

+ 1

32
‖(uki,j )(τk, θk)‖2

2,�̃ki,j
. (3.24)
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And so we conclude that

|(II)| ≤ C (lnN)2
N−1∑
j=1

Ik∑
i=1

(
‖[(uki,j )τk ](η

k
j+1, θk)‖2

1/2,(ψki ,ψ
k
i+1)

+ ‖[(uki,j )θk ](η
k
j+1, θk)‖2

1/2,(ψki ,ψ
k
i+1)

)
+
N−1∑
j=1

Ik∑
i=1

1

16
‖(uki,j )(τk, θk)‖2

2,�̃ki,j
. (3.25)

Similarly we have

|(V)| ≤ C (lnN)2
N∑
j=1

(
‖(uk1,j )τk (τk, ψk1 )‖2

1/2,(ηkj ,η
k
j+1)

+ ‖(ukIk,j )τk (τk, ψkIk+1)‖2
1/2,(ηkj ,η

k
j+1)

)
+
N∑
j=1

1

16

(
‖(uk1,j )(τk, θk)‖2

2,�̃k1,j
+‖(ukIk,j )(τk, θk)‖2

2,�̃kIk ,j

)
. (3.26)

We can estimate the terms (IV), (VI), (VIII) and (IX) in the right-hand side of (3.20) in a
similar manner. Putting all these estimates together we can write (3.22) in the form

1

2

N∑
j=1

Ik∑
i=1

‖(uki,j )(τk, θk)‖2
2,�̃ki,j

≤ C (lnN)2
{

N∑
j=1

Ik∑
i=1

∫ ψki+1

ψki

∫ ηkj+1

ηkj

(1uki,j )
2dτkdθk

+
N−1∑
j=1

Ik∑
i=1

(
‖[(uki,j )τk ](η

k
j+1, θk)‖2

1/2,(ψki ,ψ
k
i+1)

+ ‖[(uki,j )](η
k
j+1, θk)‖2

3/2,(ψki ,ψ
k
i+1)

)
+

N∑
j=1

Ik−1∑
i=1

(
‖[(uki,j )](τk, ψ

k
i+1)‖2

3/2,(ηkj ,η
k
j+1)

+ ‖[(uki,j )θk ](τk, ψ
k
i+1)‖2

1/2,(ηkj ,η
k
j+1)

)
+

N∑
j=1

(
‖(uk1,j )(τk, ψk1 )‖2

3/2,(ηkj ,η
k
j+1)

+‖(ukIk,j )(τk, ψkIk+1)‖2
3/2,(ηkj ,η

k
j+1)

)}
+

Ik∑
i=1

(R

∫ ψki+1

ψki

(uki,N )(u
k
i,N )τk (ln ρ, θk)dθk

+ 2
∫ ψki+1

ψki

(uki,N )θk (u
k
i,N )τkθk (ln ρ, θk)dθk). (3.27)
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Estimating the last two terms in the same way we get the result. 2

Remark. The a priori stability estimate for sectoral domains (3.18), in a sense, replicates
the estimates, known as the shift theorems, for elliptic problems on smooth domains. These
estimates are valid, however, only in modified polar coordinates and only for spectral ele-
ment functions which are polynomials of degree N in each variable separately. Moreover,
the constant multiplying the right-hand side is not independent ofN but grows slowly with
N like (lnN)2. Thus, Theorem 3.1 states that the sum of the squares of the H 2 norms of
the spectral element functions depends continuously on a quadratic form, which consists
of the sum of the squares of the L2 norms of the differential operators in their respec-
tive elements plus the sum of the squares of the tangential derivatives in the H 3/2 norm
along the image of the sectoral boundary plus a penalty term. The penalty term consists
of the sum of the squares of the L2 norms of the jumps in the the function elements plus
the sum of the squares of H 1/2 norms of the jumps in the derivatives across inter-element
boundaries.

Consider the function {uki,j }i,j defined on �̃ki,j ⊆ �̃k . Then the inequality

1

2

N∑
j=2

Ik∑
i=1

‖(uki,j )(τk, θk)‖2
2,�̃ki,j

≤ C (lnN)2
{

N∑
j=2

Ik∑
i=1

‖1uki,j (τk, θk)‖2
0,�̃ki,j

+
k+1∑
m=k

∑
γ̃i⊆0̃m

⋂
∂�̃k

(‖uk‖2
0,γ̃i + ‖ukτk‖2

1/2,γ̃i )

+
∑
γ̃i⊆�̃k

(‖[uk]‖2
0,γ̃i + ‖[ukτk ]‖2

1/2,γ̃i + ‖[ukθk ]‖2
1/2,γ̃i )


+

Ik∑
i=1

(
R

∫ ψki+1

ψki

(uki,N )(u
k
i,N )τk (ln ρ, θk)dθk

+2
∫ ψki+1

ψki

(uki,N )θk (u
k
i,N )τkθk (ln ρ, θk)dθk

)
(3.28)

is valid.
The estimate (3.28) follows immediately from (3.27). The reader may now directly

proceed to Theorem 3.3 which is a generalization of Theorem 3.1 and refer back to the
proof, which is quite involved, later.

We need to obtain a similar estimate for T k . On each �
k

i,j ⊆ T
k

a function uki,j (x, y)

is defined. Now, this �ki,j ⊆ �p+1 and hence �ki,j = �
p+1
l for some l. We shall use �ki,j

and �p+1
l interchangeably in what follows.

We now need to obtain an energy inequality similar to Theorem 3.1 on T k . Integrating
by parts repeatedly we get
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ρ2
∫ ∫

O

(
∂2w

∂x2
+ ∂2w

∂y2

)2

dxdy

= ρ2

(∫ ∫
O

((
∂2w

∂x2

)2

+ 2

(
∂2w

∂x∂y

)2

+
(
∂2w

∂y2

)2)
dxdy

+2
∫
∂O

∂w

∂y

d

ds

(
∂w

∂x

)
ds

)
. (3.29)

Here s denotes arc length along ∂O measured from some point on it and the line integral is
evaluated in the clockwise direction and n denotes the outward normal to ∂O, the boundary
of O. Hence

ρ2
∫
�ki,N+1

∫ (
∂2uki,N+1

∂x2
+ ∂2uki,N+1

∂y2

)2

dxdy

= ρ2
∫
�ki,N+1

∫ (∂2uki,N+1

∂x2

)2

+2

(
∂2uki,N+1

∂x∂y

)2

+
(
∂2uki,N+1

∂y2

)2
 dxdy

+ 2ρ2

(∫
∂�ki,N+1

⋂(
Bkρ

)c +
∫
∂�ki,N+1

⋂(
Bkρ

)
)
∂uki,N+1

∂y

d

ds

(
∂uki,N+1

∂x

)
ds.

Here Bkρ denotes the boundary of the circle of radius ρ with center at Ak . Now a simple
calculation yields

2ρ2
∫
∂�ki,N+1

⋂
Bkρ

∂uki,N+1

∂y

d

ds

(
∂uki,N+1

∂x

)
ds

= 2
∫ ψki+1

ψki

(uki,N+1)θk (u
k
i,N+1)θkτk (ln ρ, θk)dθk

−
∫ ψki+1

ψki

((uki,N+1)
2
τk

+ (uki,N+1)
2
θk
)(ln ρ, θk)dθk

+ ρ2B(θk, (u
k
i,N+1)rk , (u

k
i,N+1)nk )(ln ρ, θk)

∣∣∣ψki+1

ψki

. (3.30)

Here

B (θ, a, b) =
(
a2 sin 2θ

2
− b2 sin 2θ

2
− 2ab sin2 θ

)
(3.31)

and

∂

∂nk
= 1

ρ

∂

∂θk
.

Next suppose�p+1
l is such that ∂�p+1

l

⋂
0m 6= φ. Then ∂�p+1

l

⋂
0m is the straight line

joining the points Dmj and Dmj+1 for m ∈ {k, k + 1} and for some 1 ≤ j ≤ Mm as shown
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Figure 4.

in figure 4. Here Mm = Jm −N . Now we can show that

2ρ2
∫
∂�

p+1
l

⋂
0m

∂u
p+1
l

∂y

d

ds

(
∂u

p+1
l

∂x

)
ds

= 2ρ2
∫
∂�

p+1
l

⋂
0m

(u
p+1
l )νm(u

p+1
l )σmσmdσm

+ ρ2B(ψm1 , (u
p+1
l )σm(u

p+1
l )νm)

∣∣∣Dmj+1

Dmj

. (3.32)

Here d /d σm denotes the tangential derivative and d /d νm the normal derivative along
0m.

Now

R

∫
�ki,N+1

∫ (∂uki,N+1

∂x

)2

+
(
∂uki,N+1

∂y

)2
 dxdy

≤ R

2K

∫
�ki,N+1

∫ (
∂2uki,N+1

∂x2
+ ∂2uki,N+1

∂y2

)2

dxdy

+ KR

2

∫
�ki,N+1

∫
(uki,N+1)

2dxdy

− R

∫ ψki+1

ψki

(uki,N+1)(u
k
i,N+1)τk (ln ρ, θk)dθk

+ R

∫
∂�ki,N+1

⋂
(Bkρ)

c

(uki,N+1)
∂(uki,N+1)

∂n
ds. (3.33)
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Similarly for �p+1
l = �ki,j with j > N + 1 we get

R

∫
�
p+1
l

∫ (∂up+1
l

∂x

)2

+
(
∂u

p+1
l

∂y

)2
 dxdy

≤ R

2K

∫
�
p+1
l

∫ (
∂2u

p+1
l

∂x2
+ ∂2u

p+1
l

∂y2

)2

dxdy

+ KR

2

∫
�
p+1
l

∫
(u
p+1
l )2dxdy + R

∫
∂�

p+1
l

u
p+1
l

∂u
p+1
l

∂n
ds. (3.34)

Let Lk =
{
l : �p+1

l ⊆ T k
}

. We can now prove the following lemma:

Lemma 3.1

∑
l∈Lk

ρ2
∫
�
p+1
l

∫ (∂2u
p+1
l

∂x2

)2

+ 2

(
∂2u

p+1
l

∂x∂y

)2

+
(
∂2u

p+1
l

∂y2

)2
 dxdy +R

∫
�
p+1
l

∫ (∂up+1
l

∂x

)2

+
(
∂u

p+1
l

∂y

)2
 dxdy


≤ (I)+ (II)+ (III)+ (IV)+ (V)+ (VI)+ (VII)+ (VIII)+ (IX)+ (X) .

(3.35)

The terms indicated by roman numerals are as follows:

(I) =
(
ρ2 + R

2K

)∑
l∈Lk

∫
�
p+1
l

∫
(1u

p+1
l (x, y))2d xdy,

(II) = KR

2

∑
l∈Lk

∫
�
p+1
l

∫
(u
p+1
l (x, y))2dxdy,

(III) =
Ik∑
i=1

{
−2

∫ ψki+1

ψki

(uki,N+1)θk (u
k
i,N+1)τkθk (ln ρ, θk)dθk

− R

∫ ψki+1

ψki

(uki,N+1)(u
k
i,N+1)τk (ln ρ, θk)dθk

}
,

(IV) = ρ

Ik∑
i=1

∫
∂�ki,N+1

⋂
Bkρ

∫
((uki,N+1)

2
x + (uki,N+1)

2
y)ds,

(V) = R
∑
l∈Lk


 ∑
γs⊆∂�p+1

l

⋂
T k

+
∑

γs⊆∂�p+1
l

⋂
∂Skc

∫
γs

u
p+1
l

∂u
p+1
l

∂n
ds

+
k+1∑
m=k

∑
γs⊆∂�p+1

l

⋂
0m

∫
γs

(u
p+1
l )(u

p+1
l )νmdσm

 ,
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(VI) = −2ρ2
∑
l∈Lk


 ∑
γs⊆∂�p+1

l

⋂
T k

+
∑

γs⊆∂�p+1
l

⋂
∂Skc


×
∫
γs

∂u
p+1
l

∂y

d

ds

(
∂u

p+1
l

∂x

)
ds.

+
k+1∑
m=k

∑
γs⊆∂�p+1

l

⋂
0m

∫
γs

(u
p+1
l )νm(u

p+1
l )σmσmdσm

 ,
(VII) = −

Ik∑
i=1

ρ2B(θk, (u
k
i,N+1)rk , (u

k
i,N+1)nk )(ln ρ, θk)

∣∣∣ψki+1

ψki

,

(VIII) = −
k+1∑
m=k

Mm−1∑
i=1

∑
l,∂�

p+1
l

⋂
0m,i 6=φ

ρ2B(ψm1 , (u
p+1
l )σm,

(u
p+1
l )νm)|

Dmi+1
Dmi

,

(IX) = −ρ2B(ψk1 , (u
k
1,N+1)σk , (u

k
1,N+1)νk )|

Gk1

DkMk

,

and (X) = −ρ2B(ψk+1
1 , (ukIk,N+1)σk+1 , (u

k
Ik,N+1)νk+1)|

Dk+1
1

GkIk+1
. (3.36)

By γs we denote an arc which is a side of ∂�p+1
l for l ∈ Lk . Here ∂/∂rk denotes the

radial derivative and ∂/∂nk the tangential derivative to the circle with center at Ak and
radius ρ, i.e., ∂/∂nk = (1/ρ)(∂/∂θk). Moreover, ∂/∂σk denotes the tangential derivative
and ∂/∂νk the normal derivative to the side 0k (figure 4). Finally 0m,i is the open subset
of the straight line 0m between the pointsDmi andDmi+1 and um+1

Im+1,N+1 denotes u1
I1,N+1 if

m = p.

Using the estimates (3.30)–(3.34) we obtain (3.35). 2

Recall from (3.2) that there exists a mappingMp+1
l from the unit square S to�

p+1
l given

by

x = X
p+1
l (ξ, η)

y = Y
p+1
l (ξ, η) .

Similarly there exists a mapping Mk
i,N+1 from S to �

k

i,N+1.
We now define another semi-norm in terms of the transformed variables ξ and η:

|v (ξ, η)|2m,S =
∑

|α|=m

∫
S

∫
|Dα1

ξ D
α2
η v(X

p+1
l (ξ, η), Y

p+1
l (ξ, η))|2dξdη.
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Let ∣∣∣Mp+1
l

∣∣∣
m,∞,S

= ess sup
(ξ,η)∈S

(
max

(
max
|α|≤m

(|DαXp+1
l |),

max
|α|≤m

(|DαYp+1
l |))). (3.37a)

Then we have the following results [3]

|u (ξ, η)|20,S ≤ C

|J
M
p+1
l

| |u|2
0,�p+1

l

≤ C |u|2
0,�p+1

l

, (3.37b)

|u (ξ, η)|21,S ≤ C
|Mp+1

l |21,∞,S

|J
M
p+1
l

| |u|2
1,�p+1

l

≤ C |u|2
1,�p+1

l

, (3.37c)

and

|u (ξ, η)|22,S ≤ C

|J
M
p+1
l

|
(|Mp+1

l |41,∞,S |u|2
2,�p+1

l

+ |Mp+1
l |22,∞,S |u|2

1,�p+1
l

)
≤ C

( |u|2
2,�p+1

l

+ |u|2
1,�p+1

l

)
. (3.37d)

Here J
M
p+1
l

denotes the Jacobian of the transformation Mp+1
l as defined in (3.3a) and

(3.3b) and |J
M
p+1
l

| = min(ξ,η)∈S |J
M
p+1
l

(ξ, η)|; note that we have used the bound given

in (3.3b) to arrive at the above results. Consider the point Dki in figure 4. Then there exist

two domains �p+1
l and �p+1

m on whose boundary Dki lies. Let

[wp+1](Dki ) = w
p+1
m (Dki )− w

p+1
l (Dki ),

where ∂�p+1
m

⋂
0k is traversed first if we travel along 0k from Dk1 to DkMk

.
Moreover let

[wp+1](Gki ) = wki,N+1(G
k
i )− wki−1,N+1(G

k
i ).

We now prove the following lemma.

Lemma 3.2

|(VII)+ (VIII)+ (IX)+ (X)| ≤ (XI)

+ 6ρ2

32

∑
l∈Lk

(
|up+1
l |2

1,�p+1
l

+ |up+1
l |2

2,�p+1
l

)
, (3.38)
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where

(XI) = C lnN

(
Ik∑
i=2

|[(up+1)x](Gki )|2 + |[(up+1)y](Gki )|2

+
k+1∑
m=k

Mm−δm,k+1∑
i=2−δm,k+1

(([(up+1)x](Dmi ))
2

+([(up+1)y](Dmi ))
2)
)

+
k+1∑
m=k

(−1)m+k−1 ρ2{B(ψm1 , uνm, uσm)}(Pm). (3.39)

Here Pm is Dk1 if m = k and Pm is Dk+1
Mk+1

if m = k + 1.

We first estimate one of the terms in the right-hand side of (3.38). Now

|ρ2 sin2(ψki ){(uki−1,N+1)rk (u
k
i−1,N+1)nk

− (uki,N+1)rk (u
k
i,N+1)nk }(Gki )|

≤ ρ2(|(uki,N+1)rk (G
k
i )||[(uki,N+1)nk ](G

k
i )|

+ |(uki−1,N+1)nk (G
k
i )||[(uki,N+1)rk ](G

k
i )|). (3.40)

Now by Corollary 4.80 of [12] we have that if a and b are real numbers such that a2+b2 = 1
and w is a smooth function defined on �p+1

l such that

w(X
p+1
l (ξ, η) , Y

p+1
l (ξ, η)) =

N∑
n=0

N∑
m=0

am,nξ
mηn

then ∣∣(awx + bwy
)
(P )

∣∣2 ≤ C (lnN)
( |w|2

1,�p+1
l

+ |w|2
2,�p+1

l

)
. (3.41)

Using (3.41) we obtain

|ρ2 sin2(ψki ){(uki−1,N+1)rk (u
k
i−1,N+1)nk

− (uki,N+1)rk (u
k
i,N+1)nk }(Gki )|

≤ C lnN{([(uki,N+1)rk ](G
k
i ))

2 + ([(uki,N+1)nk ](G
k
i ))

2}

+ ρ2

32

(
|uki,N+1|21,�ki,N+1

+ |uki,N+1|22,�ki,N+1
+ |uki−1,N+1|21,�ki−1,N+1

+ |uki−1,N+1|22,�ki−1,N+1

)
.

Treating the other terms in the same way we obtain the result. 2
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We now estimate the term (IV) in (3.36). Let w be a smooth function on�ki,N+1 . Then∫
∂�ki,N+1

⋂
Bkρ

w2ds =
∫ ψki+1

ψki

w2 (ρ, θk) ρdθk

=
∫ ψki+1

ψki

∫ ν

ρ

−ρ ∂

∂rk

(
ν − rk

ν − ρ
w2
)

drkdθk

=
∫ ψki+1

ψki

∫ ν

ρ

ρ

ν − ρ
w2drkdθk +

∫ ψki+1

ψki

∫ ν

ρ

−2ρ

(
ν − rk

ν − ρ

)
wwrkdrkdθk

≤ 1

ν − ρ

∫ ψki+1

ψki

∫ ν

ρ

w2rkdrkdθk + 2
∫ ψki+1

ψki

∫ ν

ρ

|wwrk |rkdrkdθk.

And so we obtain∫
Bkρ

⋂
∂�ki,N+1

w2ds ≤
(

1

ν − ρ
+ α

)∫ ψki+1

ψki

∫ ν

ρ

w2rkdrkdθk

+ 1

α

∫ ψki+1

ψki

∫ ν

ρ

(wrk )
2rkdrkdθk. (3.42)

for any α > 0.
Hence using (3.42) we get

(IV) = ρ

∫
∂�ki,N+1

⋂
Bkρ

((uki,N+1)
2
x + (uki,N+1)

2
y)ds

≤
(

ρ

ν − ρ
+ αρ

)∫
�ki,N+1

∫
((uki,N+1)

2
x + (uki,N+1)

2
y)dxdy

+ ρ

α

∫
�ki,N+1

∫
((uki,N+1)

2
xx + 2(uki,N+1)

2
xy + (uki,N+1)

2
yy)dxdy.

(3.43)

Choose α so large that (ρ/α) ≤ (ρ2/32) and choose R > [ρ/(ν − ρ)] + αρ + (ρ2/2).
Then combining (3.43) with Lemma 3.2, we have the result∑

l∈Lk

25

32
ρ2
∣∣up+1
l

∣∣2
2,�p+1

l

+
∑
l∈Lk

(
R − ρ

ν − ρ
− αρ

) ∣∣up+1
l

∣∣2
1,�p+1

l

≤ ((I)+ (II)+ (III)+ (V)+ (VI))+ (XI) . (3.44)

We now obtain an estimate for the term (VI) as defined in (3.36).
We shall estimate the first term in (VI). Now∣∣∣∣∣∣∣2ρ2

∑
l∈Lk

∑
γs⊆∂�p+1

l

⋂
T k

∫
γs

∂u
p+1
l

∂y

d

ds

(
∂u

p+1
l

∂x

)
ds

∣∣∣∣∣∣∣
≤ 2ρ2

∑
γs⊆T k

∣∣∣∣∣
∫
γs

[
∂u

p+1
l

∂y

d

ds

(
∂u

p+1
l

∂x

)]
ds

∣∣∣∣∣ . (3.45)
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Let us get an upper bound on a typical element in the sum, in the right-hand side of the
above inequality, which is of the form

2ρ2

∣∣∣∣∣
∫
γs

((
∂u

p+1
m

∂y

)
d

ds

(
∂u

p+1
m

∂x

)
−
(
∂u

p+1
n

∂y

)
d

ds

(
∂u

p+1
n

∂x

))
ds

∣∣∣∣∣ . (3.46)

We shall assume, to be specific, that ∂�p+1
m,l is the image of the side ξ = 1 of the square S

under the mappingMp+1
m and ∂�p+1

n,j is the image of the side ξ = 0 of S under the mapping

M
p+1
n . Recall from (3.10) and (3.11) that there exists i, j and k such that�p+1

l = �ki,j for

some i, j with j > N . Hence the mapping Mp+1
m is the mapping Mk

i,j from S to �
k

i,j as
in (3.2). This representation is needed only for 1 ≤ k ≤ p,N < j ≤ Jk and 1 ≤ i ≤ Ik,j .
Now Jk = N +O (1) and Ik,j ≤ I and hence there are a fixed number of �ki,j for which
this representation is needed even if we let N → ∞. As such we may assume

max
i,j,k,j>N

|Mk
i,j |m,∞,S ≤ Cm (3.47)

where the norm has been defined in (3.37a). Note that Cm is independent of N . We shall
impose further restrictions on Cm in the second part of this paper where we shall examine
the accuracy of our numerical scheme. Here we shall only establish the stability of our
scheme and for that an estimate of the type (3.47) is adequate. Now

∂u
p+1
m

∂x
= (u

p+1
m )ξ ξx + (u

p+1
m )ηηx, (3.48a)

and

∂u
p+1
m

∂y
= (u

p+1
m )ξ ξy + (u

p+1
m )ηηy. (3.48b)

We have that{
x = X

p+1
m (ξ, η)

y = Y
p+1
m (ξ, η)

, 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1,

Let ξ̂x (ξ, η) , η̂x (ξ, η) , ξ̂y (ξ, η) and η̂y (ξ, η) be the unique polynomials in ξ and ηwhich
are the orthogonal projections of ξx (ξ, η) , ηx (ξ, η) , ξy (ξ, η) and ηy (ξ, η) into the space
of polynomials of degree (N − 1) in each variable separately with respect to the usual
inner product in H 2

(
(0, 1)2

)
, as defined in [12]. We now define approximations to the

derivatives ∂up+1
m /∂x and ∂up+1

m /∂y as follows. Let(
∂u

p+1
m

∂x

)a
= (u

p+1
m )ξ ξ̂x + (u

p+1
m )ηη̂x, (3.49a)

and (
∂u

p+1
m

∂y

)a
= (u

p+1
m )ξ ξ̂y + (u

p+1
m )ηη̂y. (3.49b)
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Using the approximation results in [12] we have that

|ξx − ξ̂x |1,∞,S ≤ KmN
6−m ‖ξx‖m,S . (3.50)

Now ξx = (Y
p+1
m )η/J

p+1
m . Moreover by (3.47)

|Mk
i,j |m,∞,S ≤ Cm for all j > N,

and by (3.3b)

A1ρ
2 ≤ |J ki,j | ≤ A2ρ

2 for all j > N.

So it is easy to see that

|ξx − ξ̂x |1,∞,S ≤ CN−4 (3.51)

for all Mk
i,j with j > N , and N large enough. A similar result holds for ξy, ηx and ηy .

We are now in a position to prove the following lemma.

Lemma 3.3. Let γs be contained in T k . Then

2ρ2
∣∣∣∣∫
γs

[
∂up+1

∂y

d

ds

(
∂up+1

∂x

)]
ds

∣∣∣∣
≤ C (lnN)2

∥∥∥∥∥
[(

∂up+1

∂x

)a]∥∥∥∥∥
2

1/2,γs

+
∥∥∥∥∥
[(

∂up+1

∂y

)a]∥∥∥∥∥
2

1/2,γs


+ ρ2

16

2∑
l=1

(|up+1
m |2

l,�
p+1
m

+ |up+1
n |2

l,�
p+1
n

). (3.52a)

Here ∥∥∥∥∥
[(

∂up+1

∂x

)a]∥∥∥∥∥
2

1/2,γs

=
∥∥∥∥∥
(
∂u

p+1
m

∂x

)a
(1, η)−

(
∂u

p+1
n

∂x

)a
(0, η)

∥∥∥∥∥
2

1/2,(0,1)

,

(3.52b)

and ∥∥∥∥∥
[(

∂up+1

∂y

)a]∥∥∥∥∥
2

1/2,γs

=
∥∥∥∥∥
(
∂u

p+1
m

∂y

)a
(1, η)−

(
∂u

p+1
n

∂y

)a
(0, η)

∥∥∥∥∥
2

1/2,(0,1)

.

(3.52c)
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It is easy to see that∫
γs

∂u
p+1
m

∂y

d

ds

(
∂u

p+1
m

∂x

)
ds −

∫
γs

(
∂u

p+1
m

∂y

)a
d

ds

(
∂u

p+1
m

∂x

)a
ds

=
∫ 1

0

{
((u

p+1
m )ξ (ξy − ξ̂y)+ (u

p+1
m )η(ηy − η̂y))

× d

dη
((u

p+1
m )ξ ξx + (u

p+1
m )ηηx)

}
(1, η)dη

+
∫ 1

0

{
((u

p+1
m )ξ (̂ξy)+ (u

p+1
m )η(̂ηy))

× d

dη
((u

p+1
m )ξ (ξx − ξ̂x)+ (u

p+1
m )η(ηx − η̂x))

}
(1, η)dη. (3.53)

Hence

2ρ2

∣∣∣∣∣
∫
γs

∂u
p+1
m

∂y

d

ds

(
∂u

p+1
m

∂x

)
ds−

∫ 1

0

{
((u

p+1
m )ξ ξ̂y+(up+1

m )ηη̂y)

× d

dη
((u

p+1
m )ξ ξ̂x + (u

p+1
m )ηη̂x)

}
(1, η)dη

∣∣∣∣
≤ C

N4

2∑
l=1

|up+1
m |2l,∂S ≤ C

N4
(‖(up+1

m )ξ‖2
3/2,S + ‖(up+1

m )η‖2
3/2,S)

≤ C

N2
(

2∑
l=1

|up+1
m |2

l,�
p+1
m

) (3.54)

by the trace theorem and an inequality for fractional Sobolev spaces we obtain below along
with (3.37a)–(3.37d). The inequality is as follows.

Let

w (ξ, η) =
N∑
m=0

N∑
n=0

am,nξ
mηn

defined on S. Then

‖w‖2
1/2,S ≤ C ‖w‖0,S ‖w‖1,S ≤ CN2 ‖w‖2

0,S

by the interpolation inequality and the inverse inequality for differentiation in [12]. Thus
for N large enough

2ρ2

∣∣∣∣∣
∫
γs

∂u
p+1
m

∂y

d

ds

(
∂u

p+1
m

∂x

)
ds −

∫
γs

(
∂u

p+1
m

∂y

)a
d

ds

(
∂u

p+1
m

∂x

)a
ds

∣∣∣∣∣
≤ ρ2

32

2∑
l=1

|up+1
m |2

l,�
p+1
m

. (3.55)
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Now ∣∣∣∣∣
∫ 1

0

{(
∂u

p+1
m

∂y

)a
d

dη

(
∂u

p+1
m

∂x

)a}
(1, η) dη

−
∫ 1

0

{(
∂u

p+1
n

∂y

)a
d

dη

(
∂u

p+1
n

∂x

)a}
(0, η) dη

∣∣∣∣∣
≤
∣∣∣∣∣
∫ 1

0

{(
∂u

p+1
m

∂y

)a
(1, η)−

(
∂u

p+1
n

∂y

)a
(0, η)

}

× d

dη

((
∂u

p+1
m

∂x

)a
(1, η)

)
dη

∣∣∣∣∣
+
∣∣∣∣∣
∫ 1

0

(
∂u

p+1
n

∂y

)a
(0, η)

{
d

dη

((
∂u

p+1
m

∂x

)a
(1, η)

−
(
∂u

p+1
n

∂x

)a
(0, η)

)}
dη

∣∣∣∣∣ .
Clearly (∂up+1

m /∂x)a(1, η), (∂up+1
m /∂y)a(1, η), (∂up+1

n /∂x)a(0, η) and
(∂u

p+1
n /∂y)a (0, η) are polynomials in η of degree at most 2N . Hence by Theorem 4.1

2ρ2

∣∣∣∣∣
∫ 1

0

{(
∂u

p+1
m

∂y

)a
d

dη

(
∂u

p+1
m

∂x

)a}
(1, η) dη

−
∫ 1

0

{(
∂u

p+1
n

∂y

)a
d

dη

(
∂u

p+1
n

∂x

)a}
(0, η) dη

∣∣∣∣∣
≤ C

K
(lnN)2


∥∥∥∥∥
(
∂u

p+1
m

∂y

)a
(1, η)−

(
∂u

p+1
n

∂y

)a
(0, η)

∥∥∥∥∥
2

1/2,(0,1)

+
∥∥∥∥∥
(
∂u

p+1
m

∂x

)a
(1, η)−

(
∂u

p+1
n

∂x

)a
(0, η)

∥∥∥∥∥
2

1/2,(0,1)


+K


∥∥∥∥∥
(
∂u

p+1
m

∂x

)a
(1, η)

∥∥∥∥∥
2

1/2,(0,1)

+
∥∥∥∥∥
(
∂u

p+1
n

∂y

)a
(0, η)

∥∥∥∥∥
2

1/2,(0,1)

 ,
(3.56)

for any K > 0.
Now ∥∥∥∥∥

(
∂u

p+1
m

∂x

)a
(1, η)

∥∥∥∥∥
1/2,(0,1)

≤ C1(‖̂ξx‖1,∞,(0,1)‖(up+1
m )ξ (1, η)‖1/2,(0,1)

+ ‖η̂x‖1,∞,(0,1)‖(up+1
m )η‖1/2,(0,1)).
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Using the above estimate, the trace theorem and (3.37a)–(3.37d) we get∥∥∥∥∥
(
∂u

p+1
m

∂x

)a
(1, η)

∥∥∥∥∥
2

1/2,(0,1)

≤ C

2∑
l=1

|up+1
m |2

l,�
p+1
m

. (3.57)

Substituting the above estimates into (3.56) and choosingK small enough we can conclude
that

2ρ2

∣∣∣∣∣
∫ 1

0

{(
∂u

p+1
m

∂y

)a
d

dη

(
∂u

p+1
m

∂x

)a}
(1, η) dη

−
∫ 1

0

{(
∂u

p+1
n

∂y

)a
d

dη

(
∂u

p+1
n

∂x

)a}
(0, η) dη

∣∣∣∣∣
≤ C (lnN)2


∥∥∥∥∥
(
∂u

p+1
m

∂y

)a
(1, η)−

(
∂u

p+1
n

∂y

)a
(0, η)

∥∥∥∥∥
2

1/2,(0,1)

+
∥∥∥∥∥
(
∂u

p+1
m

∂x

)a
(1, η)−

(
∂u

p+1
n

∂x

)a
(0, η)

∥∥∥∥∥
2

1/2,(0,1)


+ ρ2

32

(
2∑
l=1

|up+1
m |2

l,�
p+1
m

+ |up+1
n |2

l,�
p+1
n

)
. (3.58)

Hence we get the required result. 2

Finally

2ρ2

∣∣∣∣∣
∫
∂�

p+1
l

⋂
0m

(u
p+1
l )νm(u

p+1
l )σmσmdσm

∣∣∣∣∣
= 2ρ2

∣∣∣∣∫ {
(u
p+1
l )νm

d

dη
((u

p+1
l )σm)

}
(1, η) dη

∣∣∣∣
or a similar expression.

Now

(u
p+1
l )σm(1, η) = A (η) (u

p+1
l )η (1, η) ,

and

(u
p+1
l )νm(1, η) = B(η)(u

p+1
l )ξ (1, η)+ C (η) (u

p+1
l )η (1, η) .

The form of the expressions B (η) and C (η) do not matter except that they are analytic
functions of η involving Xp+1

l , Y
p+1
l and their derivatives at (1, η). Hence we can bound

the derivatives of B and C as in (3.48a)–(3.51). Let Â (η) be the unique polynomial that
is the orthogonal projection of A (η) into the space of polynomials of degree N − 1 with
respect to the usual norm defined on H 2 (0, 1). We now define

(u
p+1
l )aσm(1, η) = Â(η)(u

p+1
l )η(1, η),
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and

(u
p+1
l )aνm(1, η) = B̂(η)(u

p+1
l )ξ (1, η)+ Ĉ(η)(u

p+1
l )η(1, η).

It is easy to prove as we did the estimate (3.52a)–(3.52c) that

2ρ2
∣∣∣∣∫
γs

{(up+1
l )νm(u

p+1
l )σmσm}dσm

∣∣∣∣
≤ C (lnN)2 ‖(up+1

l )aσm‖2
1/2,γs + ρ2

32

(
2∑
i=1

|up+1
l |2

i,�
p+1
l

)
, (3.59a)

where γs ⊆ 0m
⋂
∂�

p+1
l for some m ∈ {k, k + 1}.

Here

‖(up+1
l )aσm‖2

1/2,γs = ‖(up+1
l )aσm(1, η)‖2

1/2,(0,1). (3.59b)

Hence using the estimates (3.52a)–(3.52c) and (3.59a) and (3.59b) we obtain

|(VI)| ≤ (XII)+
∑
l∈Lk

ρ2

8

2∑
i=1

|up+1
l (x, y)|2

i,�
p+1
l

(3.60a)

where

(XII) = C (lnN)2

 ∑
γs⊆T k

(‖[(up+1)ax]‖2
1/2,γs + ‖[(up+1)ay]‖2

1/2,γs )

+

 k+1∑
m=k

∑
l∈Lk

∑
γs⊆∂�p+1

l

⋂
0m

‖(up+1
l )aσm‖2

γs




− 2ρ2
∑
l∈Lk

∑
γs⊆∂Skc

⋂
∂�

p+1
l

∫
γs

∂u
p+1
l

∂y

d

ds

(
∂u

p+1
l

∂x

)
ds. (3.60b)

Now using Lemma 4.1 and (3.3a) and (3.3b) we get

∑
l∈Lk

|up+1
l (x, y)|2

0,�p+1
l

≤ T

 ∑
γs⊆T k

|[up+1]|20,γs

+

 k+1∑
m=k

∑
l∈Lk

∑
γs⊆∂�p+1

l

⋂
0m

|up+1
l |20,γs

+
∑
l∈Lk

|up+1
l (x, y) |2

1,�p+1
l

 .
(3.61)

Here the constant T is independent of N .
Choose

R >
ρ

ν − ρ
+ αρ + (T + 1) ρ2.
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Adding

Tρ2


∑
γs⊆T k

|[up+1]|20,γs +

 k+1∑
m=k

∑
l∈Lk

∑
γs⊆∂�p+1

l

⋂
0m

∣∣∣up+1
l

∣∣∣2
0,γs




to both sides of (3.44) we obtain∑
l∈Lk

(
ρ2|up+1

l (x, y) |2
0,�p+1

l

+
(
R − ρ

ν − ρ
− αρ − Tρ2

)
|up+1
l (x, y) |2

1,�p+1
l

+21

32
ρ2|up+1

l (x, y) |2
2,�p+1

l

)
≤ ((I)+ (II)+ (III)+ (V))+ ((XI)+ (XII))

+ Tρ2

 ∑
γs⊆T k

‖[up+1]‖2
0,γs

+

 k+1∑
m=k

∑
l∈Lk

∑
γs⊆∂�p+1

l

⋂
0m

‖up+1
l ‖2

0,γs


 . (3.62)

We now have to approximate

|1up+1
l |2

0,�p+1
l

=
∫
�
p+1
l

∫
(1u

p+1
l )2dx dy.

Now

1u
p+1
l = a

p+1
l (u

p+1
l )ξξ + 2bp+1

l (u
p+1
l )ξη + c

p+1
l (u

p+1
l )ηη

+ d
p+1
l (u

p+1
l )ξ + e

p+1
l (u

p+1
l )η.

Hence ∫
�
p+1
l

∫
(1u

p+1
l )2dx dy =

∫
(0,1)×(0,1)

∫
(L
p+1
l u

p+1
l )2d ξ dη,

where

L
p+1
l w = A

p+1
l wξξ + 2Bp+1

l wξη + C
p+1
l wηη +D

p+1
l wξ + E

p+1
l wη,

and Ap+1
l = a

p+1
l

√
J
p+1
l , etc. Let Âp+1

l denote the unique polynomial which is the

orthogonal projection of Ap+1
l into the space of polynomials of degree N − 1 in ξ and η

with respect to the usual inner product inH 2 (S). We define B̂p+1
l , Ĉ

p+1
l , D̂

p+1
l and Êp+1

l

in the same way.
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Let

(L
p+1
l )aw = Â

p+1
l wξξ + 2B̂p+1

l wξη + · · · .

Then it is easy to prove that for N large enough

(I) =
∑
l∈Lk

(
ρ2 + R

2K

)∫
�
p+1
l

∫
(1u

p+1
l )2dx dy

≤
∑
l∈Lk

2

(
ρ2 + R

2K

)∫
S

∫
((L

p+1
l )au

p+1
l )2d ξ dη

+ ρ2

16

∥∥up+1
l

∥∥2
2,S . (3.63)

Substituting K = ρ2/2R in (II) and estimating the term (V) as before along with the
above estimates we obtain

∑
l∈Lk

ρ2

2

∥∥up+1
l

∥∥2
2,S

≤ C (lnN)2
((∑

l∈Lk
‖(Lp+1

l )au
p+1
l (ξ, η)‖2

0,S

)

+
∑
γs⊆T k

(‖[up+1]‖2
0,γs + ‖[(up+1)ax]‖2

1/2,γs + ‖[(up+1)ay]‖2
1/2,γs )

+
k+1∑
m=k

∑
γs⊆∂T k

⋂
0m

(‖up+1‖2
0,γs + ‖(up+1)aσm‖2

1/2,γs )


+

∑
γs⊆∂Skc

(∫
γs

Rup+1 ∂u
p+1

∂n
ds − 2ρ2

∫
γs

∂up+1

∂y

d

ds

(
∂up+1

∂x

)
ds

)
+ (III)+ (XI) . (3.64)

Here (III) is as defined in (3.36) and (XI) is as defined in (3.39).
We are now in a position to prove an energy inequality for the subdomain Sk which we

state in the following theorem.

Theorem 3.2. Consider the subdomain Sk . Then for N large enough

1

8

N∑
j=1

Ik∑
i=1

‖uki,j (τk, θk) ‖2
2,�̃ki,j

+ α

8

∑
l∈Lk

‖up+1
l (ξ, η) ‖2

2,�p+1
l

≤ {(1)+ (2)+ (3)+ (4)} , (3.65)
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where

(1) = C (lnN)2
(

N∑
j=2

Ik∑
i=1

‖1uki,j (τk, θk)‖2
0,�̃ki,j

+
∑
γ̃l⊆�̃k

(‖[uk]‖2
0,γ̃l + ‖[ukτk ]‖2

1/2,γ̃l + ‖[ukθk ]‖2
1/2,γ̃l )

+
k+1∑
m=k

∑
γ̃l⊆0̃m

⋂
∂�̃k

(‖uk‖2
0,γ̃l + ‖ukτk‖2

1/2,γ̃l )

 ,
(2) = C (lnN)2

( ∑
γ̃l⊆B̃kρ

(‖[uk]‖2
0,γ̃l + ‖[(uk)aτk ]‖2

1/2,γ̃l

+ ‖[(uk)aθk ]‖2
1/2,γ̃l )

)
,

(3) = C (lnN)2
(∑
l∈Lk

‖(Lp+1
l )au

p+1
l (ξ, η)‖2

0,S

+
∑
γs⊆T k

(‖[up+1]‖2
0,γs + ‖[(up+1)ax]‖2

1/2,γs+‖[(up+1)ay]‖2
1/2,γs )

+
k+1∑
m=k

∑
γs⊆∂T k

⋂
0m

(‖up+1‖2
0,γs + ‖(up+1)aσm‖2

1/2,γs )

)
,

and

(4) =
k+1∑
m=k

(−1)m−k+1 (ρ2B(ψm1 , u
k
νm
, ukσm)) (Pm)

+
∑

γs⊆∂Skc

∫
γs

(
Ruk

∂uk

∂n
− 2ρ2 ∂u

k

∂y

d

ds

(
∂uk

∂x

))
ds.

By (3.37a)–(3.37d) there exists a positive constant α such that

α‖up+1
l (ξ, η)‖2

2,S ≤ ρ2‖up+1
l (x, y) ‖2

2,�p+1
l

(3.66)

for all �p+1
l ⊆ T k and for all k.

Then combining (3.27) and (3.64) and using (3.66) we obtain

1

2

N∑
j=1

Ik∑
i=1

‖uki,j (τk, θk)‖2
2,�̃ki,j

+ α

2

∑
l∈Lk

‖up+1
l (ξ, η)‖2

2,S

≤ {(1)+ (3)+ (4)} + (XIII)+ (XIV)+ (XV) . (3.67)
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Here

(XIII) = C lnN

( Ik∑
i=2

(|[(uk)τk ](Gki )|2 + |[(uk)θk ](Gki )|2)

+
k+1∑
m=k

Mm−δm,k+1∑
i=2−δm,k+1

(|[(up+1)x](Dmi )|2+|[(up+1)y](Dmi )|2)
)
.

The remaining two terms are

(XIV) = R

(
Ik∑
i=1

∫ ψki+1

ψki

((uki,N )(u
k
i,N )τk

− (uki,N+1)(u
k
i,N+1)τk )(ln ρ, θk)d θk

)
,

and

(XV) = 2

( Ik∑
i=1

∫ ψki+1

ψki

((uki,N )θk (u
k
i,N )τkθk

− (uki,N+1)θk (u
k
i,N+1)τkθk )(ln ρ, θk)d θk

)
.

Once more using Theorem 4.1 we can show that

|(XIV)| + |(XV)|

≤ C (lnN)2

 ∑
γ̃l⊆B̃kρ

(‖[(uk)]‖2
0,γ̃l+‖[(uk)aτk ]‖2

1/2,γ̃l+‖[(uk)aθk ]‖2
1/2,γ̃l )


+ 1

32

Ik∑
i=1

‖uki,N (τk, θk)‖2
2,�̃ki,N

+ α

32

Ik∑
i=1

‖uki,N+1(x, y)‖2
2,�ki,N+1

. (3.68)

We now consider the term |[(up+1)x](Dmi )|2. There exist two domains�p+1
t and�p+1

s

such that ∂�p+1
s

⋂
∂�

p+1
t = γl and Dmi is an end point of the curve γl . Let us assume

that γl
⋂
∂�

p+1
t is the image of the mapping Mp+1

t of the boundary η = 1 of S and
γl
⋂
∂�

p+1
s is the image of the mapping Mp+1

s of the boundary η = 0 of S. Further let
Dmi correspond to the image of the point ξ = 0 for both these cases.

Now

|[(up+1)x](Dmi )|2

≤ 3{(((up+1
t )ax(ξ, 1)− (u

p+1
s )ax(ξ, 0))|ξ=0)

2

+ (((u
p+1
t )x − (u

p+1
t )ax)(ξ, 1)|ξ=0)

2

+ (((u
p+1
s )x − (u

p+1
s )ax)(ξ, 0)|ξ=0)

2}. (3.69)

Moreover ((up+1
t )ax(ξ, 1)− (u

p+1
s )ax(ξ, 0)) is a polynomial in ξ of degree at most 2N .
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Now by Theorem 4.79 of [12] we have that if p (s) is polynomial of degree M defined
on [0, 1] then

‖p‖2
L∞[0,1] ≤ C (1 + lnM) ‖p‖2

1/2,[0,1] .

Hence we obtain

3(((up+1
t )ax(ξ, 1)− (u

p+1
s )ax(ξ, 0))|ξ=0)

2

≤ K lnN‖[(up+1)ax]‖2
1/2,γl .

Now

|((up+1
t )x − (u

p+1
t )ax)(0, 1)|2

≤ 2(|((up+1
t )ξ (ξx − ξ̂x))(0, 1)|2 + |((up+1

t )η(ηx − η̂x))(0, 1)|2).
Using (3.51) and the Sobolev’s embedding theorem we can conclude that

|((up+1
t )x − (u

p+1
t )ax)(0, 1)|2 ≤ C

N4
‖up+1
t (ξ, η)‖2

5/2,S .

And as before we can show

|((up+1
t )x − (u

p+1
t )ax)(0, 1)|2 ≤ C

N2
‖up+1
t (ξ, η)‖2

2,S .

Choosing N large enough we obtain

|((up+1
t )x − (u

p+1
t )ax)(0, 1)|2 ≤ α

32
‖up+1
t (ξ, η)‖2

2,S .

And so we can conclude that

C lnN

(
k+1∑
m=k

(|[(up+1)x](Dmi )|2 + |[(up+1)y](Dmi )|2)
)

≤ K (lnN)2
( k+1∑
m=k

∑
γs⊆∂T k

⋂
0m

(‖[(up+1)ax]‖2
1/2,γs

+ ‖[(up+1)ay]‖2
1/2,γs )

)
+ 12α

32

∑
l∈Lk

‖up+1
l ‖2

2,S . (3.70)

In the same way, we can conclude that

C lnN
Ik∑
i=2

(|[(uk)τk ](Gki )|2 + |[(uk)θk ](Gki )|2)

≤ K (lnN)2

 ∑
γ̃l⊆B̃kρ

(‖[(uk)τk ]‖2
1/2,γ̃l + ‖[(uk)θk ]‖2

1/2,γ̃l )

 . (3.71)

Substituting (3.68), (3.70) and (3.71) into (3.67) we get the required result. 2

We have now obtained an energy inequality for any of the p subdomains Sk into which
we had divided our original domain. Combining these estimates we can now prove the
main theorem of this paper which can be interpreted as a stability estimate for the whole
domain.
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Theorem 3.3. Consider the whole domain �. Then for N large enough there exists a
constant C such that

p∑
k=1

N∑
j=2

Ik∑
i=1

‖uki,j (τk, θk)‖2
2,�̃ki,j

+
L∑
l=1

‖up+1
l (ξ, η)‖2

2,S

≤ C (lnN)2
{( p∑

k=1

N∑
j=2

Ik∑
i=1

‖1uki,j (τk, θk)‖2
0,�̃ki,j

+
p∑
k=1

∑
γ̃l⊆�̃k

(‖[(uk)]‖2
0,γ̃l + ‖[(uk)τk ]‖2

1/2,γ̃l + ‖[(uk)θk ]‖2
1/2,γ̃l )

+
p∑
k=1

k+1∑
m=k

∑
γ̃l⊆0̃m

⋂
∂�̃k

(‖(uk)‖2
0,γ̃l + ‖(uk)τk‖2

1/2,γ̃l )

)

+
 p∑
k=1

∑
γ̃l⊆B̃kρ

(‖[(uk)]‖2
0,γ̃l+‖[(uk)aτk ]‖2

1/2,γ̃l+‖[(uk)aθk ]‖2
1/2,γ̃l )


+
( L∑
l=1

‖((Lp+1
l )au

p+1
l )(ξ, η)‖2

0,S

+
∑

γs⊆�p+1

(‖[(up+1)]‖2
0,γs+‖[(up+1)ax]‖2

1/2,γs+‖[(up+1)ay]‖2
1/2,γs )

+
p∑
k=1

∑
γs⊆∂�p+1

⋂
0k

(‖(up+1)‖2
0,γs + ‖(up+1)aσk‖2

1/2,γs )

) . (3.72)

Here (Lp+1
l )au

p+1
l (ξ, η) is the approximate representation of the elliptic differen-

tial operator Lp+1
l acting on up+1

l (ξ, η) as defined immediately after (3.62). Moreover

(∂u
p+1
l /∂x)a and (∂up+1

l /∂y)a are the approximate representations of the derivatives

∂u
p+1
l /∂x and ∂up+1

l /∂y in (ξ, η) variables as defined in (3.48a)–(3.49b). Similarly
‖(up+1)aσk‖2

1/2,γs
is the approximate representation of ‖(up+1)σk‖2

1/2,γs
as defined in

(3.59b) where (up+1)σk denotes the tangential derivative of up+1 along 0k . This represen-
tation is obtained by replacing the coefficients of these differential operators, which are
analytic functions of ξ and η, by polynomials approximations of degree at most (N − 1)
in each of the degrees of freedom of the function elements in their respective domains.

Summing the estimate (3.65) in Theorem 3.2 over k and estimating terms as before the
result follows. 2

4. Technical results

In this section we prove the results which we frequently refer to in §3.

Lemma 4.1. Let w (θ) be a piecewise smooth function defined for θ ∈ [
θ1, . . . θM+1

]
which has discontinuities only at the points θ2, θ3, . . . θM . Then
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∫ θM+1

θ1

w2 (θ) dθ ≤ 2

(
(θM+1 − θ1)

2

2

M∑
k=1

∫ θk+1

θk

(
dw

dθ

)2

dθ

+M (θM+1 − θ1)

(
w2(θ1)+

M∑
j=2

(w(θ+
j )− w(θ−

j ))
2)

))
. (4.1)

Here

w(θ+
j ) = lim

θ>θj ,θ→θj
w (θ) ,

and

w(θ−
j ) = lim

θ<θj ,θ→θj
w (θ) .

Define a function s(θ) as follows:

s (θ) =
{

w (θ1) for θ1 ≤ θ < θ2,

w (θ1)+∑k
j=2(w(θ

+
j )− w(θ−

j )) for θk ≤ θ < θk+1, 2 ≤ k ≤ M
.

Then w (θ) may be written as

w (θ) = h(θ)+ s(θ)

where h(θ) is a continuous function which is differentiable a.e.
Moreover h(θ1) = 0. Now∫ θM+1

θ1

w2 (θ) dθ ≤ 2

(∫ θM+1

θ1

h2(θ) dθ +
∫ θM+1

θ1

s2(θ) dθ

)
.

Clearly

h(θ) =
∫ θ

θ1

dh

dφ
dφ.

Hence

h2 (θ) ≤ (θ − θ1)

∫ θM+1

θ1

(
dh

dθ

)2

dθ.

From which we can conclude that∫ θM+1

θ1

h2 (θ) dθ ≤ (θM+1 − θ1)
2

2

∫ θM+1

θ1

(
dh

dθ

)2

dθ.

Now ∫ θM+1

θ1

s2 (θ) d θ ≤ (w (θ1))
21θ1

+
M∑
k=2

k1θk

(
(w(θ1))

2 +
k∑
j=2

(w(θ+
j )− w(θ−

j ))
2

)

≤ M (θM+1 − θ1)

(
(w (θ1))

2 +
M∑
j=2

(w(θ+
j )− w(θ−

j ))
2

)
.



638 Pravir Dutt, Satyendra Tomar and Rathish Kumar

And so we obtain the estimate. 2

Theorem 4.1. Let ap (s) and bp (s) be polynomials of degree P on the finite interval
[α, β]. Then∣∣∣∣∫ β

α

aP (s)
dbP (s)

ds
ds

∣∣∣∣ ≤ C lnP ‖aP ‖1/2,(α,β)‖bP ‖1/2,(α,β). (4.2)

Here ‖‖s,� denotes the fractional Sobolev norm onHs (�) as defined in [9], when s is not
an integer. Now for any 0 < ε < 1

2 we have∣∣∣∣∫ β

α

aP (s)
dbP (s)

ds
ds

∣∣∣∣ ≤ ‖aP ‖1/2−ε,(α,β)‖dbP

ds
‖−1/2+ε,(α,β) (4.3)

since the space of infinitely differentiable functions with compact support in (α, β) is dense
in Wt

q (α, β) for 0 ≤ t ≤ 1/q by Theorem 1.4.2.4 of [9].
Next using Theorem 1.4.4.6 of [9] we have the result that the differentiation operator is

a continuous linear operator from Wt
q (α, β) to Wt−1

q (α, β), except when t = 1/q, with

norm proportional to 1/
∣∣∣t − 1

q

∣∣∣. Thus we can conclude that∥∥∥∥dbP

ds

∥∥∥∥−1/2+ε,(α,β)
≤ K

ε
‖bP ‖(1/2)+ε,(α,β). (4.4)

Now by the interpolation inequality from [9]

‖bP ‖(1/2)+ε,(α,β) ≤ C‖bP ‖1−2ε
1/2,(α,β)‖bP ‖2ε

1,(α,β). (4.5)

And by the inverse inequality for differentiation in [12]

‖bP ‖2,(α,β) ≤ CP 2‖bP ‖1,(α,β). (4.6)

Once more by the interpolation inequatlity

‖bP ‖1,(α,β) ≤ C‖bP ‖1−1/3
1/2,(α,β)‖bP ‖1/3

2,(α,β)

and from (4.6) we can conclude that

‖bP ‖1,(α,β) ≤ CP 2/3‖bP ‖1/3
1,(α,β)‖bP ‖1−1/3

1/2,(α,β).

This gives us the inverse inequality for fractional Sobolev norms

‖bP ‖1,(α,β) ≤ CP ‖bP ‖1/2,(α,β). (4.7)

Using (4.5) and (4.7) we get

‖bP ‖1/2+ε,(α,β) ≤ CP 2ε‖bP ‖1/2,(α,β). (4.8)

Next it is easy to see that

‖aP ‖(1/2)−ε,(α,β) ≤ C‖aP ‖1/2,(α,β). (4.9)

Substituting the relations (4.4), (4.8) and (4.9) in (4.3) we get∣∣∣∣∫ β

α

aP (s)
dbP (s)

ds
ds

∣∣∣∣ ≤ K

ε
P 2ε‖aP ‖1/2,(α,β)‖bP ‖1/2,(α,β). (4.10)

Taking the minimum over positive ε we get the required result. 2
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