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Abstract.  In a series of papers of which this is the first we study how to solve
elliptic problems on polygonal domains using spectral methods on parallel computers.
To overcome the singularities that arise in a neighborhood of the corners we use a
geometrical mesh. With this mesh we seek a solution which minimizes a weighted
squared norm of the residuals in the partial differential equation and a fractional Sobolev
norm of the residuals in the boundary conditions and enforce continuity by adding a term
which measures the jump in the function and its derivatives at inter-element boundaries,
in an appropriate fractional Sobolev norm, to the functional being minimized. Since the
second derivatives of the actual solution are not square integrable in a neighborhood of
the corners we have to multiply the residuals in the partial differential equation by an
appropriate power of r,, where r;, measures the distance between the point P and the
vertex Ay in a sectoral neighborhood of each of these vertices. In each of these sectoral
neighborhoods we use a local coordinate system (tx, ;) where 7, = Inr, and (¢, 6;)
are polar coordinates with origin at Ay, as first proposed by Kondratiev. We then derive
differentiability estimates with respect to these new variables and a stability estimate for
the functional we minimize.

In [6] we will show that we can use the stability estimate to obtain parallel precondi-
tioners and error estimates for the solution of the minimization problem which are nearly
optimal as the condition number of the preconditioned system is polylogarithmic in N,
the number of processors and the number of degrees of freedom in each variable on each
element. Moreover if the data is analytic then the error is exponentially small in N .

Keywords. Corner singularities; geometrical mesh; modified polar coordinates; quasi-
uniform mesh; fractional Sobolev norms; stability estimate; polylogarithmic bounds.

1. Introduction

This is the first part of a series of four papers, the other three being, h-p Spectral element
methods for Dirichlet problems on parallel computers [6], h-p Spectral element methods
for mixed problems on parallel computers [7] and h-p Spectral element methods for elliptic
boundary value problems — The general case [8].

Current formulations of spectral methods to solve elliptic problems in nonsmooth
domains allow us to recover only algebraic convergence [10]. One method, which yields
relatively fast convergence, makes use of a conformal mapping of the form z = £¢ to
smooth out the singularity that occurs at the corner and is referred to as the method of
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auxiliary mapping. However, ‘even though the conformal mapping is an effective way of
enhancing convergence, exponential convergence cannot be fully recovered’ [10].

A method for obtaining a numerical solution to exponential accuracy for elliptic prob-
lems with analytic coefficients posed on curvilinear polygons whose boundary is piece-
wise analytic with mixed Neumann and Dirichlet boundary conditions, was first proposed
by Babuska and Guo [1,2] within the framework of the finite element method. They
were able to resolve the singularities which arise at the corners by using a geometrical
mesh.

We also use a geometrical mesh to solve the same class of problems to exponential accu-
racy using h-p spectral element methods but with an important difference. The geometrical
mesh becomes geometrically fine in a neighborhood of each of the corners. In a neighbor-
hood of the corner A; we switch to new variables (i, 6;) where t; = Inr; and (r, 6%)
are polar coordinates with origin at Ax. In doing so the geometrical mesh is reduced to a
quasi-uniform mesh in a sectoral neighborhood of the corners and so Sobolev’s embedding
theorems and the trace theorems for Sobolev spaces apply for functions defined on mesh
elements in these new variables with a uniform constant. These new variables, which we
shall refer to as modified polar coordinates, were first used by Kondratiev in his seminal
paper [11]. Away from these sectoral neighborhoods of the corners we retain (x, y) vari-
ables for our coordinate system. Thus we also use the auxiliary map z = log & to remove
the singularities at the origin and this enables us to obtain the solution with exponential
accuracy.

By subtracting an analytic function from the solution if necessary, we may assume that
the Dirichlet data vanishes at the corners. We seek an approximate solution which vanishes
at the corner-most elements and is a sum of tensor product of polynomials of degree N
in 7% and 6 in the remaining elements of the sectoral neighborhood of the corners. The
remaining quadrilateral elements are mapped to the unit square S and the approximate
solution is represented as a sum of tensor products of polynomials of degree N in & and 7,
the transformed variables. If Neumann boundary conditions are imposed on both the sides
which meet at the corner, the approximate solution at corner-most elements is represented
by a constant, instead of zero.

We now seek a solution as in [4] which minimizes the sum of the squares of a weighted
squared norm of the residuals in the partial differential equation and the sum of the squares
of the residuals in the Dirichlet boundary conditions in an appropriate Sobolev norm and
enforce continuity by adding a term which measures the sum of the squares of the jump in
the function and the squares of the jump in its derivatives across inter-element boundaries
in appropriate Sobolev norms to the functional being minimized as a penalty term. Since
the residuals in the partial differential equation blow up in a neighborhood of the corners,
we have to multiply these residuals by an appropriate power of 7, where r; measures the
distance between the point P and Aj. All these computations are done using modified
polar coordinates in a sectoral neighborhood of the corners and a global coordinate system
elsewhere.

In [6,7] we restrict ourselves to examining the Poisson’s equation with Dirichlet bound-
ary conditions on a polygon. In this paper we obtain differentiability estimates in modified
polar coordinates and prove the stability theorem 3.3 on which our method is based. Since
the statement of this theorem may appear complicated we try and provide motivation for
it by stating the stability theorem 3.1 for a simpler case.

For the Dirichlet problem we use spectral element functions which are nonconforming.
To solve the minimization problem we have defined, we need to solve the normal equations
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for the least-squares problem corresponding to collocating the partial differential equation
and boundary conditions at an over-determined set of collocation points and enforcing
continuity of the function and its derivatives at the collocation points at inter-element
boundaries, suitably weighted. However, we do not need to compute and store any matrices,
like the mass and stiffness matrices, to compute the residual in the normal equations [5].

We can precondition the normal equations by using a preconditioner which is of block
diagonal form and which allows the solutions for different elements to decouple completely.
Moreover, this is nearly optimal as the condition number of the preconditioned system is
polylogarithmic in N, which is proportional to the number of processors and the number
of degrees of freedom in each variable on each element. Finally we show that the error
we commit is exponentially small in N and provide computational results for a model
problem.

In [7] we will examine how to solve the Poisson’s equation with mixed Dirichlet and
Neumann boundary conditions. For the purely Dirichlet problem our spectral element
functions were nonconforming and hence there were no common boundary values to solve
for. This no longer holds for problems with mixed boundary conditions. Here our spectral
element functions are essentially nonconforming except that they are continuous at the
vertices of the elements on which they are defined. Hence our set of common boundary
values are the values of the function at the vertices of the elements. Thus the cardinality of
the set of common boundary values is proportional to the number of elements and is much
smaller than the cardinality of common boundary values for the finite element method,
which is the set of values of the functions along the edges of their elements.

In order to solve the system of normal equations we need to be able to compute a pre-
conditioner for the Schur complement system corresponding to the common boundary
values. Since the dimension of the system is small we can compute an accurate approx-
imation to the Schur complement. This is in contrast to the methodology for the finite
element method where complex techniques have to be used to obtain a preconditioner for
the Schur complement matrix. Moreover the computational complexity for our scheme is
less than for finite element methods. Thus the method we propose can be thought of as a
vertex based method. Once again we provide computational results for a model problem.

In [8] we will generalize all our results to elliptic problems with analytic coefficients,
posed on curvilinear polygons with piecewise analytic boundaries, which satisfy the
Babuska—Brezzi inf-sup conditions. We should mention that once we have obtained our
approximate solution consisting of nonconforming spectral element functions we can
make a correction to it so that the corrected solution is conforming and is an expo-
nentially accurate approximation to the actual solution in the H' norm over the whole
domain.

Computational results for a model problem with Dirichlet boundary conditions have
been provided in [6]. Again in §5 of [7] computational results have been provided for a
model problem with mixed Neumann and Dirichlet boundary conditions.

2. Function spaces and a priori estimates

Let 2 be a polygon with vetices Ay, A2, ... , A, and corresponding sides I'y, I'z, ... , '),
where I'; joins the points A; 1 and A; (figure 1). In addition let the angle subtended at A ;
be w;. In this paper we shall examine the solution of the problem

Au=f for (x,y) € Q, (2.1a)
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Figure 1.

with Dirichlet boundary conditions
u=g;j for (x,y) €T,
or
u=g"  for (x,y) eI’ =5Q. (2.1b)

Let Z denote the point Z = (x, y). We now need to review a set of a priori estimates
proved in [1]. Let H™ (2) denote the completion of the space of infinitely differentiable
functions with respect to the norm

ol o= //|D%|2dxdy.

le|<m
Let p; denote the Euclidean distance between A; and Z, i.e., p; = |Z — A;|. We then
define r; = min(1, p;). We shall let 8 denote the multi-index 8 = (,31,,32, ... ,ﬂp).
Further, we define ®4 (2) = n’_ b (Z2). By H/;"’l (€2) we denote the completion of

i=1"i
infinitely differentiable functions with respect to the norm

m
2 2 2
1ol gy = N0U7-1 ) + > IDvepiit] g, 121
k=l,|c|=k

as defined in [1].

Let H /;" —l20=172 (") be the space of functions ¢; such that there exists f € Hg”l ()
so that f|r; = ¢; and define

Njll m—rzi-12 oy = inf | fll ymi g -
’ Hﬁ (r!) fEHgl'l(Q) H/3 €

Let

Uh () = {u(2) |u € H"' (), m > 1)
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and

By () = {u(2) [u € Y (). I1D"ulPpyi—ill 2 < Cd* (k — 1)
for || =k=1,1+1,...,d > 1, C independent of k}.

Let Q C R? be an open set with a piecewise analytic boundary 8 Q and let y be part or
whole of the boundary 9 Q. Finally let ‘Bf{l/ 2 (y),0 <1 < 2,be the space of all functions
@ for which there exists f € %fs (Q) such that f = ¢ on y.

We now cite the important regularity theorem 2.1 of [1]. Let f € %%, g e
%73/2 (rio, g = (Bi. Bas-.. . Bp).0 < Bi < 1,Bi > 1 — m/w;. Then Problem (2.1)
has a unique solution in H' () and u € ‘B% ().

Now in §4 of [2] it has been shown that when g[o] is analytic on every closed arc T, and
g!% is continuous on I'"1 then gl% e %%/ 2(F [01), Further if f is analytic then it belongs
to EB%.

Next as in [2] we introduce the space Q%:

€} ={ueHy> (1D (2)| < Cd* kN Prip1 (2) 7,
el =k=1,2,...,C > 1,d > 1 independent of k}.

The relationship between (C% and %% is given by Theorem 2.2 of [2] which we state as
follows:

B (Q) € ¢

Finally we need one last result from [2], viz. Lemma 2.1 which is stated below.
Letu € Hé’z (€2). Then u is continuous on €2 and

Since we are assuming that the data, g1, ... , g, are analytic and compatible at the vertices
the values of u at the vertices Ay, A2, ..., A, are well-defined. Thus if we subtract from
u an analytic function which assumes these values at the vertices then the difference would
satisfy (2.1) with a modified set of analytic data and the Dirichlet boundary data would
assume the value zeroat Ay, A, ... , A,. Hence without loss of generality we may assume
gj-1 (Aj) = gj(Aj) =0for j > 1and g, (A1) =0.

We now define one last norm which will be needed in the sequel. Let

) Vi plnp 5
. . X = o] o) . .
1 0010 oo iy = 2 /W_ f_oo | DY Duldz; ;.

lee|<m

2.2)

LetS;.L ={x,y): 0<rj<up, wlj <0; < w,{}andletgjf denote its image in (rj,Gj)

coordinates. We now obtain an asymptotic estimate on ||« (l’ 7,0 j) ||r2n nas i — 0.
)
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Theorem 2.1. There exists a positive constant |1y such that for all 0 < p < o the
estimate

lu(zj, 0D, 5u < Cp?I P (Cd™ 2 (m = 2)1) (2.3)
)

holds, where C and d are constants independent of m.

We estimate the terms in the right-hand side of eq. (2.2) when |«| > 2.
For

Vi g )
Z /;p[f KOO (Mr;"le.‘;‘z) dz;do;

2<|a|<m

Vi plnp
< u20-8p Z / / (utal0q2)2e—2(1—ﬂ_i)f_idfjd0j
wlf — 0 J 7

2<|al<m
J
< 1 2(=B)) K 201 2,7 2+Bj\2 dr.do;
Sy Z ; (rj) (ur‘;‘lg‘;‘Z) (rj ) r;dr;ag;
2<lal<m Y Vi 70 S
< w2U=BD(cam™=2% (m — 2)1)°. (2.4)

Here we have used the fact that u € %/23 (2) and Theorem 1.1 of [1] to obtain the above
result. Next we bound the terms when |«| = 1. Since u € 03/23 (2) we have

D% (Z)| < Cd(Pp (Z2))~" when || = 1. 2.5)

Moreover we have

Vi inu 2 2 2 2
ff / (uTj +u9j)drjd9j = /M /(ux + uy)dx dy.
Uz —00 Sj

S‘7={(x,y):0<rj<pt,1/flj<9j<%{}~

Here

Hence by the above relation

Vi pw 5
— ﬁ
fgu/(u§+u§)dxdy§2czd2[pj /O ri rjdr;do;
J l

< (Kd)* p?1=P0, (2.6)

Finally we have to estimate

Vi plap
_ lu(t;, 0;)*dz;d6;.
'/// —00

Since u vanishes at A ;

Tj
u(zj, 0;) =f uy(n, 0;)dn.
o0
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Hence

lu(tj, ;)] <

rj
/O up(p,ej)dp‘-

Here p = e" and r; = e%. Since u € Q% (£2) we obtain

u(rj. 09 < Cdr; P = cae =P,

And integrating the above with respect to 7; and 0; gives

I/IM Inp
/ / lu(zj, 0,)°dt;d6; < (Kd)* p>1=F5). 2.7
—0Q0

Combining (2.4), (2.6) and (2.7) we get the required estimate

Inp
f / lu o goa |2 dT;d 0; < p2PD(Ca™ 2 (m —2)D2 O (2.8)
00 J i

la|<m

Remark. Estimate (2.8) can be proved directly using the relation0 < 1 — 8; < 7/wj.

3. Stability estimate

We first need to divide € into subdomains. Thus we divide 2 into p subdomains
st sz ..., S{’ , where S' denotes a domain which contains the vertex A; and no other,
and on each S' we define a geometric mesh as has been done in [2].

Let 6% = {sz”, j=1,...,Jk, i =1,... I} be a partition of S* and let & =
U k=1 &*. Then & satisfies the following conditions :

1. Qf ; are curvilinear quadrilaterals or triangles and the intersection of any two Qf j is
one common vertex or one entire side or is empty.

2. Let hk i j and hk i be the maximal and minimal length of the sides of Qk We shall
assume there is a constant independent of i, j, k and of the partition such that

he .
L < (3.1
;

3. Let M = {M{fj,l <i<hj1<j<J,1<k<p) inwhichMi’fj is a one-to-
one mapping of the closed standard master square S = [0, 1] x [0, 1] {respectively
standard master triangle T ={¢EmM0 <n <1-£0<§& < 1} onto 51-(-
Let Pk I and yl ; denote the vertices and sides of Q , then (Mk )~ I(Pk i i, ) and
(Ml!f )~ l(yl fl ) denote the vertices and sides of S (respectlvely T),1 <l <4 (respec-

tively 1 <[ < 3) Moreover if Mk. and M! map the closed standard square S

m,n

onto elements Qi’ ; and men with common side y = Py P, then for any P € vy,
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dist((M} )" (P), (M )™ (P)) = dist((M;, )" (P), (M, )" (P)), 1 <1 < 2.

n,n
We will assume M lk j can be written in the form
x =X} &, (€, 1) € S (respectively T) (3.2)
y= Y,'Ij,'(ga ),

with X Ik . and Yik. being analytic functions on S (respectively 7). Further we assume
that for |o| < 2

|D*x|,|D%y| < Chy;, (3.3a)

and
Ci(hf ) < JIF; < G} )? (3.3b)

for all i, j and k with constants C, C; C> independent of i, j and k and Ji'f f being the
Jacobian of the mapping M l]‘ Iz
Let w = (@1, ..., up) with O < p; < 1. Then &, is called a geometrical mesh
with ratios st = (i1, ... , p) when in addition the following condition is fulfilled.
4, Let Qf j € S and dl.]f j denote the distance between Qf j and Aj. Then dl./f j and hf j
satisfy
Cr (V™ <df; <Cru", 1< j<N1<i<hj (34
Cip<df;<Cap, N<j<J, 1<i<Ij 1<k<p, (34b)
dfy =0, 1<i<I 1=<k=<p, (3.4¢)
k k k k
Kldi’j < ]li,j < hl-,j < szi’j (3.4d)
forl < j < Jr,1 =i <1Ij,1 <k =< p,where C; for1 <1 < 4 and K; for

1 <[ < 2 are constants independent of i, j and k. Moreover Jy = N + O(1).

We now put some restrictions on &. Let (rg, 6;) denote polar coordinates with center at
Ag. Let . = Inry. We choose p so that the sector S’; with sides 'y and 'y 1, center at Ay
and radius p satisfies

k —=k
sse U @
QF je6k
S’; may be represented as

S]; ={(x,y):0<rr <p, I/IZk <O < 1//5}. (3.5a)

Let {I/fl-k }i=1....,I,,; e anincreasing sequence of points such that 1//{‘ = I/flk and I/f;{k+l = 1//5.
Let Alﬂik = Wik o wl-k. We choose these points so that

max (max AYF) < min(min Ay (3.5b)
l 1
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for some constant A. Let

ok =0, (3.50)
and

gj’? =pu)N T/ for2<j<N+1. (3.5d)
Finally we define

n’;:lna]]-C for 1<j<N+1. (3.6)
Let

Qf‘] :{(x,y):ajl-( <rg <0]]-‘+1,1/fik < O <1//l-k+1} forl <i < I,
I<j=N. 3.7

We assume there exists a number v such that
QfN_H ={x,y):p<rr<v, wl-k <O < wikﬂ} forl <i < I. (3.8)
In other words I ; is independent of j for j < N + 1. We shall let O* denote

{Q l<i<Il,1<j<N} forl <k<p. 3.9)

l]’

Let
Orl={Qf :1<i<h; N+1<j<J. 1<k<p) (3.10)
We shall relabel the elements of OP*! and write

ortl =/t 1<i <1}, @3.11)

where L denotes the cardinality of OP+!. We shall let Q¥ denote the sector with vertex at
Ay given by

Q =, y):0<rm <p,¥f <O <yk) (3.12a)

and

P
Qrtl =Q\[U§k}. (3.12b)
Note that all the sets Q¥ are open sets.

Henceforth to keep our notation simple we will assume that Qk i are quadrilaterals for
1 <k<p N+1=<j<U1=i<=< I. Moreover we assume I ; < I for all k and
j. Here I is a small integer, and this fact plays a fundamental role in allowmg us to use
nonconforming spectral elements to solve the Dirichlet problem. Further let y iy denote

the sides of the quadrilateral Qk , 1 <1 < 4. Then we assume (figure 2)
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P L Q
A,

N7\

Wy
)

r,

QA @
AP
—p
Figure 2.
x =hi 5,6,
viis { R <1.1=123 (3.13)
y= hi,jlﬂ,-,j,,(é),
x = f ),
Vi { S 0= 10=2.4 (3.14)
” y= h,-,,-lﬂi,j,,(n),

k
ij.°
estimate for the function u, given by anonconforming finite dimensional representation u

where ¢ Iﬂik jy are analytic functions for all i, j, k and . We wish to obtain a stability

k
L
on each domain Qf‘ I for the entire polygonal domain 2. Now, as stated in the introductiorjl
we partition the open set Q into p opensets S, S, ... , S” such that each S? contains only
the singularity at the vertex A;. Let S¥ be one of these open sets. Then S¥ = QF U Bﬁ U Tk
where QF is the open sector with center at A¥ and radius 0, B’; is the circular arc which
bounds Q*, and T is the open set defined as T% = §% \ (Q* U B’lj).

The domain S is as shown in figure 3. Two of its sides are the straight lines 'y (1) 8S¥
and Ty () 3S*. The remaining side 852? consists of piecewise analytic arcs. The subscript

. o <k . . . .
cin an denotes curvilinear. S is partitioned by a set of arcs {y;}; into subdomains.
Now

k . k k k k
Qi,jz{(x,y). 0F <Tk <0}y, ¥ <0k<1//i+1}

forl <i<Il,1<j<N.

Pk+l

Figure 3.
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Let 7x = Inrg. Define

Q=100 0l < <nb, v <o <vf) (3.15)

forl] <i <, 1<j<N.
Let w be a smooth function. Then
0

w

-2

wxx T oy = < (et toge | =e (g, + 06,)-
r dry ~ Org

Hence
) ) Vi )
ri(wxx + wyy) dxdy = (w5 + wo6,) dTidby.
o

Now using integration by parts repeatedly we can show that

l/fik+l ’7,;+1 ) ) 5
/ . / . (@ng)” + 2(wge)” + (@g0,) ) dTid (3.16)
‘//i 77j
]//ik+1 n];+l 2 l‘/IikJrl P
- /k /k (@5 + @g,0,)"dTidO + 2fk wfkekwﬂk(nj+1v Ok )0
wi nj lﬂi'

wikJrl k '7]/('+1 k
-2 wk W1y G WYy (ﬁj, Gk)d Qk -2 7,1‘ Wy, 7y, WGy, (Tk, ¢i+1)dfk
i Jj

k
Tj+1 X
+2 . Wz, oy (The, ¥y )d.
j

Moreover

/k f—a)(a)xx + wyy)dxdy
Qi'j

yk k
i+1 [Tj+1
= _/ / a)(w‘rkrk + wakgk)dfkdek
vk I
i j

wk K yk

i+1 nj+l 2 2 i+1 k

= . ‘ (((,()-[k) + (ka) )dl’kd@k - . W, (77]'+] s Ok)dek
vi o I v,

i

wik+1 X ”1;'+| x
+ . Wy, (nj, 6r)d6, — . wwg, (Tk, wi_H)dtk
Vi ;j

"_l;+1 X
+ f wwg, (Tk, ¥; )d.
n

K
J

And this gives us the following inequality:

k k
Vier 141 ) )
[ [ @n + @nrane
v mj
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K '/’ik+1 ”§+1 2 1 l//ikJrl "I;'Jrl )
< 3/ / w-dtdo; + 2K / (W o, + wo6,) dTidOy
vk Il vi b

vt vt
i+1 k i+l k
/ wwy (M1, O)d Ok — /k wwy, (17}, Ok)dOk

v
k
k Ti+1 k
/ wwg, (T, ¢i+1)di — /k wwg, (Tk, ¥; )dr. (3.17)
m; n;

Let uk (x, 6x) be a set of nonconforming elements, defined on Qk the image of Q
(k, Gk) coordinates, given by

N N
k man
ui,j(fk’ Or) = Z Z Am,n Ty, O

n=0m=0

for j > 1. We shall choose ufﬁl =0forall kand i.
Let

[“ﬁj](% Vi = (uf—&—l,j - Mf,,-)(fk, v,

denote the jump in u across inter-element boundaries. -

Recollect that Bk denotes the circular arc with radius p and center Ay. Let B, k denotes its
representatlon in (rk, 6r) coordinates, i.e., Bk = {(tx, 6k) : =Inp, wl < O < l/fk}
Similarly let I"k, Fk+1 denote the representation of the 51des Iy and T'g4q in (7g, Ok)
coordinates. Recollect that QF is an open set and 99K denotes its boundary. Let y; be a
side of Qk i for some i and j and let J; denotes its representation in (1, 6) coordinates.

We now state and prove a stability theorem which will help to motivate the stability
theorem 3.3 on which our numerical scheme is based.

Theorem 3.1. For the sectoral domain QX the following stability estimate holds.

N I

k 2
D>l ok 0013 g5
j=2i=1 !

N
<CnN)* {3 Z 1Auf (2. 60 I, G
j=2i=1
+ ) L@ 5 + 11T 2.5 + 18I 25
Pk
+ ) UG5 + 16e 7 2.5
mCBk
k+1
+Y Y UG 15 ¢ - (3.18)

m=k %gaﬁk m Fm

Here ||.||5 3 denotes the fractional Sobolev norm as defined in [9] when s is not an integer.
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Adding a weighted combination of (3.16) and (3.17) and summing over i and j gives

N I z+1 ’7}+1 L
Z Z v/l\ﬂk f ((ul /)rkrk + 2(” )tkek + (ui,j)ekek)drkdek

j=1i=1
i+l n’ j+1
+R / / (@} o) + (Guf ,)ek>2)drkd9k}
Yk n
<@+ dD) + dI) + AV) + (V) + (VD + (VID + (VII) + (IX). (3.19)
Here the terms indicated by roman numerals given above are as follows:

(I)-ZZ(KR / / W 2and o

j=li

l+l 77]+1
+ 1+ — \/l‘p]\ / l])l'kfk + (ul ])0/(9/() diko

N—1 I
m=> % ( f 20(uf o, (uf me )05y ek)d0k>

j=1i=
*//i+1 k k
(D) = Zz f G e e (I p. 6 d By
=

Ikl

av) = Z Z < / 20(uf oy, (uf eyr (T, wm)drk)

k
Tj+1
k k k
] /k (ulk,j)‘)k (ulk,j)fktk (T, 1//1k+1)d1'k s
j
N—

I Vi
(VD) = —R Z(/w [(u{@)(u{i,-)fk](n’;H,9k>d0k>,

=1 i=1

\.

(VD) = RZ ’“(u, W@ )z (In o, 6)d by

1 ¢
( / [k )k o) (x w,H)drk)
1

I —

Mz

(VI = R

—

j i=

and

N k.
(IX)=R)_ ( / T Dk e (e v
j=1

k
Tjt1

|
T

W Nk o, (w, wbdrk) : (3.20)

k
J
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Now using Lemma 4.1 we can conclude that

N h k A
S8 [t

=1i=1

N L ’7/+1 e
c(X>, / (W o) 2drd 6y
j=1i=1"7;

~.

IA

L

+2 D L PP @ v Ddn
j=11i=1""1;
N o .

+3° / o D@ Y dne+ / (uf, j)2<rk,w{‘>drk>,
j=171; '7/

(3.21)

where

k _ kN2
C = ZmI?x {max (M (I + 1)(1ﬂfk+1 — gﬁ{‘))} .

Choosing R large enough and adding

N ’1]]('+1 P X ’7];+1
2c Zlfn k) (rk,w,k+1)drk+/n
J= j

K
J

+ Z _Z / 1P (w, x/f,H)drk)

W (. ¥i)du

to both sides of (3.19) and then applying (3.21) and choosing K small enough we get the
inequality

k

X Vi e
> {/ /k (W] D)™ + 200 )g,)
j

j=1li=1
+ ((ui,./)‘)kf)k) )dtrd 6

Ui L 0 P
+ /k fk ((u,‘,j)fk + (“i,j)gk)dfkdek
Vi mj
wikl | 1
+f " f” Wt )?dred 6
vk Uk "

J

N I eyl opnhy . . )
st Y [ o+ e a Panden
j=li=1 v mj
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N b
+2C (Z /,7 AN AL
J=11]

k
Mj+1
+ / oW A ydn
n

J

Ii—1 N
Yy / [k P, w,+1>drk>
i=1 j=1
+ (D) + (IID) + (IV) + (V) + (VD) + (VI) + (VIID + (IX).  (3.22)

We shall now estimate the terms indicated by roman numerals on the right hand side of
(3.22) using Theorem 4.1. We begin by estimating

N—-1 |

vk,
Z( / o o N g 1011 61106

j=1i=1

ES)

|AD| =

k
/w 20 10 ), O

1

/w 2 el j>fkek]<n’;+1,ek)dek> .

i

Now by Theorem 4.1

(3.23)

k
Yin k k k
‘ [ 2 o e 00060
"

< 2C (n N) 1G5 Do 01001, g gt
XN Do 010 02,0t
2
- (CInN)
- K
+ K@ e Ok 0012

G oI 01 gt o

i+1 )
12,af.9k D

for any postive K.
By the trace theorem for Sobolev spaces there exists a constant M, such that

It e 1 801 g gy = MG ), OO gy

Choosing K = 1/32M we have

Vi k k k
[ 2 o e 60060

i

< T (V) NG o001 000 5 e

1
+ =1k ) (e, 0012 5 - (3.24)
30 N 2,9
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And so we conclude that

N—1 I

1
D] < C(nN)* Y (||[(u, Pl O i
j=1i=1 !
I o001 801 gt g )

N—1 I

+> > 16||<u, ,)(rk,ewnm : (3.25)

j=1i=1

Similarly we have

W <Camn?y (hk oy s wboI2

172,80k, )
j=1

k k 2
I P VDB g )

N
1
+Z 16 (1 e 01 g i, . ek)n;%’j). (3.26)
j=

We can estimate the terms (IV), (VI), (VIII) and (IX) in the right-hand side of (3.20) in a
similar manner. Putting all these estimates together we can write (3.22) in the form

1 ZZ I ) (s 0115 &t

] li=
Ix

N
< C(nN) {ZZ/ ! /k" (Auk ) drd;
j=li j

1

~

N—1 I

+ (et ol 0013, o,
=1 i=1

+ ILGf D154y, 001

)

~.

3/2.(F, n/f,+1>)
N L —1

+ 302 (M Pl whI2,, o,

j=11i=1

0 o VDI ,m)

+ Z (hwt pevbiz, ok

j+1)

+||(M1k ])(Tk w1k+1)||3/2 (77 +1))}
k

k Vi
+) (R f o ) ) (0 p, 6)d6y
=1 ‘/’i

e
+2 ” (ui N)o Wi n) 6 (I0 0, OO ). (3.27)

i
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Estimating the last two terms in the same way we get the result. O

Remark. The a priori stability estimate for sectoral domains (3.18), in a sense, replicates
the estimates, known as the shift theorems, for elliptic problems on smooth domains. These
estimates are valid, however, only in modified polar coordinates and only for spectral ele-
ment functions which are polynomials of degree N in each variable separately. Moreover,
the constant multiplying the right-hand side is not independent of N but grows slowly with
N like (In N)2. Thus, Theorem 3.1 states that the sum of the squares of the H2 norms of
the spectral element functions depends continuously on a quadratic form, which consists
of the sum of the squares of the L? norms of the differential operators in their respec-
tive elements plus the sum of the squares of the tangential derivatives in the H>/ norm
along the image of the sectoral boundary plus a penalty term. The penalty term consists
of the sum of the squares of the L norms of the jumps in the the function elements plus
the sum of the squares of H'/? norms of the jumps in the derivatives across inter-element
boundaries. ~
Consider the function {ui." j }i,j defined on SNZf‘ i S QF. Then the inequality

I

Dl @ 0015 &

i=1

N =

N
=
N

Ik
< C(nN)? {Z Z AU} ; (v, ek)llé S
UL

j=2i=1
k+1

o D SN (Al e 7 e
m

=k cl, Mok

+ ) A NG5 + s 1 25 + Mg T 2.5

pick

s Vi
+ Z; (R /w ) ) (0, 66
1= i

Z
+2 /w @l e y)m (np, ek>dek) (3.28)

i

is valid.

The estimate (3.28) follows immediately from (3.27). The reader may now directly
proceed to Theorem 3.3 which is a generalization of Theorem 3.1 and refer back to the
proof, which is quite involved, later.

. .. . —k —k .
We need to obtain a similar estimate for T%. On each Qi, j C T a function uf‘ j (x,y)

is defined. Now, this Qf‘/ C QP! and hence Qf‘/ = Qf“ for some /. We shall use Qfl
and Q7 *! interchangeably in what follows.

We now need to obtain an energy inequality similar to Theorem 3.1 on T*. Integrating
by parts repeatedly we get
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2

2l ], ( W) ey 2 2
([ () <2 () + (%) s
+2 /ao z—l;j—s (%) ds> . (3.29)

Here s denotes arc length along 9O measured from some point on it and the line integral is
evaluated in the clockwise direction and n denotes the outward normal to d O, the boundary

of O. Hence
92uk 2
/ f z Nt TRNEL)
Qk 9x2 dy?

i,N+1

2 2k 2 2k 2
/ / 1N+1 42 Ui N1 n Ui Ny dxdy
ok 0x0y dy?2

i,N+1

auk d [ou
+2p° (/ (-+/ ) i, N+1 ( 1N+1>ds.
oot (ot) o)) o as T

Here BX denotes the boundary of the circle of radius p with center at A;. Now a simple
calculation yields

k
2'02/ i yy1 d 0uf vy ds
ook, NBy Oy ds | 0x

k

Vi X i
=2 . (ui,N+1)9k(ui,N+l)9ka (In p, 6x)dOx
"

i

wk
- /w (D G 30 o, 6)d

i

+ P2 B (@l oy D (W g (3.30)
Here
,8in 20 ,8in 20 .9
B@,a,b)=\a > —b > — 2ab sin“ 0 (3.31)
and
0 1 0
ng  p o

Next suppose QIPH is such that 8Qf+l (T # ¢. Then anPH () Ty is the straight line
joining the points DT and DTH for m € {k, k + 1} and for some 1 < j < M,, as shown
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Figure 4.

in figure 4. Here M,, = J,, — N. Now we can show that

p+1 p+1
2,02/ duy i ouy ds
;;Qll""l NTw dy ds ox

2 p+1 p+1
=2p / ot (ul )vm (ul )Umomdo'm
391 m

m
Dj+l

1 1
+ o2 B @] g, ] )|
J

(3.32)

Here d /d 0, denotes the tangential derivative and d /d v, the normal derivative along
| R
Now

2 2
31/{]-{ BMI.‘
R/ / PNELY i N+1 drdy
Qf i dx dy

Bzuf.‘N 92uk 2

+1 i,N+1

) ) d d
/( 912 + 0y2 xdy

a(uk
R k — LI s, 3.33
+ /395-‘N+1 ety (5 n41) o s (3.33)
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Similarly for Qp+l = Qk with j > N 4 1 we get

2
8up+1 8ulp+1
/ / dxdy
Qerl 8_))
32 p+1 82ulp+l 2d ;
/;2p+1/ ayz xdy

p+l1

ou,
/ /(uerl 2dxdy + R/ ulp+1 ds.
art! on

Let LK = {l : le+1 - Tk}. We can now prove the following lemma:

p+l 92 p+1 2
2
'/S;ﬁl/ ( dx2 ) + ( 9xdy )

Lemma 3.1

leLk

L (2 2 dxd +R/ / aupﬂ [
32 i dy

(3.34)

2
) dxdy

< @D+ (D) + ) + AV) + (V) 4+ (VD) + (VID) + (VIID) + IX) + (X).

The terms indicated by roman numerals are as follows:

O=(r+ ) ¥ Jopr [t e 20y
leLk

(H)—— / / " (., )P dxdy,

leLk

Iy wi L
am=>3{-2 /w 0 ) (0, B0d6

i=1

i

‘oo
R /w Ty )5 0, B

i

Ik
av) = pZ/
i=l1

K k
8S-Zi,N+1 m Bﬂ

/((“i‘i}v+1)§ + (M£N+1)§)ds,

+1
WV=rY Y o+ % /u,ﬂﬂ_a”f”

leLk yxgaglerl ﬂTk J/Sgaglp+l ﬂBS§ Vs

+3 Y @@y, dow ¢ .

= 1
m k}’sEE)Q,er T Vs

(3.35)
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(VD = -2 ) oo+

lelh | \ycoof™ N1k ycal™ Nask

9 p+1 d 9 p+1
x/ S i) ds.
. 0y ds ox
k+1

+Z > / @ @] o dom

m=k, ol Nr,

(VID) = — ZPZB(Qk Wy W v D) (0 p, ek)
i=1

k+1 My, —1
1
(VI = — Z > Yo PPBEL ),
=1 el Nz
<u1’+1>vm>|Da:1,
2 k o ok k G}
(IX) = —p"B(Yy, (ul,N—H)Uk’ (ulvN‘H)vk)'D’;W ,
k
Dk+1
and  (X) = —p B\ (@l yiDop. W, N+1)vk+1)|ck (3.36)

By ys we denote an arc which is a side of 8le+] forl € L*. Here 3/dry denotes the
radial derivative and 3/0ny the tangential derivative to the circle with center at Ay and
radius p, i.e., d/on; = (1/p)(3/36;). Moreover, d/doy denotes the tangential derivative
and d/0vi the normal derivative to the side Iy (figure 4). Finally Ty, ; is the open subset

. . . +1 1 .
of the straight line T, between the points D]" and D}’ ; and u7:n+1,N+1 denotes Up N4l if
m = p.

Using the estimates (3.30)—(3.34) we obtain (3.35). O
Recall from (3.2) that there exists a mapping M lp *! from the unit square S to ﬁlp + given

by
x=Xx"" &

y=y""" & .

.. . . —k
Similarly there exists a mapping M lk N+1 from § to €2; ;- .
We now define another semi-norm in terms of the transformed variables & and n:

v Emhs= D f / D¢ DE2oX] T & m), v (& m)Pdgdn.

lo|=m S
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Let
’MZP'H‘ =ess sup (max(max(|D°‘le+l|),
m, 00,8 EmeS locl<m
max (|DY/™')))). (3.37a)
lee|<m

Then we have the following results [3]

2 2 2
lu (6, Mlp.s = lul” o1 < Clul” i, (3.37b)
(e R 0.
I
+1,2
|M]™
2 ) 1,00,8 2 2
|u (&, 77)|1,S =< CW |l/t|1 ort! <C |I/l|1 QP+l (3.37¢)
MP 84 84
and
2 p+14 2 p+1,2 2
lu (&, 77)|2,5 =< (|M1 |1,oo,5 ] 1+ |M1 |2,oo,s (177 )
[, 1] 2,9 1,0
M;
2 2
< C(lul 41+ lul +1)- (3.37d)
( 2,7 1.ef )

Here J P! denotes the Jacobian of the transformation Mlp *1 as defined in (3.3a) and

1
(3.3b) and |JM,,+| | = ming pes |JM,,+1 (&, n)|; note that we have used the bound given
1 1

in (3.3b) to arrive at the above results. Consider the point Df‘ in figure 4. Then there exist
two domains " and QL™ on whose boundary DF lies. Let

1 1
[w” (DY) = wh™ (DK — w’ (DY),

where 895,“ () Tk is traversed first if we travel along 'y from D’l‘ to Dﬁ,[k.
Moreover let

[wP G = iy 11 (G = wiy 11 (G
We now prove the following lemma.
Lemma 3.2

|(VID) + (VIID) + (IX) + (X)| = (XD)

60> +1p2 11,2
+ 2 (|u;’ [ g lf ] ) (3.38)

p+l
2,8
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where

Iy

(XI)=CInN (Z @) AGHI? + TP, GHP
i=2

M, m,k+1

k+1 =0,
+> > (@PTh,DM)?
m=k

i:2_6m,k+l

+([@! ), 1M
k+1

+ ) D" B wy, 16,)} (Par). (3.39)
m=k

Here Py, is D’f ifm=kand Py, is Dﬁ,;:rl ifm=k+1.

We first estimate one of the terms in the right-hand side of (3.38). Now

0% sin® WOy 4D (U_g )
— W D W D HGD)
< P}y D (GO D (G
F 1y D (GO y DR IGH)D. (3.40)

Now by Corollary 4.80 of [ 12] we have that if @ and b are real numbers such that a®>+b% = 1
and w is a smooth function defined on Qf 1 Such that

N N
wXPTEm YT E ) =D anat™n"

n=0m=0

then
2
[(aws +bwy) (P < CnN) (1wl i + Wl e )- (3.41)
2 24
Using (3.41) we obtain

|07 sin® WOy g Dn W5y gD
— U D Wy D HGD)

< Cln N{([@} y 4 D J(GON? + [f y 4D (G
2
o k 2 k 2 k 2
+ 3_2<|u"’N+1|1’Q§,N+1 + |ui’N+1|2*Q§,N+1 + |u"_l’N+l|1’Q{11.N+1

k 2
+ |”1—1,N+1|2,Q§7LN+1)~

Treating the other terms in the same way we obtain the result. O
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We now estimate the term (IV) in (3.36). Let w be a smooth function on Qf N1 - Then

Vi
/ wids = f T w? (0, 60 pd6
0 v 11 N B v

W,k 1 v 9 _
= / " / —0— (V Tk w2) drdoy
ik P org \v—p
Vi p ) A v —rg
wdrrdo + —=2p wwrkdrkdek
vl p V=P vk P vV—p

1 wt'k+1 v 2 w,'k+1 v
< / wrrdrdéy + 2/ f |[wwy, |rrdrrdfy.
v=pJyk Jp vk Jp

And so we obtain

) 1 ‘l’[k+1 v )
/ wds < ( —i—a)/ / wredrido;
Bk Mof vV—p uk )

i, N+1

1 Wfkﬂ v )
+ —/ / (wy, ) rrdridfy. (3.42)
o

Olwik

for any @ > 0.
Hence using (3.42) we get

W =p [ ks
i1 (1 BS

p L
= (U — P +05,0> \/Qk /((ui,N+l)x + (Mi,NH)y)dxdy

i,N+1

P k 2 k 2 k 2
+ - /;21‘ /((ui,NJrl)xx + 2(”i,NJrl)xy + (ui,N+l)yy)dXdy'

o
i\ N+1

(3.43)

Choose o so large that (p/a) < (p%/32) and choose R > [p/(v — p)] + ap + (p?/2).
Then combining (3.43) with Lemma 3.2, we have the result

25 5 pt1p2 p p+1)2
Zﬁp Juj 2,9,”“+Z R— RPN |uj ’1,9;’“
leLk leLk

< (D + dI) + (II) + (V) + (VD) + (XD) . (3.44)

‘We now obtain an estimate for the term (VI) as defined in (3.36).
We shall estimate the first term in (VI). Now

aul™ da [oul™
2,2 ;9 ] d
P Z Z /S dy ds ox g

leLk VSQ’QIPH N T*

P p+1 9 p+1
/ ul i ul ds|.
. dy ds ox

<20* Y

V.rng

(3.45)
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Let us get an upper bound on a typical element in the sum, in the right-hand side of the
above inequality, which is of the form

/ dul™\ d [oul™\ [oult'\ a [oul™! .
— - — s
Ve ay ds ox dy ds dax

We shall assume, to be specific, that 3825:;1 is the image of the side £ = 1 of the square S

22 . (3.46)

under the mapping M, ,ﬁ“ and 9 525 .J;.l is the image of the side & = 0 of S under the mapping
MPT! Recall from (3.10) and (3.11) that there exists i, j and k such that Qf 1 Qf‘ ; for

some i, j with j > N. Hence the mapping M,f,+1 is the mapping Mik f from § to ﬁf jas
in (3.2). This representation is needed only for 1 <k < p, N < j < Jk and1 <i < I ;.
Now Jy = N + O (1) and I ; < I and hence there are a fixed number of Qf i for which
this representation is needed even if we let N — oo. As such we may assume

- max |Mflnoos < Com (3.47)
i,j.k,j>N ’
where the norm has been defined in (3.37a). Note that C,, is independent of N. We shall
impose further restrictions on Cy, in the second part of this paper where we shall examine
the accuracy of our numerical scheme. Here we shall only establish the stability of our
scheme and for that an estimate of the type (3.47) is adequate. Now

dun'! p+1 p+1
ax = (Um )ng + (um )nnx, (3.48a)
and
3u£:,+1 p+1 p+1
3y = (Um )Séy + (um )1777y~ (3.48b)

‘We have that

{x =Xn Gk 0<p<1,

1 s
y = vi &

Let&, (£, 1), 7 (€, 1), & (€, n) and 7, (£, n) be the unique polynomials in & and 7 which
are the orthogonal projections of &x (§, 1), nx (§, 1), &, (§, n) and n,, (&, n) into the space
of polynomials of degree (N — 1) in each variable separately with respect to the usual
inner product in H? ((0, 1)2), as defined in [12]. We now define approximations to the

derivatives dul™' /9x and au’,™" /ay as follows. Let

8”"'7,1+1 ’ Pty = Pty =~
ax = (um Debx + Wm Iy, (3.49a)

and

b\ 1, = 1
( a”; ) = (uh &y + h iy (3.49b)
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Using the approximation results in [12] we have that
Ec = Eclioos < KN s - (3.50)
Now &, = (Y,f,'“),,/J,ﬁH. Moreover by (3.47)
IM{ lm.cos <Cm forall j > N,
and by (3.3b)
A1p* < |Jf1 < Agp®  forall j > N.
So it is easy to see that
& — Exl1,00,5 < CN (3.51)

for all Ml.’fj with j > N, and N large enough. A similar result holds for &, . and 7.
We are now in a position to prove the following lemma.

Lemma 3.3. Let ys be contained in T*. Then
9 p+1 d P p+1
s ()]
Vs dy ds dax
3Mp+l 2 guPt! aq|?
<C(InN)? ) + < )
dy
1/2,ys

1/2,ys

2p

2 2
,0 12 1
T 2l e 1T i) (3.52a)
l:l m ’ n
Here
guP+HI\ ¢ 2 ~ qult! ﬂ(l : ! 0(0 )2
dx - dx N ox N ’
172,75 1/2,(0,1)
(3.52b)
and
aur\ ]| dul I\ aultt\¢ ?
3 = 3 (L,n) - 3 ©,n)
Y 172,75 Y Y 1/2,(0,1)

(3.52¢)
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It is easy to see that

au,’;“ d Bu,’:lH 814,’,’[H ¢ d au,’fl ¢
— ds — — ds
. Oy ds ax ”s ay ds ax

1 —~
= f |(<u,’:f‘>s(sy — &)+ Wh™y =7,

((u”“)gsx + @™m0} (L mdy
/ [(@h™e@) + @i,
x :—n (@h™e € =& + ™y =) | (1 man. (3.53)
Hence

2

2p

8u51+1 d 8u,1;1+1 - N
- ds— { r p ™~
/ys dy ds \ ox sf (" &y + ' aily)

((u”“)g’s} + (uﬁ%ﬁ»} a1, n)dn‘

I /\

1,2 1 1
~ Z ub 755 < N4(||(uf’+ )ell3 o5 + Ik Hnl3/n.s)

IA

c p+1,2
W(; ™ 17 o) (3.54)

by the trace theorem and an inequality for fractional Sobolev spaces we obtain below along
with (3.37a)—(3.37d). The inequality is as follows.
Let

w (€, n) = ZZamns

m=0n=|

defined on S. Then
lwif s < Cllwlos lwllys < CN* [wl§ g

by the interpolation inequality and the inverse inequality for differentiation in [12]. Thus
for N large enough

) / ou ' d (our Y / oun ' \" a4 (o
— s — — s
y 0y ds ox Ve ay ds dax

+1
< 322| uh L qre (3.55)

2p
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Now

Clearly dubt' /ax)*(1, n), (Qul™ 78y)a(1, 1), @ub ™t /ax)(0, n) and
(8u‘"+1/3y)“ (0, ) are polynomials in 1 of degree at most 2N. Hence by Theorem 4.1

a a
| i) (2 Yoy
0 dy dnp \ ox ’
/1 8u,’f+l “d auﬁfﬂ a 0.ma
0 dy dnp \ ax il
814,’,’[|rl ¢ au,‘f+l “
— (InN 1,n) — 0,
= gz (n ) H( By (1, m 2y ©,m
2
8up+l ¢ 8up+l ¢
=) () — | — 0, n)
0x 0x

2
814,’:[|rl ¢ Bu,’f—l “
+K 3 1, m ©, m
by ay
for any K > 0.

Now
8up+] ¢
H( a"; (1,n)

2p

2

Q

1/2,(0,1)

+

1/2,(0,1)

2

+
1/2,(0,1)

)

1/2,(0,1)
(3.56)

~ 1
< Cl(||§x||1,oo,(0,1)||(uf;zJr e (L, ml12,0,1)
1/2,(0,1)

~ +1
+ 1% 11,00, 0,1 1@t Dy lli/2,0,1)-
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Using the above estimate, the trace theorem and (3.37a)—(3.37d) we get

8Mp+l
( ) (1, m)

Substituting the above estimates into (3.56) and choosing K small enough we can conclude

2

1,2
<c7§:m”+ 1 qre (3.57)
1/2,(0,1) I=

that
1 p+1\ ¢ p+1\ ¢
ad d (0o
2| [ %) & () {man
0 dy dn dax
0w\ a [oult"\"
0 ay dn ax
2
9 p+1\ ¢ 9 p+1\ ¢
<can? (=) aom— (] ©n
dy dy
1/2,(0,1)
2
aup—H a 8Mp+1 a
+Hl =] &.m—|—=—] ©.n
ax ax
1/2,(0,1)
12 12
(Zw”* e |m,,+1>. (3.58)
Hence we get the required result. O
Finally

2;02

+1 +1
(up )Um(up )Umo,,,do'm
an-Hm
i L

= 2p2

{( ”“)Md ((u p“)am)}(l,n)dn‘

or a similar expression.
Now

@ e (L) = A () @™, (),

and

@/, (L) = By @ ™e (1, )+ C () @™y, (1, 7).

The form of the expressions B (1) and C (1) do not matter except that they are analytic
functions of 7 involving X f +1, Ylp *1 and their derivatives at (1, n). Hence we can bound
the derivatives of B and C as in (3.48a)—(3.51). Let A (n) be the unique polynomial that
is the orthogonal projection of A (1) into the space of polynomials of degree N — 1 with

respect to the usual norm defined on H 2(0, 1). We now define

@!™he (1,m) = AT, a, ),
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and
@™ (1) = Ba@! e, n) + Capaf ™, 1. .

It is easy to prove as we did the estimate (3.52a)—(3.52c) that

(@, @ g0 Yo
Vs

2
<CnN? [@™He 13, + (Z Al Q> (3.59)

where y; € T BSZIPH for some m € {k, k + 1}.
Here

laf ™8 130, = 16 HE A 00 (3.59)

Hence using the estimates (3.52a)—(3.52c) and (3.59a) and (3.59b) we obtain

VDl = X+ Y- B Zm”“(x,ynfw (3.60a)
24

leLk i=l

where

(XI) = C (InN)* Zk<||[<u”“)“]||1 e FII@PTHT 5,0
ys ST

k+1

Z > S @ the 12

=k k 1
lelt  y ool Nr,

uP™ a4 [oul™!
—2p? L - L ds. 3.60b
P Z Z /3 dy ds 0x § ( )

leL* }/xEBS(’?ﬂaQ[p“

Now using Lemma 4.1 and (3.3a) and (3.3b) we get

p+1 2 +17,2
>y g gp < T > 1w,

leLk ys STk
k+1 1o |
p+ p+ 2
SIS SRRVE N B ST
U
m=k JeLk VsQ?)QfH ah leLk

(3.61)

Here the constant 7 is independent of N.
Choose

R>— fap+(T+1)p2
v—p
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Adding
k+1 2
2 +179,2 uPt
S IR CIETES DI DD DI VA
ys STk m=k lelk y chlt' AT, i

to both sides of (3.44) we obtain

p+1 2
pluy (e, V1T,
Z < o’Q]’*']

leLk

I ) p+1 2
+ (R v—p ap—Tp ) luy = (x, ) |1’Q]p+]

21
o507l y>|m,,+1)
< ((I) + (I + (M) + (V) + ((XI) + (XID))
+Tp* 1 Y MG,
ngTk

k+1

Z )RS DI a3 (3.62)

=k k 1
m=klelt ychlt NI,

We now have to approximate

+1 +1
[Au, P 0 ot = / f(Aup )2dx dy.

Now
1 1 1 1 1
AufnJr _al (”l )g+2ber (uer)g,, p+ (uer),m
dp+1(up+l)g+ p+1(up+l)n'
Hence
1 1 1
| fouryacay= [ fartutae an
Qf 0,1)x(0,1)
where

L w = A7 wge + 28] wgy + € wgy + DI we + B wy,

and Alp i alp —Hw le +1, etc. Let le 1 denote the unique polynomial which is the

orthogonal projection of Ap *!into the space of polynomials of degree N — 1 in £ and n

with respect to the usual inner product in H? (S). We define Bp—H CIPH, BIP—H and EIP—H

in the same way.
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Let
(LD w = A7 wee + 2B M wgy + -+

Then it is easy to prove that for N large enough

D= Z (,0 + —>/ v/‘(AuI7+1 )2dx dy

leLk
< Z2<p +—>/f(<u’“>“ 7h2de dy
leLk
,02 +112
elu ™ s (3.63)

Substituting K = p%/2R in (II) and estimating the term (V) as before along with the
above estimates we obtain

2
P
> 2l

leLk
1 1
<C(nN)? ((Z Ly hHeul e, n)||%,5>
leLk
+ ) AP TIG,, A+ @Y 4., + 1P THSE )
)/ngk
k+1

2 UG WG R )

m=k  y.CoTk M),

oupPt! 9 p+1 d P p+1
+ Y (/ Rup+1u—ds—2p2/ - —< - )ds)
: on y 0y ds ox

)/5£35£‘

+ () + (XI). (3.64)

Here (ITI) is as defined in (3.36) and (XI) is as defined in (3.39).
We are now in a position to prove an energy inequality for the subdomain S¥ which we
state in the following theorem.

Theorem 3.2. Consider the subdomain S*. Then for N large enough

N I
p+1 2
ZZ luef ; (i 60) 13 25, g Zuu €M g

i= leLk
<{OH+@+0B)+ @D}, (3.65)

OOI»—A
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where
(1) = C (In N)? (ZZ 1Auf (2. 601G, &
j=2i=l1
+ D TG 5 + Mg T o 55 + Mo 113 .5
ncQk
k+1
+Z D Ul + i) | -
m=k yICFmﬂko
) = C(lnN)2< Z (10155 + NTAHETNT .5
=
+ ||[(u")zk]||%/2,7,)>,
(3)=C (n N)Z( Yo E G s
leLk
+ 3 PTIR,  M@ IR o @I )
Y STk
k+1
+Z > UG, +||(u"+1>?,m||%/2,ys)>,
m=k  y,COTkF Ty
and
k+1
@ =) (=D 2B b k) (Pa)
m=k
ou ouk d [ ou*
RuF —2p? ds.
+Zk/(u8n 'ands( >>s
¥sCaS; g

By (3.37a)—(3.37d) there exists a positive constant « such that

1
ol E s = o2l T I (3.66)

for all le+1 C T* and for all k.
Then combining (3.27) and (3.64) and using (3.66) we obtain

-
M =

1
||u,,<rk,ek>||mk + = Z ™ & 3
1 leLk

(1) + 3) + (4)} + (XII) + (XIV) + (XV). (3.67)

~.
I
_

IA
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Here

I
(XII) = Cln N(Z(u(u")q](cﬁ‘nz + [@")g JGHP)
i=2
k+1 Mmfam.k#»l
+> ) (|[(u"“)x]<D,-m>|2+|[<u”+‘>y]<D;">|2)>.

m=k i=2—68; k+1

The remaining two terms are

I wik+1 k k
(XIV) = R Z/wk ((u; N Wi N
i=1 i
— (u{'C’N-}-])(uiN-{-l)rk)(ln’O’ 0k)d9k>,

and

L vl
(XV) = 2(2 /w o (e ),
i=1 i

— W pyo W D ze) (I p, ek)dek).

Once more using Theorem 4.1 we can show that

|(XIV)] + [(XV)]

<Cn N [ Y U@ IE IS TIT 2 7 11w 115 2.5)

mCBk
1 ¢ k 2 @ & k 2
+ 3 ; iy (s 0015 56+ 35 ; iy GG g - (368)

We now consider the term |[(xPT! )x](D;”) |2. There exist two domains Qf“ and Qf“
such that anH N BQfH = y; and D}" is an end point of the curve y;. Let us assume
that y (9P is the image of the mapping M7 of the boundary n = 1 of S and

VIREIY s the image of the mapping M/ T of the boundary n = O of S. Further let
D" correspond to the image of the point £ = O for both these cases.
Now

I[Pt (DM
p+lia p+l.a 2
< 3{(@!THaE 1) — @l THUE, 0))]g=0)

F (@, = @YY E, D e=0)?
F (@2, = @THYE, 0)[e=0)?). (3.69)

Moreover ((u,pﬂ)ﬁ (£, 1) — (uf“)ﬁ (£, 0)) is a polynomial in & of degree at most 2N .
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Now by Theorem 4.79 of [12] we have that if p (s) is polynomial of degree M defined
on [0, 1] then

1P Zoop0,1y < € (L +In MY IIPIT 15501 -
Hence we obtain
3@ TEE D — @l THE 0)le=0)?
< KIn VL@ D3R o,
Now
(e = @!THDo. D
< 20(@! s & = ENO, DP + 1! ™y =500, D).

Using (3.51) and the Sobolev’s embedding theorem we can conclude that

(@, = @™o o, D < P

< ', 3.5

And as before we can show

(@™, — @™o o, D <

+1
<5 < e, ml3.s-

Choosing N large enough we obtain

(@™, = @?ThHn o, D < ;‘2 ! & I3 g

And so we can conclude that

k+1
CinN (Z(I[(up“)x](Df")|2 + |[(u1’+1>y](D,m)|2))

m=k
k+1
<K<1nN>2(Z S AP HUR L.,
m=k VsCaTkmrm
@I . %> ol N AN R (3.70)
leLk

In the same way, we can conclude that

Iy
CInN Y (@) 1(GH + [[)g 1GHIH)

i=2
< K (InN)? Z (113 2.5 + M@ 250 | - (3.71)
yi<BX
Substituting (3.68), (3.70) and (3.71) into (3.67) we get the required result. O

We have now obtained an energy inequality for any of the p subdomains S* into which
we had divided our original domain. Combining these estimates we can now prove the
main theorem of this paper which can be interpreted as a stability estimate for the whole
domain.
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Theorem 3.3. Consider the whole domain 2. Then for N large enough there exists a
constant C such that

I,

~

N
1j=2i=1

PN I
SC(lnN)z{(ZZZIIAMﬁj(fkﬁUHé@_

k=1 j=2i=1

M~

L
k 2 p+1 2
(G | Y 17
Y =1

x-
Il

p
+Y 0D UEOIG 5 + M@ 25 + 1T@a 1T 250

k=1 5 cQk

L
+(Z L™ HE mid g

=1
+ > @YU, o, HIT@P DI .0

V.VEQP_H

p
+> ) (||<uf’+1)||%%+||<u1’+1>€:k||%/2%>). (3.72)

k=1 ysgagp-#l m Tk

Here (sz +1)“ulp i (&, n) is the approximate representation of the elliptic differen-
tial operator Lf + acting on ulp + (&, ) as defined immediately after (3.62). Moreover
(Buf + /ox)¢ and (Bulp i /0y)? are the approximate representations of the derivatives

aufH/Bx and 8uf+1/8y in (£, n) variables as defined in (3.48a)—(3.49b). Similarly

||(u”+1)gk||%/2 " is the approximate representation of ||(u”+l)¢,k||%/2 ), as defined in

(3.59b) where (uP*! )o; denotes the tangential derivative of u” *+1 along I'. This represen-
tation is obtained by replacing the coefficients of these differential operators, which are
analytic functions of £ and 7, by polynomials approximations of degree at most (N — 1)
in each of the degrees of freedom of the function elements in their respective domains.
Summing the estimate (3.65) in Theorem 3.2 over k and estimating terms as before the
result follows. O

4. Technical results

In this section we prove the results which we frequently refer to in §3.

Lemma 4.1. Let w (0) be a piecewise smooth function defined for 6 € [91, . ~-9M+1]
which has discontinuities only at the points 03, 63, . ..0p. Then
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OM+1 0 — 02 M O fdw\2
/ w? (©)do <2 MZ/ <_w) do
b, 2 =), \w

M
+M (Op+1 - 61) <w2<91> + Y (W) - w(@,))%)) : 4.1)
j=2
Here
w(ej.*) =, eljm w (),
and
w;) = 9<91~ir(§1—>e- w ().

Define a function s(6) as follows:

9 — w (61) for6; <6 < 6,
s ) = w(01)+21;:2(w(9j+)—w(0]7)) forOy <0 <6ry1,2 <k<M "~

Then w (0) may be written as
w(0) = h(@) +sO)

where 1 (@) is a continuous function which is differentiable a.e.
Moreover h (1) = 0. Now

Opr+1 Om+1 Om+1
/ w? (6)do <2 (f h*(6)do +/ s2(0) d@) )
0 [

1 1 01
Clearly

h(e)—feﬁdq)
o dop

O+t dh\2
2 —_— —
1 6) < (6 9‘)/91 (de) a0,

Hence

From which we can conclude that

Om+1 0 — 02 [Om+1 /dp\2
/ K2 (0)do < %/ (d—0> do.
01 01

OM+1
f s2(0)d6 < (w (61))* MGy
0

1

M k
+ Y kAG ((u)(e]))2 + Y (w©H) - w(9;>)2)
k=2 j=2

J

Now

M
< M (Om+1 —61) ((w O + Y _(w®) — w(9;>)2) :

j=2
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And so we obtain the estimate. O

Theorem 4.1. Let a? (s) and b? (s) be polynomials of degree P on the finite interval

[a, B). Then
B P
/ af (s) Mds
o ds

Here |||l denotes the fractional Sobolev norm on H* (£2) as defined in [9], when s is not

< ClnPlla”12.@p b 1/2..p)- (4.2)

an integer. Now forany 0 < ¢ < % we have
p dp?

/ af (s) &ds
o ds

since the space of infinitely differentiable functions with compact supportin (o, 8) is dense
in W[; (o, B) for 0 <t < 1/q by Theorem 1.4.2.4 of [9].

Next using Theorem 1.4.4.6 of [9] we have the result that the differentiation operator is
a continuous linear operator from Wé (a, B) to Wé’l (o, B), except when t = 1/q, with

P
< la® I j2—c.@p) ||K”—l/2+e,(a,,3) 4.3)

norm proportional to 1/ )t - é‘ Thus we can conclude that

H dp?

K
—_— < = 16" 11 2) e @.p)- 4.4)
ds €

—1/2+¢€,(a,B)
Now by the interpolation inequality from [9]

1" 2 +e@p) < CUBT I 260 o 17 13 - (4.5)
And by the inverse inequality for differentiation in [12]

167 12.@.p) < CP1IB" 11, @.p)- (4.6)
Once more by the interpolation inequatlity

1-1/3 1/3
167 1.y < CIBP I e ) 167 1) 00 )

and from (4.6) we can conclude that

P 2/3 3P 1/3 py1-1/3
15" 1,@p) < CPPIBT I 6 ) 1671 0 e -

This gives us the inverse inequality for fractional Sobolev norms

167111, @8y < CPIBE 12,0, 4.7
Using (4.5) and (4.7) we get
16711 246,00y < CPZ 1B 1 /2.(@.p)- (4.8)

Next it is easy to see that

”aP”(l/Z)—e,(a,ﬂ) < Clla® I /2.@.p)- 4.9
Substituting the relations (4.4), (4.8) and (4.9) in (4.3) we get

p db”® (s) K
/ a’ () = ——ds| = —P¥la" 1 2.@plIb" 1/2.@p)- (4.10)
o

Taking the minimum over positive € we get the required result. O
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