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Equivalence of quotient Hilbert modules
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Abstract. Let M be a Hilbert module of holomorphic functions over a natural function
algebra A(�), where� ⊆ C

m is a bounded domain. Let M0 ⊆M be the submodule of
functions vanishing to order k on a hypersurface Z ⊆ �. We describe a method, which
in principle may be used, to construct a set of complete unitary invariants for quotient
modules Q = M 	M0. The invariants are given explicitly in the particular case of
k = 2.
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1. Preliminaries

Let � be a bounded domain in C
m and Z ⊆ � be an analytic hypersurface defined (at

least, locally) as the zero set of a single analytic function ϕ. Let A(�) be the algebra of
functions obtained by taking the closure with respect to the supremum norm on � of all
functions which are holomorphic on a neighbourhood of �. Let M be a Hilbert space
consisting of holomorphic functions on �. We assume that the evaluation functionals
h → h(w), h ∈ M, w ∈ � are bounded. This ensures, via the Riesz representation
theorem, that there is a unique vector K(·, w) ∈M satisfying the reproducing property

h(w) = 〈h,K(·, w)〉, h ∈M, w ∈ �.
In this paper, a module M over the function algebra A(�) will consist of a Hilbert space
M as above together with a continuous action of the algebra A(�) in the sense of ([8],
Definition 1.2). Suppose, we are given a quotient module Q over the function algebra
A(�). This amounts to the existence of a resolution of the form

0←− Q←−M←−M0 ←− 0, (1)

where M0 ⊆ M are both modules over the algebra A(�). We make the additional
assumption that the submodule M0 consists of functions in M which vanish to some fixed
order k on the hypersurface Z . Then (cf. [7], (1.5)) the module M0 may be described as

M0 =
{
f ∈M :

∂`f

∂z`1

(z) = 0, z ∈ U ∩ Z, 0 ≤ ` ≤ k − 1

}
,

where U is some open subset of �.
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Let ∂ denote the differentiation along the unit normal to the hypersurface Z . Recall (cf.
[7]) that the map J : M→M⊗ C

k defined by

h 7→ (h, ∂h, ∂2h, . . . , ∂k−1h), h ∈M
plays a crucial role in identifying the quotient module. The requirement that

{(en, ∂en, . . . , ∂k−1en)n≥0 : (en)n≥0 is an orthonormal basis in M }
is an orthonormal basis in ran J , makes the map J unitary onto its range JM ⊆M⊗C

k .
Thus we obtain a pair of modules JM0 and JM, where JM0 is the submodule of all
functions in JM which vanish on Z . In this realisation, the module JM consists of
holomorphic functions taking values in C

k . Let C
k×k denote the linear space of all k × k

matrices over the field of complex numbers. We recall that a functionK : �×�→ C
k×k

satisfying

n∑
i,j=1

〈
K(ωi, ωj )ζj , ζi

〉
E
≥ 0, w1, . . . , ωn ∈ �, ζ1, . . . , ζn ∈ E, n ≥ 0

(2)

is said to be a nonnegative definite (nnd) kernel on �. Given such an nnd kernel K on �,
it is easy to construct a Hilbert space M of functions on� taking values in C

k×k with the
property 〈

f (ω), ζ
〉
Ck
=
〈
f,K(·, ω)ζ

〉
, w ∈ �, ζ ∈ C

k, f ∈M. (3)

The Hilbert space M is simply the completion of the linear span of all vectors of the form
K(·, ω)ζ ,ω ∈ �, ζ ∈ C

k , with inner product defined by (3). Conversely, let M be a Hilbert
space of functions on� taking values in C

k . Let eω : M→ C
k be the evaluation functional

defined by eω(f ) = f (ω), ω ∈ �, f ∈M. If eω is bounded for each ω ∈ �, then it is
easy to verify that the Hilbert space M possesses a reproducing kernel K(z, ω) = eze∗ω,
that is, K(z, ω)ζ ∈M for each ω ∈ � and K has the reproducing property (3). Finally,
the reproducing property (3) determines the reproducing kernel K uniquely. If en is an
orthonormal basis in M then it is not hard to verify that the reproducing kernel K has the
representation

K(z,w) =
∞∑
n=0

en(z)en(w)
∗, z, w ∈ �,

where en(z) is thought of as a linear map from C to C
k . Of course, this sum is independent

of the choice of the orthonormal basis en since K is uniquely determined.
The module JM possesses a reproducing kernel JK in the sense described above. It is

natural to construct this kernel by forming the sum:

JK(z,w) =
∞∑
n=0

(J en)(z)(J en)(w)
∗, z, w ∈ �.

This prescription then allows the identification of the reproducing kernel JK : �×�→
C
k×k for the module JM:

(JK)`,j (z, w) =
(
∂`∂̄jK

)
(z, w), 0 ≤ `, j ≤ k − 1. (4)
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It is then easy to verify, using the unitarity of the map J , that JK has the reproducing
property:

〈h, JK(·, w)ζ 〉 = 〈h(w), ζ 〉, w ∈ �, ζ ∈ C
k.

The module action for JM is defined in a natural manner. Indeed, let Jf be the array

(Jf )`,j =



(
`

j

)
(∂`−j f ), 0 ≤ ` ≤ j ≤ k − 1

0, otherwise

(5)

for f ∈ A(�). We may now define the module action to be Jf : h→ Jf ·Jh. Notice that
Jf is a k × k matrix-valued function on � while Jf is the module action, that is, it is an
operator on JM. The action of the adjoint is then easily seen to be

J ∗f JK(·, w) · x = JK(·, w)(Jf )(w)∗ · x, x ∈ C
k. (6)

We will say that two modules over the algebra A(�) are isomorphic if there exists a
unitary module map between them.

It is shown in [7] that the quotient module Q is isomorphic to JM	JM0. Once this is
done, we are reduced to the multiplicity free case. Thus our previous results from [6] apply
and we conclude that the quotient module Q is the restriction of JM to the hypersurface Z .

Let M be any Hilbert module over the function algebra A(�). In particular, each of
the coordinate functions zi, 1 ≤ i ≤ m in C

m acts boundedly as the multiplication
operatorMi on M. Let M denote this commutingm-tuple of multiplication operators. We
denote by M∗ the m-tuple (M∗1 , . . . ,M

∗
m). To each m-tuple M, we associate the operator

DM : M→M⊗ C
k defined by DMh = (M1h, . . . ,Mmh), h ∈M.

The class Bn(�) was introduced in [3] for a single operator. This definition was then
adapted to the general case of anm-tuple of commuting operators (cf. [4]). We let�∗ ⊆ C

m

denote the domain {w ∈ C
m : w̄ ∈ �} and say that M∗ is in Bk(�∗) if

(i) Ran DM∗−w is closed for all w ∈ �∗,
(ii) span {kerDM∗−w : w ∈ �∗} is dense in M,

(iii) dim kerDM∗−w = n for all w ∈ �∗,

where M∗ − w = (M∗1 − w1, . . . ,M
∗
m − wm).

If the adjoint of the m-tuple of multiplication operators is in Bn(�∗) (for some n ∈
N), then we say that M is in Bn(�∗). The assumption that M is in B1(�

∗) includes,
among other things, (a) the existence of a common eigenvector γ (w) ∈ M, that is,
M∗i γ (w) = w̄iγ (w), for w ∈ �∗, (b) the dimension of the common eigenspace at w̄ is
1. Furthermore, it is possible to choose γ (w) so as to ensure that the map w → γ (w)

is anti-holomorphic. Thus we obtain an anti-holomorphic hermitian line bundle E over
� whose fiber at w is the one-dimensional subspace of M spanned by the vector γ (w),
that is, γ is an anti-holomorphic frame for E. In the case of n > 1, a similar construction
of an anti-holomorphic hermitian vector bundle of rank n can be given. In our case, it
is easy to verify that K(·, w), the reproducing kernel at w, is a common eigenvector for
the m-tuple (M∗1 , . . . ,M

∗
m). Since K(·, w) is anti-holomorphic in the second variable, it

provides a natural frame for the associated bundleE. The metric with respect to this frame
is obviously the real analytic function K(w,w).
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Before we continue, we make the additional assumption that the module M, which
occurs in the resolution (1) of the quotient module Q, lies in the classB1(�

∗). Let i : Z →
� be the inclusion map and i∗ : A(�)→ A(Z) be the pullback. Then Q is clearly also a
module over the smaller algebra i∗

(A(�)). We identify this latter algebra with A(Z). Let
(Q,A(Z)) stand for Q thought of as a module over the smaller algebra A(Z). Although
it is possible that (Q,A(Z)) lies in Bk(Z∗) whenever M is in B1(�

∗), we were able
to prove it only in some special cases ([7], Proposition 3.6). However, in this paper, we
assume that the quotient module (Q,A(Z)) always lies in Bk(Z∗). These assumptions
make it possible to associate (a) an anti-holomorphic hermitian line bundle E over the
domain � with the module M and (b) an anti-holomorphic jet bundle JE|res Z of rank
k over the domain Z with the module (Q,A(Z)). The details of the jet construction are
given in ([7], pp. 375–377). One of the main results in [3] states that two modules M and
M̃ in Bk(�) are isomorphic if and only if the associated bundles are locally equivalent.
While the local equivalence of bundles is completely captured in the case of line bundles
by the curvature, it is more complicated in the general case (cf. [3]). We recall that the
quotient module Q may be described completely by specifying the action of the algebra
Ak(Z) := A(Z)⊗ C

k×k (cf. [7], p. 385). The action of the algebra Ak(Z), in particular,
includes the multiplication induced by the local defining function ϕ, namely,

(Jϕ)|res Z : JM|res Z → JM|res Z .

To exploit methods of [3], it is better to work with the adjoint action. To describe the adjoint
action, we first construct a natural anti-holomorphic frame (not necessarily orthonormal)
for the jet bundle E on �. Let {ε` : 1 ≤ ` ≤ k} be the standard orthonormal basis in C

k .
For a fixed w ∈ �, let e1 =

∑k
`=1 ∂

`−1K(z,w)⊗ ε` be simply the image of K(z,w) in
JM. It is then clear that {ej (w) : 1 ≤ j ≤ k}, where ej (w) := (∂̄j−1e1)(w) is a natural
anti-holomorphic frame for JE. (Of course, as is to be expected, e`(w), 1 ≤ ` ≤ k are the
columns of the reproducing kernel JK given in (4).) Thus the fiber of the jet bundle JE
at w ∈ � is spanned by the set of vectors {e`(w) ∈ JM : 1 ≤ ` ≤ k}.

Suppose we start with a resolution of the form (1). Then we have at our disposal the
domain � ⊆ C

m and the hypersurface Z ⊆ �. Let ϕ be a local defining function for Z
(cf. [7], p. 367). Then ϕ lies in A(Z) and induces a nilpotent action on each fiber of the
jet bundle JE|res Z via the map J ∗ϕ , that is,

(J ∗ϕ e`)(w) = JK(·, w)(Jϕ)(w)∗ε`. (7)

Therefore in this picture, with the assumptions we have made along the way, we see that the
quotient modules Q must meet the requirement listed in (i)–(iii) of the following Definition.

DEFINITION

We will say that the module Q over the algebra A(�) is a quotient module in the class
Bk(�,Z) if

(i) there exists a resolution of the module Q as in eq. (1), where the module M appearing
in the resolution is required to be in B1(�

∗),
(ii) the module action on Q translates to the nilpotent action Jϕ on JM|res Z which is

an isomorphic copy of Q,
(iii) the module

(Q,A(Z)) is in Bk(Z∗).
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In this paper, we obtain a complete set of unitary invariants for a module Q in the class
B2(�,Z). This means that the module Q admits a resolution of the form (1) and the module
M that appears in this resolution lies in B1(�). However, it is possible to considerably
weaken this latter hypothesis as explained in the Remark below.

[Remark. Although we have assumed the module M to be in the classB1(�), it is interest-
ing to note that the proof of our Theorem requires much less. Specifically, the requirement
that the ‘Ran DM∗−w is closed’ is necessary to associate an anti-holomorphic vector bun-
dle with the module. However, in our case, there is already a natural anti-holomorphic
vector bundle which is deteremined by the framew→ K(·, w). Indeed, if we assume that
the module M contains the linear space P of all the polynomials and P is dense in M,
then the eigenspace at w is forced to be one dimensional. (To prove this, merely note that
for any eigenvector x at w and all polynomials p, we have

〈p, x〉 = 〈Mp1, x〉 = 〈1,M∗px〉 = p(w)〈1, x〉 = 〈p, cK(·, w)〉,

where c = 〈1, x〉. It follows that x = cK(·, w).) Finally, the linear span of the set of
eigenvectors {K(·, w) : w ∈ �} is a dense subspace of the module M. Therefore, for our
purposes, it is enough to merely assume that

(a) M is a Hilbert module consisting of holomorphic functions on �,
(b) the module M contains the linear space of all polynomials P and that P is dense,
(c) M possesses a reproducing kernel K .

It is then clear that the same holds for the quotient module Q, where P consists of C
k-

valued polynomials and K takes values in C
k×k . Hence, if x is an eigenvector at w for

the module (Q,A(Z)), we claim that it belongs to the range of K(.,w) which is the k-
dimensional subspace {K(·, w)v ∈ Q : v ∈ C

k} of Q. As before, for 1 ≤ j ≤ k, let εj be
the standard unit vector in C

k and p =∑k
j=1 pj ⊗ εj be a C

k-valued polynomial. Then

we have 〈p, x〉 =∑k
j=1〈Mpj εj , x〉 =

∑k
j=1〈εj ,M∗pj x〉 =

∑k
j=1 pj (w)〈εj , x〉

=∑k
j=1〈p,K(·, w)εj 〉〈εj , x〉 = 〈p,

∑k
j=1 cjK(., w)εj 〉, where cj = 〈εj , x〉. Thus x is

in the range ofK(·, w) as claimed. Therefore the dimension of the eigenspace at w equals
the dimension of range K(.,w) which is k.]

We now raise the issue of adapting the techniques of [3] to find a complete set of unitary
invariants for characterizing the quotient modules Q in the class Bk(�,Z). While the
methods described below will certainly yield results in the general case, we have chosen
to give the details of our results in the case of k = 2. The reason for this choice is dictated
by the simple nature of these invariants in this case. Furthermore, these are extracted out
of the curvature and the canonical metric for the bundle E.

2. Canonical metric and curvature

Let M be a module inB1(�
∗) and the reproducing kernelK(·, w) be the anti-holomorphic

frame for the associated bundle E. If M̃ is another module in the class B1(�
∗) with

reproducing kernel K̃(·, w), then it is clear that any isomorphism between these modules
must map K(·, w) to a multiple ψ(w) of K̃(·, w), where ψ(w) is a non zero complex
number for w ∈ �. Moreover, the map w→ ψ(w) has to be anti-holomorphic. It follows
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that M and M̃ are isomorphic if and only if K̃(z, w) = ψ(z)K(z,w)ψ(w) (cf. [4],
Lemma 3.9) for some anti-holomorphic function ψ . There are two ways in which this
ambiguity may be eliminated.

The first approach is to note that if the two modules M̃ and M are isomorphic, then
K̃(z, z)/K(z, z) = |ψ(z)|2. Since ψ is holomorphic, it follows that

m∑
i,j=1

∂i ∂̄j log
(
K(z, z)/K̃(z, z)

)
dzi ∧ dz̄j = 0. (8)

On the other hand, if we have two modules for which equation (8) holds, then the preced-
ing argument shows that they must be isomorphic. It is then possible to find, in a small
simply connected neighbourhood of some fixed point w0, a harmonic conjugate v(w)
of the harmonic function u(w) := log K̃(w,w)/K(w,w). The new kernel defined by
˜̃
K(z,w) = exp(u(z) + iv(z))K̃(z, w)exp(u(w)+ iv(w)) determines a module ˜̃M iso-

morphic to M̃ but with the additional property that the metric ˜̃K(w,w) = K(w,w). It is

then easy to see that the map taking K(·, w) to ˜̃K(·, w) extends linearly to an isometric
module map. Therefore,

∑m
i,j=1 ∂i ∂̄j logK(z, z)dzi ∧ dz̄j is a complete invariant for the

module M
The second approach is to normalise the reproducing kernelK, that is, define the kernel

K0(z, w) = ψ(z)K(z,w)ψ(w), where ψ(z) = K(z,w0)
−1K(w0, w0)

1/2 for z in some
open subset �0 ⊆ � and some fixed but arbitrary w0 ∈ �0. Also, �0 can be chosen so
as to ensure ψ|res �0 6= 0. This reproducing kernel determines a module isomorphic to M
but with the added property thatK0(z, w0) is the constant function 1. If M and M̃ are two
modules in B1(�

∗), then it is shown in ([4], Theorem 4.12) that they are isomorphic if and
only if the normalisations K0 and K̃0 of the respective reproducing kernels at some fixed

point are equal. As before, it is then easy to see that the map taking K(·, w) to ˜̃K(·, w)
extends linearly to an isometric module map. The normalised kernel K0 is therefore a
complete unitary invariant for the module M.

Notice that if a module M is isomorphic to M̃, then the module map 0 is induced by a
nonvanishing function 8 on �, that is, 0 = M8 ([4], Lemma 3.9). Consequently, if M0
is the submodule of functions vanishing to order k on Z , then 0(M0) is the submodule of
functions vanishing to order k in M̃. It follows that if M and M̃ are isomorphic modules,
then the corresponding quotient modules must be isomorphic as well. Therefore we can
make the following assumption without any loss of generality.

Hypothesis. Now we make a standing hypothesis that the kernel for the module M appear-
ing in the resolution of the quotient module Q is normalised.

Recall that if E is a hermitian holomorphic vector bundle of rank k over the domain
� ⊆ C

m, then it is possible to find a holomorphic frame s = (s1, . . . , sk) such that (a)
〈si(w0), sj (w0)〉 = 1, (b) ∂j 〈s(w), s(w)〉|w=w0 = 0 for 1 ≤ j ≤ m (cf. [12], Lemma 2.3).
We offer below a variation of this Lemma for the jet bundle JE corresponding to the
hypersurface Z ⊆ � and the Hilbert module M in the classB1(�). We state the following
Lemma in terms of a frame for the bundle associated with the module M. There is an
obvious choice for such a frame in terms of the reproducing kernel of the module. The
relationship between the reproducing kernel of the module and the hermitian metric of
the associated bundle was explained in ([7], § 2). Let 〈s(w), s(w0)〉 be the matrix of inner
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products, that is, 〈s(w), s(w0)〉ij = 〈si(w), sj (w0)〉M, 1 ≤ i, j ≤ k for some fixed but
arbitrary w0 ∈ Z and all w ∈ Z .

Lemma. Let M be Hilbert module in B1(�) and M0 ⊆M be the submodule consisting
of functions vanishing on the hypersurface Z ⊆ �. Then there exists an anti-holomorphic
frame s for the jet bundle JE satisfying

〈s(w), s(w0)〉|res Z =
(

1 0
0 S(w)

)
,

for w ∈ Z and some anti-holomorphic function S on Z .

Proof. Let us assume, without loss of generality, that w0 = 0. We first observe that if
we replace the module M by an isomorphic copy, then the class of the associated bundle
JE does not change. Indeed, if M and M̃ are isomorphic modules, then there is an anti-
holomorphic map ϕ which induces a metric preserving bundle map of the associated
bundlesE and Ẽ. It is then clear that the map J ∗ϕ induces a bundle map of the corresponding
jet bundles. Therefore, we may assume that the reproducing kernelK for the module M is
normalised, that is, K(z, 0) = 1. Let (z̃, w̃) denote (temporarily) the normal coordinates
in �×�. From the expansion

K(z,w) =
∞∑

`,n=0

K`,n(z, w)z̃
` ¯̃wn, z,w ∈ Z

it is clear that K`n(z, 0) = 0 for ` 6= 0 and n = 0. Since K(z,w) = K(w, z), it follows
that K`n(0, w) = 0 for ` = 0 and n 6= 0. However, K`n(z,w) = (∂`∂̄nK)|z̃=0,w̃=0(z, w).
Hence ((K`n(z,w)))

k−1
`,n=0 = JK|res Z (z, w) for z,w ∈ Z by definition (4). Recall that

e`(w) =
∑k
j=1 ∂̄

`−1∂j−1K(·, w) ⊗ ε`, for 1 ≤ ` ≤ k is an anti-holomorphic frame for
the jet bundle JE. It follows that 〈e`(w), en(0)〉 = (JK)`n(0, w). But (JK)`n(0, w) =
K`n(0, w) = 0 for ` = 0 as long as n 6= 0. The proof is completed by taking s(w) =
{e1(w), . . . , ek(w)}. �

There is a canonical connectionD on the bundle JE which is compatible with the metric
and has the property D′′ = ∂̄ . Let C∞1,1(�,E) be the space of C∞ sections of the bundle

∧(1,1)T ∗�⊗E. The curvature tensor K associated with the canonical connection D is in
C∞1,1(�, herm(E,E)). Moreover, if h is a local representation of the metric in some open

set, then iK = ∂̄(h−1∂h). The holomorphic tangent bundle T�|res Z naturally splits as
TZ+̇NZ , where NZ is the normal bundle and is realised as the quotient T�|res Z/TZ .
The co-normal bundleN∗Z is the dual ofNZ; it is the sub-bundle of T�|res Z consisting
of cotangent vectors that vanish on TZ ⊆ T�|res Z . Indeed, the class of the conormal
bundle N∗Z coincides with [−Z]|res Z via the adjunction formula I ([10], p. 146). Let P1
be the projection ontoN∗Z and P2 = (1−P1) be the projection onto T ∗Z . Now, we have
a splitting of the (1, 1) forms as follows:

∧(1,1)T ∗�|res Z =
2∑

i,j=1

Pi
( ∧(1,0) T ∗�|res Z

) ∧ Pj ( ∧(0,1) T ∗�|res Z
)
.

Accordingly, we have the component of the curvature along the transversal direction to Z
which we denote by Ktrans. Clearly, Ktrans = (P1⊗I )K|res Z . Similarly, let the component
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of the curvature along tangential directions to Z be Ktan. Again, Ktan = (P2 ⊗ I )K|res Z .
(Here I is the identity map on the vector space herm(E,E).)

Recall that the fiber of the jet bundle JE|res Z at w ∈ Z is spanned by the set of vectors
∂̄`−1K(·, w), 1 ≤ ` ≤ k. Thus the module action J ∗ϕ can be determined by calculating
it on the set {∂̄`−1K(·, w) : 1 ≤ ` ≤ k and w ∈ Z}. This calculation is given in eq. (7).
We therefore obtain an anti-holomorphic bundle map J ∗ϕ on the bundle JE|res Z . Thus the
isomorphism of two quotient modules in Bk(�,Z) translates to a question of equivalence
of the pair (JE|res Z , J ∗ϕ ). This merely amounts to finding an anti-holomorphic bundle
map θ : JE|res Z → JE|res Z which intertwines J ∗ϕ . It is clear that if we could find such a
bundle map θ , then the line sub-bundles corresponding to the frameK(·, w), w ∈ Z must
be equivalent. From this it is evident that the curvatures Ktan in the tangential directions
must be equal. Also, we can calculate the matrix representation for the nilpotent action at
w, as given in (7), with respect to the orthonormal basis obtained via the Gram–Schmidt
process applied to the holomorphic frame at w. A computation shows that the matrix
entries involve the curvatures Ktrans in the transverse direction and its derivatives. It is not
clear if the intertwining condition can be stated precisely in terms of these matrix entries.
In the following section we show, as a result of some explicit calculation, that if k = 2
then the curvature in the transverse direction must also be equal. We also find that an
additional condition must be imposed to determine the isomorphism class of the quotient
modules.

3. The case of rank 2 bundles

In this case, the adjoint action of ϕ on Q ∼= JM|res Z produces a nilpotent bundle map
on JE which, at w ∈ Z , is described easily:

e(w) :=
(
K(·,w)
∂K(·,w)

)
→ 0 and (∂̄e)(w) :=

(
∂̄K(·,w)
∂∂̄K(·,w)

)
→ (∂ϕ)(w)e(w)

on the spanning set {e(w), (∂̄e)(w) : w ∈ Z} for the fiber JE(w) of the jet bundle JE at
w ∈ Z . Thus the adjoint action induced byϕ determines a nilpotentN(w)of order 2 defined

by

(
0 (∂ϕ)(w)

0 0

)
on each fiber JE(w), w ∈ Z with respect to the basis {e(w), (∂e)(w)}.

Now, consider the orthonormal basis: {γ0(w), γ1(w)}, where

γ0(w) = ‖e(w)‖−1e(w),

γ1(w) = a(w)e(w)+ b(w)(∂̄e)(w), w ∈ Z.
The coefficients a(w) and b(w) can be easily calculated (cf. [3], p. 195):

−a(w)‖e(w)‖3 = 〈(∂e)(w), e(w)〉(−Ktrans(w))
−1/2,

b(w)‖e(w)‖ = (−Ktrans(w))
−1/2,

where Ktrans(w) denotes the curvature in the transversal direction. In the case of a line
bundle, we have the following explicit formula:

Ktrans(w) = P1

( m∑
i,j=1

∂i ∂̄j log ‖e(w)‖2dzi ∧ dz̄j
)
, w ∈ Z. (9)
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The nilpotent action North(w) at the fiber JE(w), w ∈ Z with respect to the orthonormal
basis {γ0(w), γ1(w)} is given by(

0 b(w)‖e(w)‖(∂ϕ)(w)
0 0

)
.

Now, we are ready to prove the main theorem which gives a complete set of invariants
for quotient modules in the class B2(�,Z). At first, it may appear that the condition angle
of the theorem stated below depends on the choice of the holomorphic frame. But we
remind the reader that the normalisation of the kernelK for the module M ensures that it
is uniquely dtermined. Therefore so is JK .

Theorem. If Q and Q̃ are two quotient modules, over the algebra A(�), in the class
B2(�,Z), then they are isomorphic if and only if

tan: Ktan = K̃tan
trans: Ktrans = K̃trans
angle: 〈(∂̄e)(w), e(w)〉 = 〈(∂̄ ẽ)(w), ẽ(w)〉.

Proof. Suppose, we are given two quotient modules Q and Q̃ which are isomorphic. Then
the module map 8 : Q → Q̃ induces an anti-holomorphic bundle map 8 : JE|res Z →
JẼ|res Z . For w ∈ Z , let JE(w) and JẼ(w) denote the two dimensional space spanned by
{e(w), (∂̄e)(w)} and {ẽ(w), (∂̄ ẽ)(w)}, respectively. Then the bundle map8 defines a linear
map 8(w) : JE(w) → JẼ(w). The map 8(w) must then intertwine the two nilpotents

N(w) and Ñ(w)which implies that8(w)must be of the form8(w) =
(
α(w) β(w)

0 α(w)

)
, where

α, β are anti-holomorphic functions for w in some small open set in Z . We observe that
8(w) maps γ0(w) to α(w)‖ẽ(w)‖‖e(w)‖−1γ̃0(w). Since 8(w) is an isometry, it follows
that α(w) = ‖e(w)‖‖ẽ(w)‖−1. Because we have chosen to work only with normalised
kernels, we infer that ‖e(w)‖‖ẽ(w)‖−1 = 1 for all w ∈ Z which is the same as saying
that α(w) = 1 for w ∈ Z . The condition ‘tan’ of the theorem is evident.

The module map φ has to satisfy the relation

JK(z,w) = 8(z)J K̃(z,w)8(w), z,w ∈ Z.
However, JK(z, 0) = ( 1 0

0 S(z)

)
, and similarly K̃ at (z, 0) has a matrix representation with

S replaced by S̃. Now, evaluate the formula relating JK and J K̃ at w = 0 to conclude
that β(z) = 0 for all z ∈ Z .

Now, since 8(w) has to preserve the inner products, it follows that 〈(∂̄e)(w), e(w)〉 −
〈(∂̄ ẽ)(w), ẽ(w)〉 = β(w)‖e(w)‖2. Hence it follows that 〈(∂̄e)(w), e(w)〉 = 〈(∂̄ ẽ)(w),
ẽ(w)〉 which is the condition ‘angle’ of the theorem.

Finally, the requirement that the nilpotentsN(w) and Ñ(w)must be unitarily equivalent
for eachw ∈ Z amounts to the equality of the (1, 2) entry ofNorth(w)with that of Ñorth(w).
Since we have already ensured ‖e(w)‖ = ‖ẽ(w)‖, it follows that b(w) = b̃(w). This
clearly forces the condition ‘trans’ of the theorem which completes the proof of necessity.

For the converse, first prove that the natural map from JE(w) to JẼ(w), w ∈ Z , which
carries one anti-holomorphic frame to the other is an isometry. It is evident that this map,
which we denote by8(w), defines an anti-holomorphic bundle map and that it intertwines
the nilpotent action.

To check if 8(w) is isometric, all we have to do is see if it automatically maps the
orthonormal basis {γ0(w), γ1(w)} to the corresponding orthonormal basis {γ̃0(w), γ̃1(w)}.
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Clearly,8(w)(γ0(w)) = ẽ(w)‖e(w)‖−1 = γ̃0(w)‖ẽ(w)‖ ‖e(w)‖−1. Suppose that the two
curvatures corresponding to the bundles JE and JẼ agree on the hypersurface Z . Then it
is possible to find sections of these bundles which have the same norm. Or, equivalently,
we may assume that ‖γ0(w)‖ = ‖γ̃0(w)‖. It then follows that 8(w)(γ0(w)) = γ̃0(w).
Notice that

8(w)(γ1(w)) = a(w)ẽ(w)+ b(w)(∂ẽ)(w)
= a(w)‖ẽ(w)‖γ̃0(w)+ b(w)(b̃(w))−1(γ̃1(w)

− ã(w)‖ẽ(w))‖γ̃0(w)

= (a(w)b̃(w)− ã(w)b(w))‖ẽ(w)‖(b̃(w))−1γ̃0(w)

+ b(w)(b̃(w))−1γ̃1(w).

A simple calculation shows that

a(w)b̃(w)− ã(w)b(w) = ‖e(w)‖3‖ẽ(w)‖(−K(w))−1/2(−K̃(w))−1/2(〈(∂̄e)(w), e(w)〉 − 〈(∂̄ ẽ)(w), ẽ(w)〉).
It follows that8(w)mapsγ1(w) to γ̃1(w) if and only ifb(w) = b̃(w) and 〈(∂̄e)(w), e(w)〉 =
〈(∂̄ ẽ)(w), ẽ(w)〉.

We have therefore shown that the two bundles JE and JẼ are locally equivalent (via the
bundle map Jϕ). We now apply the Rigidity Theorem ([3], p. 202) to conclude that the
two modules Q and Q̃ must be isomorphic. �

It is not clear if the condition ‘angle’ of the theorem can be reformulated in terms of
intrinsic geometric invariants like the second fundamental form etc.

In the case k > 2, if we show that the bundle map is the identity transform on each of the
fibers, then it will follow that the matrix entries of the two nilpotent actions on each of these
fibers must be equal. These entries are expressible in terms of the curvature in the transverse
direction and its normal derivatives. So if two quotient modules are isomorphic, then it
follows that these quantities must be equal. However, we are not sure what a replacement
for the condition ‘angle’ in the theorem would be.
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