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Abstract. This is an expository article on the theory of algebraic stacks. After
introducing the general theory, we concentrate in the example of the moduli stack of
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1. Introduction

The concept of algebraic stack is a generalization of the concept of scheme, in the same

sense that the concept of scheme is a generalization of the concept of projective variety. In

many moduli problems, the functor that we want to study is not representable by a scheme.

In other words, there is no fine moduli space. Usually this is because the objects that we

want to parametrize have automorphisms. But if we enlarge the category of schemes

(following ideas that go back to Grothendieck and Giraud [Gi], and were developed by

Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons-

truct the ‘moduli stack’, that captures all the information that we would like in a fine

moduli space. For other sources on stacks, see [E, La, LaM, Vi].

The idea of enlarging the category of algebraic varieties to study moduli problems is

not new. In fact Weil invented the concept of abstract variety to give an algebraic cons-

truction of the Jacobian of a curve.

These notes are an introduction to the theory of algebraic stacks. I have tried to

emphasize ideas and concepts through examples instead of detailed proofs (I give

references where these can be found). In particular, §3 is a detailed comparison between

the moduli scheme and the moduli stack of vector bundles.

First I will give a quick introduction in subsection 1.1, just to give some motivations

and get a flavor of the theory of algebraic stacks.

Section 2 has a more detailed exposition. There are mainly two ways of introducing

stacks. We can think of them as 2-functors (I learnt this approach from Nitsure and

Sorger, cf. subsection 2.1), or as categories fibered on groupoids. (This is the approach

used in the references, cf. subsection 2.2.) From the first point of view it is easier to see in

which sense stacks are generalizations of schemes, and the definition looks more natural,

so conceptually it seems more satisfactory. But since the references use categories fibered

on groupoids, after we present both points of view, we will mainly use the second.

The concept of stack is merely a categorical concept. To do geometry we have to

add some conditions, and then we get the concept of algebraic stack. This is done in

subsection 2.3.
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In subsection 2.4 we introduce a third point of view to understand stacks: as groupoid

spaces.

In subsection 2.5 we define for algebraic stacks many of the geometric properties that

are defined for schemes (smoothness, irreducibility, separatedness, properness, etc. . .). In

subsection 2.6 we introduce the concept of point and dimension of an algebraic stack, and

in subsection 2.7 we define sheaves on algebraic stacks.

In §3 we study in detail the example of the moduli of vector bundles on a scheme X,

comparing the moduli stack with the moduli scheme.

Prerequisites. In the examples, I assume that the reader has some familiarity with the

theory of moduli spaces of vector bundles. A good source for this material is [HL]. The

necessary background on Grothendieck topologies, sheaves and algebraic spaces is in

Appendix A, and the notions related to the theory of 2-categories are explained in

Appendix B.

1:1 Quick introduction to algebraic stacks

We will start with an example: vector bundles (with fixed prescribed Chern classes and

rank) on a projective scheme X over an algebraically closed field k. What is the moduli

stackMX of vector bundles on X? I do not know a short answer to this, but instead it is

easy to define what is a morphism from a scheme B to the moduli stackMX . It is just a

family of vector bundles parametrized by B. More precisely, it is a vector bundle V on

B� X (hence flat over B) such that the restriction to the slices b� X have prescribed

Chern classes and rank. In other words,MX has the property that we expect from a fine

moduli space: the set of morphisms HomðB;MXÞ is equal to the set of families

parametrized by B.

We will say that a diagram

ð1Þ

is commutative if the vector bundle V on B� X corresponding to g is isomorphic to the

vector bundle ð f � idXÞ�V 0, where V 0 is the vector bundle corresponding to g0. Note that

in general, if L is a line bundle on B, then V and V 
 p�BL won’t be isomorphic, and then

the corresponding morphisms from B to MX will be different, as opposed to what

happens with moduli schemes.

A k-point in the stack MX is a morphism u : Spec k !MX , in other words, it is a

vector bundle V on X, and we say that two points are isomorphic if they correspond to

isomorphic vector bundles. But we should not think of MX just as a set of points, it

should be thought of as a category. The objects ofMX are points1, i.e. vector bundles on

X, and a morphism in MX is an isomorphism of vector bundles. This is the main

difference between a scheme and an algebraic stack: the points of a scheme form a set,

whereas the points of a stack form a category, in fact a groupoid (i.e. a category in which

all morphisms are isomorphisms). Each point comes with a group of automorphisms.

Roughly speaking, a scheme (or more generally, an algebraic space [Ar1, K]) can be

1To be precise, we should consider also B-valued points, for any scheme B, but we will only
consider k-valued points for the moment.
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thought of as an algebraic stack in which these groups of automorphisms are all trivial.

If p is the k-point in MX corresponding to a vector bundle V on X, then the group

of automorphisms associated to p is the group of vector bundle automorphisms of V . This

is why algebraic stacks are well suited to serve as moduli of objects that have

automorphisms.

An algebraic stack has an atlas. This is a scheme U and a (representable) surjective

morphism u : U !MX (with some other properties). As we have seen, such a morphism

u is equivalent to a family of vector bundles parametrized by U. The precise definition of

representable surjective morphism of stacks will be given in §2. In this situation it implies

that for every vector bundle V over X there is at least one point in U whose corresponding

vector bundle is isomorphic to V . The existence of an atlas for an algebraic stack is the

analog of the fact that for a scheme B there is always an affine scheme U and a surjective

morphism U ! B (if fUi ! Bg is a covering of B by affine subschemes, take U to be the

disjoint union
‘

Ui). Many local properties (smooth, normal, reduced. . .) can be studied

by looking at the atlas U. It is true that in some sense an algebraic stack looks, locally,

like a scheme, but we shouldn’t take this too far. For instance the atlas of the classifying

stack BG (parametrizing principal G-bundles, cf. Example 2.18) is just a single point. The

dimension of an algebraic stack MX will be defined as the dimension of U minus the

relative dimension of the morphism u. The dimension of an algebraic stack can be

negative (for instance, dimðBGÞ ¼ ÿdimðGÞ).
We will see that many geometric concepts that appear in the theory of schemes have an

analog in the theory of algebraic stacks. For instance, one can define coherent sheaves on

them. We will give a precise definition in §2, but the idea is that a coherent sheaf L on an

algebraic stack MX is a functor that, for each morphism g : B!MX , gives a coherent

sheaf LB on B, and for each commutative diagram like (1), gives an isomorphism between

f �LB0 and LB. The coherent sheaf LB should be thought of as the pullback ‘g�L’ of L under

g (the compatibility condition for commutative diagrams is just the condition that

ðg0 � f Þ�L should be isomorphic to f �g0�L).

Let’s look at another example: the moduli quotient (Example 2.18). Let G be an affine

algebraic group acting on X. For simplicity, assume that there is a normal subgroup H of

G that acts trivially on X, and that G ¼ G=H is an affine group acting freely on X and

furthermore there is a quotient by this action X ! B and this quotient is a principal G-

bundle. We call B ¼ X=G the quotient scheme. Each point corresponds to a G-orbit of

the action. But note that B is also equal to the quotient X=G, because H acts trivially and

then G-orbits are the same thing as G-orbits. We can say that the quotient scheme

‘forgets’ H.

One can also define the quotient stack ½X=G�. Roughly speaking, a point p of ½X=G�
again corresponds to a G-orbit of the action, but now each point comes with an

automorphism group: given a point p in ½X=G�, choose a point x 2 X in the orbit

corresponding to p. The automorphism group attached to p is the stabilizer Gx of x. With

the assumptions that we have made on the action of G, the automorphism group of any

point is always H. Then the quotient stack ½X=G� is not a scheme, since the automorphism

groups are not trivial. The action of H is trivial, but the moduli stack still ‘remembers’

that there was an action by H. Observe that the stack ½X=G� is not isomorphic to the stack

½X=G� (as opposed to what happens with the quotient schemes). Since the action of G is

free on X, the automorphism group corresponding to each point of ½X=G� is trivial, and it

can be shown that, with the assumptions that we made, ½X=G� is represented by the

scheme B (this terminology will be made precise in §2).
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2. Stacks

2:1 Stacks as 2-functors: Sheaves of sets

Given a scheme M over a base scheme S, we define its (contravariant) functor of points

HomSðÿ;MÞ

HomSðÿ;MÞ : ðSch=SÞ ÿ! ðSetsÞ
B 7ÿ! HomSðB;MÞ

where ðSch=SÞ is the category of S-schemes, B is an S-scheme, and HomSðB;MÞ is the set

of S-scheme morphisms. If we give ðSch=SÞ the Zariski (or �etale, or fppf) topology,
~M ¼ HomSðÿ;MÞ is a sheaf (see Appendix A for the definition of topologies and sheaves

on categories). Furthermore, given schemes M and N there is a bijection (given by

Yoneda Lemma) between the set of morphisms of schemes HomSðM;NÞ and the set of

natural transformations between the associated functors ~M and ~N, hence the category of

schemes is a full subcategory of the category of sheaves on ðSch=SÞ.
A sheaf of sets on ðSch=SÞ with a given topology is called a space2 with respect to that

topology (this is the definition given in ([La], 0)).

Then schemes can be thought of as sheaves of sets. Moduli problems can usually be

described by functors. We say that a sheaf of sets F is representable by a scheme M if F is

isomorphic to the functor of points HomSðÿ;MÞ. The scheme M is then called the fine

moduli scheme. Roughly speaking, this means that there is a one to one correspondence

between families of objects parametrized by a scheme B and morphisms from B to M.

Example 2.1 (Vector bundles). Let X be a projective scheme over an algebraically closed

field k. We define the moduli functor M0X of vector bundles of fixed rank r and Chern

classes ci by sending the scheme B to the set M0XðBÞ of isomorphism classes of vector

bundles on B� X (hence flat over B) with rank r and whose restriction to the slices

fbg � X have Chern classes ci. These vector bundles should be thought of as families

of vector bundles parametrized by B. A morphism f : B0 ! B is sent to M0Xð f Þ ¼
f � : M0XðBÞ ! M0XðB0Þ, the map of sets induced by the pullback. Usually we will also fix a

polarization H in X and restrict our attention to stable or semistable vector bundles with

respect to this polarization (see [HL] for definitions), and then we consider the

corresponding functors M0sX and M0ss
X .

Example 2.2 (Curves). The moduli functor Mg of smooth curves of genus g over a

Noetherian base S is the functor that sends each scheme B to the set MgðBÞ of

isomorphism classes of smooth and proper morphisms C ! B (where C is an S-scheme)

whose fibers are geometrically connected curves of genus g. Each morphism f : B0 ! B

is sent to the map of sets induced by the pullback f �.

None of these examples are sheaves (then none of these are representable), because of

the presence of automorphisms. They are just presheaves (¼ functors). For instance, given

a curve C over S with nontrivial automorphisms, it is possible to construct a family

f : C ! B such that every fiber of f is isomorphic to C, but C is not isomorphic to B� C

(see [E]). This implies that Mg does not satisfy the monopresheaf axiom.

2Note that the concept of space is just a categorical concept. To do geometry we need to add some
algebraic and technical conditions (existence of an atlas, quasi-separatedness,. . .). After we add
these conditions (see Definitions 4.3 or 4.4), we have an algebraic space.
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This can be solved by taking the sheaf associated to the presheaf (sheafification). In the

examples, this amounts to change isomorphism classes of families to equivalence classes

of families, declaring two families to be equivalent if they are locally (using the �etale

topology over the parametrizing scheme B) isomorphic. In the case of vector bundles, this

is the reason why one usually considers two vector bundles V and V 0 on X � B equivalent

if V ffi V 0 
 p�BL for some line bundle L on B. The functor obtained with this equivalence

relation is denoted MX (and analogously for Ms
X and Mss

X ).

Note that if two families V and V 0 are equivalent in this sense, then they are locally

isomorphic. The converse is only true if the vector bundles are simple (only automor-

phisms are scalar multiplications). This will happen, for instance, if we are considering

the functor M0sX of stable vector bundles, since stable vector bundles are simple. In general,

if we want the functor to be a sheaf, we have to use a weaker notion of equivalence, but

this is not done because for other reasons there is only hope of obtaining a fine moduli

space if we restrict our attention to stable vector bundles.

Once this modification is made, there are some situations in which these examples are

representable (for instance, stable vector bundles on curves with coprime rank and

degree), but in general they will still not be representable, because in general we do not

have a universal family:

DEFINITION 2.3 (Universal family)

Let F be a representable functor, and let � : F ! HomSðÿ;XÞ be the isomorphism. The

object of FðXÞ corresponding to the element idX of HomSðX;XÞ is called the universal

family.

Example 2.4 (Vector bundles). If V is a universal vector bundle (over M � X, where M is

the fine moduli space), it has the property that for any family W of vector bundles (i.e. W

is a vector bundle over B� X for some parameter scheme B) there exists a morphism

f : B! M such that ð f � idXÞ�V is equivalent to W .

In other words, the functor MX is represented by the scheme M iff there exists a

universal vector bundle on M � X.

When a moduli functor F is not representable and then there is no scheme X whose

functor of points is isomorphic to F, one can still try to find a scheme X whose functor of

points is an approximation to F in some sense. There are two different notions:

DEFINITION 2.5 (Corepresents) ([S], p. 60), ([HL], Definition 2.2.1)

We say that a scheme M corepresents the functor F if there is a natural transformation of

functors � : F ! HomSðÿ;MÞ such that

� Given another scheme N and a natural transformation  : F ! HomSðÿ;NÞ, there is a

unique natural transformation � : HomSðÿ;MÞ ! HomSðÿ;NÞ with  ¼ � � �.

This characterizes M up to unique isomorphism. Let ðSch=SÞ0 be the functor category,

whose objects are contravariant functors from ðSch=SÞ to ðSetsÞ and whose morphisms
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are natural transformation of functors. Then M represents F iff HomSðY;MÞ ¼
HomðSch=SÞ0 ðY;FÞ for all schemes Y , where Y is the functor represented by Y. On the

other hand, one can check that M corepresents F iff HomSðM; YÞ ¼ HomðSch=SÞ0 ðF;YÞ for

all schemes Y . If M represents F, then it corepresents it, but the converse is not true. From

now on we will denote a scheme and the functor that it represents by the same letter.

DEFINITION 2.6 (Coarse moduli)

A scheme M is called a coarse moduli scheme if it corepresents F and furthermore

� for any algebraically closed field k, the map �ðkÞ : FðSpeckÞ ! HomSðSpeck;MÞ is

bijective.

If M corepresents F (in particular, if M is a coarse moduli space), given a family of

objects parametrized by B we get a morphism from B to M, but we don’t require the

converse to be true, i.e. not all morphisms are induced by families.

Example 2.7 (Vector bundles). There is a scheme Mss
X that corepresents Mss

X (see [HL]). It

fails to be a coarse moduli scheme because its closed points are in one to one

correspondence with S-equivalence classes of vector bundles, and not with isomorphism

classes of vector bundles. Of course, this can be solved ‘by hand’ by modifying the

functor and considering two vector bundles equivalent if they are S-equivalent. Once this

modification is done, Mss
X is a coarse moduli space.

But in general Mss
X doesn’t represent the moduli functor Mss

X . The reason for this is that

vector bundles have always nontrivial automorphisms (multiplication by scalar), but the

moduli functor does not record information about automorphisms: recall that to a scheme

B it associates just the set of equivalence classes of vector bundles. To record the

automorphisms of these vector bundles, we define

MX : ðSch=SÞ ÿ! ðgroupoidsÞ
B 7ÿ! MXðBÞ;

where MXðBÞ is the category whose objects are vector bundles V on B� X of rank r

and with fixed Chern classes (note that the objects are vector bundles, not isomor-

phism classes of vector bundles), and whose morphisms are vector bundle isomorphisms

(note that we use isomorphisms of vector bundles, not S-equivalence nor equivalence

classes as before). This defines a 2-functor between the 2-category associated to ðSch=SÞ
and the 2-category (groupoids) (for the definition of 2-categories and 2-functors, see

Appendix B).

DEFINITION 2.8

Let (groupoids) be the 2-category whose objects are groupoids, 1-morphisms are functors

between groupoids, and 2-morphisms are natural transformation between these functors.

A presheaf in groupoids (also called quasi-functor) is a contravariant 2-functor F from

ðSch=SÞ to (groupoids). For each scheme B we have a groupoid FðBÞ and for each

morphism f : B0 ! B we have a functor Fð f Þ : FðBÞ ! FðB0Þ that is denoted by f �

(usually it is actually defined by a pull-back).

Example 2.9 (Vector bundles) ([La], 1.3.4). MX is a presheaf. For each object B of

ðSch=SÞ it gives the groupoid MXðBÞ defined in Example 2.7. For each 1-morphism
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f : B0 ! B it gives the functor Fð f Þ ¼ f � :MXðBÞ !MXðB0Þ given by pull-back, and

for every diagram

B00ÿ!g B0ÿ!f B ð2Þ

it gives a natural transformation of functors (a 2-isomorphism) �g; f : g� � f � ! ð f � gÞ�.
This is the only subtle point. First recall that the pullback f �V of a vector bundle (or more

generally, any fiber product) is not uniquely defined: it is only defined up to unique

isomorphism. First choose once and for all a pullback f �V for each f and V . Then, given

a diagram like 2, in principle g�ð f �VÞ and ð f � gÞ�V are not the same, but (because both

solve the same universal problem) there is a canonical isomorphism (the unique

isomorphism of the universal problem) g�ð f �VÞ ! ð f � gÞ�V between them, and this

defines the natural transformation of functors �g; f : g� � f � ! ð f � gÞ�. By a slight abuse

of language, usually we will not write explicitly these isomorphisms �g; f , and we will

write g� � f � ¼ ð f � gÞ�. Since they are uniquely defined this will cause no ambiguity.

Example 2.10 (Stable curves) ([DM], Definition 1.1). Let B be an S-scheme. Let g � 2.

A stable curve of genus g over B is a proper and flat morphism � : C ! B whose

geometric fibers are reduced, connected and one-dimensional schemes Cb such that

1. The only singularities of Cb are ordinary double points.

2. If E is a non-singular rational component of Cb, then E meets the other components of

Cb in at least 3 points.

3. dim H1ðOCb
Þ ¼ g.

Condition 2 is imposed so that the automorphism group of Cb is finite. A stable curve

over B should be thought of as a family of stable curves (over S) parametrized by B.

For each object B of ðSch=SÞ, let MgðBÞ be the groupoid whose objects are stable

curves over B and whose (iso)morphisms are Cartesian diagrams

For each morphism f : B0 ! B of ðSch=SÞ, we define the pullback functor

f � :MgðBÞ !MgðB0Þ, sending an object X ! B to f �X ! B0 (and a morphism

’ : X1 ! X2 of curves over B to f �’ : f �X1 ! f �X2). And finally, for each diagram

B00ÿ!g B0ÿ!f B

we have to give a natural transformation of functors (i.e. a 2-isomorphism in (groupoids))

�g; f : g� � f � ! ð f � gÞ�. As in the case of vector bundles, this is defined by first choosing

once an for all a pullback f �X for each curve X and morphism f , and then �g; f is given by

the canonical isomorphism between g�ð f �XÞ and ð f � gÞ�X. Since this isomorphism is

canonical, by a slight abuse of language we usually write g� � f � ¼ ð f � gÞ�.
Now we will define the concept of stack. First we have to choose a Grothendieck

topology on ðSch=SÞ, either the �etale or the fppf topology. Later on, when we define

algebraic stack, the �etale topology will lead to the definition of a Deligne-Mumford stack

([DM, Vi, E]), and the fppf to an Artin stack ([La]). For the moment we will give a unified

description.
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In the following definition, to simplify notation we denote by Xji the pullback f �i X

where fi : Ui ! U and X is an object of FðUÞ, and by Xiji j the pullback f �i j;iXi where

fi j;i : Ui �U Uj ! Ui and Xi is an object of FðUiÞ. We will also use the obvious variations

of this convention, and will simplify the notation using Remark 5.3.

DEFINITION 2.11 (Stack)

A stack is a sheaf of groupoids, i.e. a 2-functor (¼ presheaf) that satisfies the following

sheaf axioms. Let fUi ! Ugi2I be a covering of U in the site ðSch=SÞ. Then

1. Glueing of morphisms. If X and Y are two objects of FðUÞ, and ’i : Xji ! Y ji are

morphisms such that ’iji j ¼ ’jji j, then there exists a morphism � : X ! Y such that

�ji ¼ ’i.

2. Monopresheaf. If X and Y are two objects of FðUÞ, and ’ : X ! Y ,  : X ! Y are

morphisms such that ’ji ¼  ji, then ’ ¼  .

3. Glueing of objects. If Xi are objects of FðUiÞ and ’i j : Xjji j ! Xiji j are morphisms

satisfying the cocycle condition ’i jji jk � ’jkji jk ¼ ’ikji jk, then there exists an object X

of FðUÞ and ’i : Xji!
ffi

Xi such that ’ji � ’iji j ¼ ’jji j.

At first sight this might seem very complicated, but if we check in a particular example

we will see that it is a very natural definition:

Example 2.12 (Stable curves). It is easy to check that the presheafMg defined in 2.10 is

a stack (all properties hold because of descent theory). We take the �etale topology on

ðSch=SÞ (we will see that the reason for this is that the automorphism group of a stable

curve is finite). Let fUi ! Ugi2I be a cover of U. Item 1 says that if we have two curves

X and Y over U, and we have isomorphisms ’i : Xji ! Y ji on the restriction for each Ui,

then these isomorphisms glue to give an isomorphism � : X ! Y over U if the restrictions

to the intersections ’iji j and ’jji j coincide.

Item 2 says that two morphisms of curves over U coincide if the restrictions to all Ui

coincide.

Finally, item 3 says that if we have curves Xi over Ui and we are given isomorphisms

’i j over the intersections Ui j, then we can glue the curves to get a curve over U if the

isomorphisms satisfy the cocycle condition.

Example 2.13 (Vector bundles). It is also easy to check that the presheaf of vector

bundlesMX is a sheaf. In this case we take the fppf topology on ðSch=SÞ (we will see that

the reason for this choice is that the automorphism group of a vector bundle is not finite,

because it includes multiplication by scalars).

Let us stop for a moment and look at how we have enlarged the category of schemes by

defining the category of stacks. We can draw the following diagram

Algebraic Stacksÿ!Stacksÿ! Presheaves of groupoids

% " " "
Sch=Sÿ!Algebraic Spacesÿ!Spacesÿ!Presheaves of sets

where A! B means that the category A is a subcategory B. Recall that a presheaf of sets

is just a functor from ðSch=SÞ to the category (Sets), a presheaf of groupoids is just a 2-

functor to the 2-category (groupoids). A sheaf (for example a space or a stack) is a
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presheaf that satisfies the sheaf axioms (these axioms are slightly different in the context

of categories or 2-categories), and if this sheaf satisfies some geometric conditions (that

we have not yet specified), we will have an algebraic stack or algebraic space.

2:2 Stacks as categories: Groupoids

There is an alternative way of defining a stack. From this point of view a stack will be a

category, instead of a functor.

DEFINITION 2.14

A category over ðSch=SÞ is a category F and a covariant functor pF : F ! ðSch=SÞ
(called the structure functor). If X is an object (resp. � is a morphism) of F , and

pF ðXÞ ¼ B (resp. pF ð�Þ ¼ f ), then we say that X lies over B (resp. � lies over f ).

DEFINITION 2.15 (Groupoid)

A category F over ðSch=SÞ is called a category fibered on groupoids (or just groupoid) if

1. For every f : B0 ! B in ðSch=SÞ and every object X with pF ðXÞ ¼ B, there exists at

least one object X0 and a morphism � : X0 ! X such that pF ðX0Þ ¼ B0 and pF ð�Þ ¼ f .

2. For every diagram

(where pF ðXiÞ ¼ Bi, pF ð�Þ ¼ f , pF ð Þ ¼ f � f 0), there exists a unique ’ : X3 ! X2

with  ¼ � � ’ and pF ð’Þ ¼ f 0.

Condition 2 implies that the object X0 whose existence is asserted in condition 1 is

unique up to canonical isomorphism. For each X and f we choose once and for all such

an X0 and call it f �X. Another consequence of condition 2 is that � is an isomorphism if

and only if pF ð�Þ ¼ f is an isomorphism.

Let B be an object of ðSch=SÞ. We define FðBÞ, the fiber of F over B, to be the sub-

category of F whose objects lie over B and whose morphisms lie over idB. It is a groupoid.

The association B! FðBÞ in fact defines a presheaf of groupoids (note that the 2-

isomorphisms �f ;g required in the definition of presheaf of groupoids are well defined

thanks to condition 2). Conversely, given a presheaf of groupoids G on ðSch=SÞ, we can

define the category F whose objects are pairs ðB;XÞ where B is an object of ðSch=SÞ and
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X is an object of GðBÞ, and whose morphisms ðB0;X0Þ ! ðB;XÞ are pairs ð f ; �Þ where

f : B0 ! B is a morphism in ðSch=SÞ and � : f �X ! X0 is an isomorphism, where

f � ¼ Gð f Þ. This gives the relationship between both points of view. Since we have a

canonical one-to-one relationship between presheaves of groupoids and groupoids over S,

by a slight abuse of language, we denote both by the same letter.

Example 2.16 (Vector bundles). The groupoid of vector bundles MX on a scheme X is

the category whose objects are vector bundles over B� X (for B a scheme), and whose

morphisms are isomorphisms

’ : V 0ÿ!ffi ð f � idÞ�V;

where V (resp. V 0) is a vector bundle over B� X (resp. B0 � X) and f : B0 ! B is a

morphism of schemes. The structure functor sends a vector bundle over B� X to the

scheme B, and a morphism ’ to the corresponding morphism of schemes f .

Example 2.17 (Stable curves) ([DM], Definition 1.1). We defineMg, the groupoid over S

whose objects are stable curves over B of genus g (see Definition 2.10), and whose

morphisms are Cartesian diagrams

ð3Þ

The structure functor sends a curve over B to the scheme B, and a morphism as in (3) to f .

Example 2.18 (Quotient by group action) ([La], 1.3.2), ([DM], Example 4.8), ([E],

Example 2.2). Let X be an S-scheme (assume all schemes are Noetherian), and G an

affine flat group S-scheme acting on the right on X. We define the groupoid ½X=G� whose

objects are principal G-bundles � : E! B together with a G-equivariant morphism

f : E! X. A morphism is Cartesian diagram

ð4Þ

such that f � p ¼ f 0.
The structure functor sends an object ð� : E ! B; f : E ! XÞ to the scheme B, and a

morphism as in (4) to g.

DEFINITION 2.19 (Stack)

A stack is a groupoid that satisfies

1. (Prestack). For all scheme B and pair of objects X, Y of F over B, the contravariant

functor

IsoBðX; YÞ : ðSch=BÞ ÿ! ðSetsÞ
ð f : B0 ! BÞ 7ÿ! Homð f �X; f �YÞ

is a sheaf on the site ðSch=BÞ.
2. Descent data is effective (this is just condition 3 in the Definition 2.11 of sheaf).
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Example 2.20. If G is smooth and affine, the groupoid ½X=G� is a stack ([La], 2.4.2),

([Vi], Example 7.17), ([E], Proposition 2.2). Then alsoMg (cf. Example 2.17) is a stack,

because it is isomorphic to a quotient stack of a subscheme of a Hilbert scheme by

PGLðNÞ ([E], Theorem 3.2), [DM]. The groupoidMX defined in Example 2.16 is also a

stack ([La], 2.4.4).

From now on we will mainly use this approach. Now we will give some definitions for

stacks.

Morphisms of stacks. A morphism of stacks f : F ! G is a functor between the cate-

gories, such that pG � f ¼ pF . A commutative diagram of stacks is a diagram

such that � : g � f ! h is an isomorphism of functors. If f is an equivalence of cate-

gories, then we say that the stacks F and G are isomorphic. We denote by HomSðF ;GÞ
the category whose objects are morphisms of stacks and whose morphisms are natural

transformations.

Stack associated to a scheme. Given a scheme U over S, consider the category ðSch=UÞ.
Define the functor pU : ðSch=UÞ ! ðSch=SÞ which sends the U-scheme f : B! U to the

composition B!f U ! S, and sends the U-morphism ðB0 ! UÞ ! ðB! UÞ to the S-

morphism ðB0 ! SÞ ! ðB! SÞ. Then ðSch=UÞ becomes a stack. Usually we denote this

stack also by U. From the point of view of 2-functors, the stack associated to U is the 2-

functor that for each scheme B gives the category whose objects are the elements of the

set HomSðB;UÞ, and whose only morphisms are identities.

We say that a stack is represented by a scheme U when it is isomorphic to the stack

associated to U. We have the following very useful lemmas:

Lemma 2.21. If a stack has an object with an automorphism other that the identity, then

the stack cannot be represented by a scheme.

Proof. In the definition of stack associated with a scheme we see that the only auto-

morphisms are identities. &

Lemma 2.22 ([Vi], 7.10). Let F be a stack and U a scheme. The functor

u : HomSðU;FÞ ! FðUÞ

that sends a morphism of stacks f : U ! F to f ðidUÞ is an equivalence of categories.

Proof. Follows from Yoneda lemma. &

This useful observation that we will use very often means that an object of F that lies

over U is equivalent to a morphism (of stacks) from U to F .

Fiber product. Given two morphisms f1 : F 1 ! G, f2 : F 2 ! G, we define a new stack

F 1 �G F 2 (with projections to F 1 and F 2) as follows. The objects are triples ðX1;X2; �Þ
where X1 and X2 are objects of F 1 and F 2 that lie over the same scheme U, and

� : f1ðX1Þ ! f2ðX2Þ is an isomorphism in G (equivalently, pGð�Þ ¼ idU). A morphism
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from ðX1;X2; �Þ to ðY1; Y2; �Þ is a pair ð�1; �2Þ of morphisms �i : Xi ! Yi that lie over

the same morphism of schemes f : U ! V , and such that � � f1ð�1Þ ¼ f2ð�2Þ � �. The

fiber product satisfies the usual universal property.

Representability. A stack X is said to be representable by an algebraic space (resp.

scheme) if there is an algebraic space (resp. scheme) X such that the stack associated to X

is isomorphic to X . If ‘P’ is a property of algebraic spaces (resp. schemes) and X is a

representable stack, we will say that X has ‘P’ iff X has ‘P’.

A morphism of stacks f : F ! G is said to be representable if for all objects U in

ðSch=SÞ and morphisms U ! G, the fiber product stack U �G F is representable by an

algebraic space. Let P be a property of morphisms of schemes that is local in nature on the

target for the topology chosen on ðSch=SÞ (�etale or fppf), and it is stable under arbitrary

base change. For instance: separated, quasi-compact, unramified, flat, smooth, �etale, sur-

jective, finite type, locally of finite type,. . . : Then, for a representable morphism f , we say

that f has P if for every U ! G, the pullback U �G F ! U has P ([La], p.17, [DM], p. 98).

Diagonal. Let �F : F ! F �S F be the obvious diagonal morphism. A morphism from

a scheme U to F �S F is equivalent to two objects X1, X2 of FðUÞ. Taking the fiber

product of these we have

hence the group of automorphisms of an object is encoded in the diagonal morphism.

PROPOSITION 2.23 ([La], Corollary 2.12), ([Vi], Proposition 7.13)

The following are equivalent

1. The morphism �F is representable.

2. The stack IsoUðX1;X2Þ is representable for all U, X1 and X2.

3. For all scheme U, every morphism U ! F is representable.

4. For all schemes U, V and morphisms U ! F and V ! F , the fiber product U �F V

is representable.

Proof. The implications 1, 2 and 3, 4 follow easily from the definitions.

ð1) 4Þ Assume that �F is representable. We have to show that U �F V is representable

for any f : U ! F and g : V ! F . Check that the following diagram is Cartesian

Then U �F V is representable.

ð1( 4Þ First note that the Cartesian diagram defined by h : U ! F �S F and �F
factors as follows:
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The outer (big) rectangle and the right square are Cartesian, so the left square is also

Cartesian. By hypothesis U �F U is representable, then U �F�SF F is also

representable. &

2:3 Algebraic stacks

Now we will define the notion of algebraic stack. As we have said, first we have to choose

a topology on ðSch=SÞ. Depending of whether we choose the �etale or fppf topology, we

get different notions.

DEFINITION 2.24 (Deligne-Mumford stack)

Let ðSch=SÞ be the category of S-schemes with the �etale topology. Let F be a stack. Assume

1. Quasi-separatedness. The diagonal �F is representable, quasi-compact and separated.

2. There exists a scheme U (called atlas) and an �etale surjective morphism u : U ! F .

Then we say that F is a Deligne-Mumford stack.

The morphism of stacks u is representable because of Proposition 2.23 and the fact that

the diagonal �F is representable. Then the notion of �etale is well defined for u. In [DM]

this was called an algebraic stack. In the literature, algebraic stack usually refers to Artin

stack (that we will define later). To avoid confusion, we will use ‘algebraic stack’ only

when we refer in general to both notions, and we will use ‘Deligne-Mumford’ or ‘Artin’

stack when we want to be specific.

Note that the definition of Deligne-Mumford stack is the same as the definition of

algebraic space, but in the context of stacks instead of spaces. Following the terminology

used in scheme theory, a stack such that the diagonal �F is quasi-compact and separated

is called quasi-separated. We always assume this technical condition, as it is usually done

both with schemes and algebraic spaces.

Sometimes it is difficult to find explicitly an �etale atlas, and the following proposition

is useful.

PROPOSITION 2.25 ([DM], Theorem 4.21), [E]

Let F be a stack over the �etale site ðSch=SÞ. Assume

1. The diagonal �F is representable, quasi-compact, separated and unramified.

2. There exists a scheme U of finite type over S and a smooth surjective morphism

u : U ! F .

Then F is a Deligne-Mumford stack.

Now we define the analog for the fppf topology [Ar2].

DEFINITION 2.26 (Artin stack)

Let ðSch=SÞ be the category of S-schemes with the fppf topology. Let F be a stack.

Assume

1. Quasi-separatedness. The diagonal �F is representable, quasi-compact and separated.

2. There exists a scheme U (called atlas) and a smooth (hence locally of finite type) and

surjective morphism u : U ! F .

Then we say that F is an Artin stack.
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For propositions analogous to proposition 2.25, see [La, 4].

PROPOSITION 2.27 ([Vi], Proposition 7.15), ([La], Lemma 3.3)

If F is a Deligne-Mumford (resp. Artin) stack, then the diagonal �F is unramified (resp.

finite type).

Recall that �F is unramified (resp. finite type) if for every scheme B and objects X, Y

of FðBÞ, the morphism IsoBðX; YÞ ! B is unramified (resp. finite type). If B ¼ Spec S

and X ¼ Y , then this means that the automorphism group of X is discrete and reduced for

a Deligne-Mumford stack, and it is of finite type for an Artin stack.

Example 2.28 (Vector bundles). The stack MX is an Artin stack, locally of finite type

([La], 4.14.2.1). The atlas is constructed as follows: Let PH
r;ci

be the Hilbert polynomial

corresponding to locally free sheaves on X with rank r and Chern classes ci. Let Quot

ðOðÿmÞ�N ;PH
r;ci
Þ be the Quot scheme parametrizing quotients of sheaves on X,

OðÿmÞ�N ! V ; ð5Þ
where V is a coherent sheaf on X with Hilbert polynomial PH

r;ci
. Let RN;m be the sub-

scheme corresponding to quotients (5) such that V is a vector bundle with HpðVðmÞÞ ¼ 0

for p > 0 and the morphism (5) induces an isomorphism on global sections

H0ðOÞ�Nÿ!ffi H0ðVðmÞÞ:
The scheme RN;m has a universal vector bundle, induced from the universal bundle of the

Quot scheme, and then there is a morphism uN;m : RN;m !MX . Since H is ample, for

every vector bundle V , there exist integers N and m such that RN;m has a point whose

corresponding quotient is V , and then if we take the infinite disjoint union of these

morphisms we get a surjective morphism

u :
a

N;m>0

RN;m

 !
!MX :

It can be shown that this morphism is smooth, and then it gives an atlas. Each scheme

RN;m is of finite type, so the union is locally of finite type, which in turn implies that the

stack MX is locally of finite type.

Example 2.29 (Quotient by group action). The stack ½X=G� is an Artin stack ([La],

4.14.1.1). If G is smooth, an atlas is defined as follows (for more general G, see ([La],

4.14.1.1)): Take the trivial principal G-bundle X � G over X, and let the map

f : X � G! X be the action of the group. This defines an object of ½X=G�ðXÞ, and by

Lemma 2.22, it defines a morphism u : X ! ½X=G�. It is representable, because if B is a

scheme and g : B! ½X=G� is the morphism corresponding to a principal G-bundle E over

B with an equivariant morphism f : E! X, then B�½X=G� X is isomorphic to the scheme

E, and in fact we have a Cartesian diagram

The morphism u is surjective and smooth because � is surjective and smooth for every g

(if G is not smooth, but only separated, flat and of finite presentation, then u is not an
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atlas, but if we apply Artin’s theorem ([Ar2], Theorem 6.1), ([La], Theorem 4.1), we

conclude that there is a smooth atlas).

If either G is �etale over S ([DM], Example 4.8) or the stabilizers of the geometric

points of X are finite and reduced ([Vi], Example 7.17), then ½X=G� is a Deligne-Mumford

stack.

Note that if the action is not free, then ½X=G� is not representable by Lemma 2.21. On

the other hand, if there is a scheme Y such that X ! Y is a principal G-bundle, then ½X=G�
is represented by Y.

Let G be a reductive group acting on X. Let H be an ample line bundle on X, and

assume that the action is polarized. Let Xs and Xss be the subschemes of stable and

semistable points. Let Y ¼ X==G be the GIT quotient. Recall that there is a good quotient

Xss ! Y , and that the restriction to the stable part Xs ! Y is a principal bundle. There is a

natural morphism ½Xss=G� ! Xss==G. By the previous remark, the restriction ½Xs=G� !
Ys is an isomorphism of stacks.

If X ¼ S (with trivial action of G on S), then ½S=G� is denoted BG, the classifying

groupoid of principal G-bundles.

Example 2.30 (Stable curves). The stack Mg is a Deligne-Mumford stack ([DM],

Proposition 5.1), [E]. The idea of the proof is to show that Mg is the quotient stack

½Hg=PGLðNÞ� of a scheme Hg by a smooth group PGLðNÞ. This gives a smooth atlas.

Then one shows that the diagonal is unramified, and finally we apply Proposition 2.25.

2:4 Algebraic stacks as groupoid spaces

We will introduce a third equivalent definition of stack. First consider a category C. Let U

be the set of objects and R the set of morphisms. The axioms of a category give us four

maps of sets

Rÿ!sÿ!t Uÿ!e R R� s;U;tRÿ!m R;

where s and t give the source and target for each morphism, e gives the identity mor-

phism, and m is composition of morphisms. If the category is a groupoid then we have a

fifth morphism

Rÿ!i R

that gives the inverse. These maps satisfy

1. s � e ¼ t � e ¼ idU , s � i ¼ t, t � i ¼ s, s � m ¼ s � p2, t � m ¼ t � p1.

2. Associativity. m � ðm� idRÞ ¼ m � ðidR � mÞ.
3. Identity. Both compositions

R ¼ R�s;U U ¼ U �U;t Rÿÿÿ!
idR�e

ÿÿÿ!
e�idR

R� s;U;t Rÿ!m R

are equal to the identity map on R.

4. Inverse. m � ði� idRÞ ¼ e � s, m � ðidR � iÞ ¼ e � t.

DEFINITION 2.31 (Groupoid space) ([La], 1.3.3), ([DM], pp. 668–669)

A groupoid space is a pair of spaces (sheaves of sets) U, R, with five morphisms s, t, e, m,

i with the same properties as above.
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DEFINITION 2.32 ([La], 1.3.3).

Given a groupoid space, define the groupoid over ðSch=SÞ as the category ½R;U�0 over

ðSch=SÞ whose objects over the scheme B are elements of the set UðBÞ and whose

morphisms over B are elements of the set RðBÞ. Given f : B0 ! B we define a functor

f � : ½R;U�0ðBÞ ! ½R;U�0ðB0Þ using the maps UðBÞ ! UðB0Þ and RðBÞ ! RðB0Þ.
The groupoid ½R;U�0 is in general only a prestack. We denote by ½R;U� the associated

stack. The stack ½R;U� can be thought of as the sheaf associated to the presheaf of

groupoids B 7!½R;U�0ðBÞ ([La], 2.4.3).

Example 2.33 (Quotient by group action). Let X be a scheme and G an affine group

scheme. We denote by the same letters the associated spaces (functors of points). We take

U ¼ X and R ¼ X � G. Using the group action we can define the five morphisms (t is the

action of the group, s ¼ p1, m is the product in the group, e is defined with the identity of

G, and i with the inverse).

The objects of ½X � G;X�0ðBÞ are morphisms f : B! X. Equivalently, they are trivial

principal G-bundles B� G over B and a map B� G! X defined as the composition of

the action of G and f . The stack ½X � G;X� is isomorphic to ½X=G�.

Example 2.34 (Algebraic stacks). Let R, U be a groupoid space such that R and U are

algebraic spaces, locally of finite presentation (equivalently locally of finite type if S is

noetherian). Assume that the morphisms s, t are flat, and that � ¼ ðs; tÞ : R! U �S U is

separated and quasi-compact. Then ½R;U� is an Artin stack, locally of finite type ([La],

Corollary 4.7).

In fact, any Artin stack F can be defined in this fashion. The algebraic space U will be

the atlas of F , and we set R ¼ U �F U. The morphisms s and t are the two projections, i

exchanges the factors, e is the diagonal, and m is defined by projection to the first and

third factor.

Let � : R! U �S U be an equivalence relation in the category of spaces. One can define

a groupoid space, and ½R;U� is to be thought of as the stack-theoretic quotient of this

equivalence relation, as opposed to the quotient space, used for instance to define algebraic

spaces (for more details and the definition of equivalence relation see appendix A).

2:5 Properties of algebraic stacks

So far we have only defined scheme-theoretic properties for representable stacks and

morphisms. We can define some properties for arbitrary algebraic stacks (and morphisms

among them) using the atlas.

Let P be a property of schemes, local in nature for the smooth (resp. �etale) topology.

For example: regular, normal, reduced, of characteristic p,. . . Then we say that an Artin

(resp. Deligne-Mumford) stack has P iff the atlas has P ([La], p. 25), ([DM], p. 100).

Let P be a property of morphisms of schemes, local on source and target for the smooth

(resp. �etale) topology, i.e. for any commutative diagram

with p and g smooth (resp. �etale) and surjective, f has P iff f 00 has P. For example: flat,

smooth, locally of finite type; . . . : For the �etale topology we also have: �etale,
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unramified,. . .. Then if f : X ! Y is a morphism of Artin (resp. Deligne-Mumford)

stacks, we say that f has P iff for one (and then for all) commutative diagram of stacks

where X0, Y 0 are schemes and p, g are smooth (resp. �etale) and surjective, f 00 has P ([La],

pp. 27–29).

For Deligne-Mumford stacks it is enough to find a commutative diagram

where p and g are �etale and surjective and f 00 has P. Then it follows that f has P ([DM],

p. 100).

Other notions are defined as follows.

DEFINITION 2.35 (Substack) ([La], Definition 2.5), ([DM], p. 102).

A stack E is a substack of F if it is a full subcategory of F and

1. If an object X of F is in E, then all isomorphic objects are also in E.

2. For all morphisms of schemes f : U ! V , if X is in EðVÞ, then f �X is in EðUÞ.
3. Let fUi ! Ug be a cover of U in the site ðSch=SÞ. Then X is in E iff Xji is in E for all i.

DEFINITION 2.36 ([La], Definition 2.13)

A substack E of F is called open (resp. closed, resp. locally closed) if the inclusion

morphism E ! F is representable and it is an open immersion (resp. closed immersion,

resp. locally closed immersion).

DEFINITION 2.37 (Irreducibility) ([La], Definition 3.10), ([DM], p. 102)

An algebraic stack F is irreducible if it is not the union of two distinct and nonempty

proper closed substacks.

DEFINITION 2.38 (Separatedness) ([La], Definition 3.17), ([DM], Definition 4.7)

An algebraic stack F is separated, if the (representable) diagonal morphism �F is uni-

versally closed (and hence proper, because it is automatically separated and of finite

type).

A morphism f : F ! G of algebraic stacks is separated if for all U ! G with U affine,

U �G F is a separated (algebraic) stack.

For Deligne-Mumford stacks, �F is universally closed iff it is finite. There is a valuative

criterion of separatedness, similar to the criterion for schemes. Recall that by Yoneda

lemma (Lemma 2.22), a morphism f : U ! F between a scheme and a stack is equivalent

to an object in FðUÞ. Then we will say that � is an isomorphism between two morphisms

f1; f2 : U ! F when � is an isomorphism between the corresponding objects of FðUÞ.
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PROPOSITION 2.39 (Valuative criterion of separatedness (stacks)) ([La], Proposition

3.19), ([DM], Theorem 4.18)

An algebraic stack F is separated (over S) if and only if the following holds. Let A be a

valuation ring with fraction field K. Let g1 : Spec A! F and g2 : Spec A! F be two

morphisms such that:

1. fpF � g1 ¼ fpF � g2.

2. There exists an isomorphism � : g1jSpecK ! g2jSpecK .

then there exists an isomorphism (in fact unique) ~� : g1!g2 that extends �, i.e. ~�jSpecK¼�.

Remark 2.40. It is enough to consider complete valuation rings A with algebraically

closed residue field ([La], 3.20.1). If furthermore S is locally Noetherian and F is locally

of finite type, it is enough to consider discrete valuation rings A ([La], 3.20.2).

Example 2.41. The stack BG will not be separated if G is not proper over S ([La], 3.20.3),

and since we assumed G to be affine, this will not happen if it is not finite.

In general the moduli stack of vector bundles MX is not separated. It is easy to find

families of vector bundles that contradict the criterion.

The stack of stable curves Mg is separated ([DM], Proposition 5.1).

The criterion for morphisms is more involved because we are working with stacks and

we have to keep track of the isomorphisms.

PROPOSITION 2.42 (Valuative criterion of separatedness (morphisms)) ([La], Proposi-

tion 3.19)

A morphism of algebraic stacks f : F ! G is separated if and only if the following

holds. Let A be a valuation ring with fraction field K. Let g1 : Spec A! F and

g2 : Spec A! F be two morphisms such that:

1. There exists an isomorphism � : f � g1 ! f � g2.

2. There exists an isomorphism � : g1jSpecK ! g2jSpecK .

3. f ð�Þ ¼ �jSpecK .

Then there exists an isomorphism (in fact unique) ~� : g1 ! g2 that extends �, i.e.

~�jSpecK ¼ � and f ð~�Þ ¼ �.

Remark 2.40 is also true in this case.

DEFINITION 2.43 ([La], Definition 3.21), ([DM], Definition 4.11)

An algebraic stack F is proper (over S) if it is separated and of finite type, and if there is a

scheme X proper over S and a (representable) surjective morphism X ! F .

A morphism F ! G is proper if for any affine scheme U and morphism U ! G, the

fiber product U �G F is proper over U.

For properness we only have a satisfactory criterion for stacks (see ([La], Proposition

3.23 and Conjecture 3.25) for a generalization for morphisms).
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PROPOSITION 2.44 (Valuative criterion of properness) ([La], Proposition 3.23), ([DM],

Theorem 4.19)

Let F be a separated algebraic stack (over S). It is proper (over S) if and only if the

following condition holds. Let A be a valuation ring with fraction field K. For any

commutative diagram

there exists a finite field extension K 0 of K such that g extends to SpecðA0Þ, where A0 is the

integral closure of A in K 0.

:

Example 2.45 (Stable curves). The Deligne-Mumford stack of stable curves Mg is

proper ([DM], Theorem 5.2).

2:6 Points and dimension

We will introduce the concept of point of an algebraic stack and dimension of a stack at a

point. The reference for this is ([La], Chapter 5).

DEFINITION 2.46

Let F be an algebraic stack over S. The set of points of F is the set of equivalence classes

of pairs ðK; xÞ, with K a field over S (i.e. a field with a morphism of schemes SpecK ! S)

and x : SpecK ! F a morphism of stacks over S. Two pairs ðK 0; x0Þ and ðK 00; x00Þ are

equivalent if there is a field K extension of K 0 and K 00 and a commutative diagram

Given a morphism F ! G of algebraic stacks and a point of F , we define the image of

that point in G by composition.

Every point of an algebraic stack is the image of a point of an atlas. To see this, given a

point represented by SpecK ! F and an atlas X ! F , take any point SpecK 0 !
X �F SpecK. The image of this point in X maps to the given point.

To define the concept of dimension, recall that if X and Y are locally Noetherian

schemes and f : X ! Y is flat, then for any point x 2 X we have

dimxðXÞ ¼ dimxð f Þ þ dimf ðxÞðYÞ;

with dimxð f Þ ¼ dimxðXf ðxÞÞ, where Xy is the fiber of f over y.
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DEFINITION 2.47

Let f : F ! G be a representable morphism, locally of finite type, between two algebraic

spaces. Let � be a point of F . Let Y be an atlas of G. Take a point x in the algebraic space

Y �G F that maps to �,

and define the dimension of the morphism f at the point � as

dim�ð f Þ ¼ dimxð~f Þ:

It can be shown that this definition is independent of the choices made.

DEFINITION 2.48

Let F be a locally Noetherian algebraic stack and � a point of F . Let u : X ! F be an

atlas, and x a point of X mapping to �. We define the dimension of F at the point � as

dim�ðFÞ ¼ dimxðXÞ ÿ dimxðuÞ:

The dimension of F is defined as

dimðFÞ ¼ Sup�ðdim�ðFÞÞ:

Again, this is independent of the choices made.

Example 2.49 (Quotient by group action). Let X be a smooth scheme of dimension

dimðXÞ and G a smooth group of dimension dimðGÞ acting on X. Let ½X=G� be the

quotient stack defined in Example 2.18. Using the atlas defined in Example 2.29, we

see that

dim½X=G� ¼ dimðXÞ ÿ dimðGÞ:

Note that we have not made any assumption on the action. In particular, the action could

be trivial. The dimension of an algebraic stack can then be negative. For instance, the

dimension of the classifying stack BG defined in Example 2.18 has dimension

dimðBGÞ ¼ ÿdimðGÞ.

2:7 Quasi-coherent sheaves on stacks

DEFINITION 2.50 ([Vi], Definition 7.18), ([La], Definition 6.11, Proposition 6.16). A

quasi-coherent sheaf S on an algebraic stack F is the following set of data:

1. For each morphism X ! F where X is a scheme, a quasi-coherent sheaf SX on X.

2. For each commutative diagram
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an isomorphism ’f : SXÿ!ffi f �SY , satisfying the cocycle condition, i.e. for any com-

mutative diagram

ð6Þ

we have ’g� f ¼ ’f � f �’g.

We say that S is coherent (resp. finite type, finite presentation, locally free) if SX is

coherent (resp. finite type, finite presentation, locally free) for all X.

A morphism of quasi-coherent sheaves h : S ! S0 is a collection of morphisms of

sheaves hX : SX ! S0X compatible with the isomorphisms ’

Remark 2.51. Since a sheaf on a scheme can be obtained by glueing the restriction to an

affine cover, it is enough to consider affine schemes.

Example 2.52 (Structure sheaf). Let F be an algebraic stack. The structure sheaf OF is

defined by taking ðOFÞX ¼ OX .

Example 2.53 (Sheaf of differentials). Let F be a Deligne-Mumford stack. To define the

sheaf of differentials 
F , if U ! F is an �etale morphism we set ð
F ÞU ¼ 
U , the sheaf

of differentials of the scheme U. If V ! F is another �etale morphism and we have a

commutative diagram

then f has to be �etale, there is a canonical isomorphism ’f : 
U=S ! f �
V=S, and these

canonical isomorphisms satisfy the cocycle condition.

Once we have defined ð
F ÞU for �etale morphisms U ! F , we can extend the defi-

nition for any morphism X ! F with X an arbitrary scheme as follows: take an (�etale)

atlas U ¼
‘

Ui ! F . Consider the composition morphism

X � FUÿ!p2
U ! F ;

and define ð
F ÞX�FU ¼ p�2
U . The cocycle condition for 
Ui
and �etale descent implies

that ð
F ÞX�FU descends to give a sheaf ð
F ÞX on X. It is easy to check that this doesn’t

depend on the atlas U used, and that given a commutative diagram like (6), there are

canonical isomorphisms ’ satisfying the cocycle condition.

Example 2.54 (Universal vector bundle). LetMX be the moduli stack of vector bundles

on a scheme X defined in 2.9. The universal vector bundle V on MX � X is defined as

follows:

Let U be a scheme and f ¼ ð f1; f2Þ : U !MX � X a morphism. By Lemma 2.22, the

morphism f1 : U !MX is equivalent to a vector bundle W on U � X. We define VU as
~f
�
W , where ~f ¼ ðidU ; f2Þ : U ! U � X. Let
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be a commutative diagram. Recall that this means that there is an isomorphism � : f � g

! f 0, and looking at the projection to MX we have an isomorphism �1 : f1 � g! f 01.

Using Lemma 2.22, f1 � g and f 01 correspond respectively to the vector bundles

ðg� idXÞ�W and W 0 on U0 � X, and (again by Lemma 2.22) �1 gives an isomorphism

between them. It is easy to check that these isomorphisms satisfy the cocycle condition

for diagrams of the form (6).

3. Vector bundles: Moduli stack vs. moduli scheme

In this section we will compare, in the context of vector bundles, the new approach of

stacks versus the standard approach of moduli schemes via geometric invariant theory

(GIT) (for background on moduli schemes of vector bundles, see [HL]).

Fix a scheme X over , a positive integer r and classes ci 2 H2iðXÞ. All vector bundles

over X in this section will have rank r and Chern classes ci. We will also consider vector

bundles on products B� X where B is a scheme. We will always assume that these vector

bundles are flat over B, and that the restriction to the slices fpg � X are vector bundles

with rank r and Chern classes ci. Fix also a polarization on X. All references to stability or

semistability of vector bundles will mean Gieseker stability with respect to this fixed

polarization.

Recall that the functor Ms
X (resp. Mss

X ) is the functor from ðSch=SÞ to ðSetsÞ that for

each scheme B gives the set of equivalence classes of vector bundles over B� X, flat over

B and such that the restrictions Vjb to the slices p� X are stable (resp. semistable) vector

bundles with fixed rank and Chern classes, where two vector bundles V and V 0 on B� X

are considered equivalent if there is a line bundle L on B such that V is isomorphic to

V 0 
 p�BL.

Theorem 3.1. There are schemes Ms
X and Mss

X , called moduli schemes, corepresenting

the functors Ms
X and Mss

X .

The moduli scheme Mss
X is constructed using the Quot schemes introduced in Example

2.28 (for a detailed exposition of the construction, see [HL]). Since the set of semistable

vector bundles is bounded, we can choose once and for all N and m (depending only on

the Chern classes and rank) with the property that for any semistable vector bundle V

there is a point in R ¼ RN;m whose corresponding quotient is isomorphic to V .

The scheme R parametrizes vector bundles V on X together with a basis of H0ðVðmÞÞ
(up to multiplication by scalar). Recall that N ¼ h0ðVðmÞÞ. There is an action of GLðNÞ
on R, corresponding to change of basis but since two basis that only differ by a scalar give

the same point on R, this GLðNÞ action factors through PGLðNÞ. Then the moduli scheme

Mss
X is defined as the GIT quotient R==PGLðNÞ.
The closed points of Mss

X correspond to S-equivalence classes of vector bundles, so if

there is a strictly semistable vector bundle, the functor Mss
X is not representable.

Now we will compare this scheme with the moduli stackMX defined on Example 2.9.

We will also consider the moduli stack Ms
X defined in the same way, but with the extra

requirement that the vector bundles should be stable. The moduli stackMs
X is a substack

(Definition 2.35) ofMX . The following are some of the differences between the moduli

scheme and the moduli stack:

1. The stackMX parametrizes all vector bundles, but the scheme Mss
X only parametrizes

semistable vector bundles.
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2. From the point of view of the scheme Mss
X , we identify two vector bundles on X

(i.e. they give the same closed point on Mss
X ) if they are S-equivalent. On the other

hand, from the point of view of the moduli stack, two vector bundles are identified

(i.e. give isomorphic objects on MXðSpec kÞÞ only if they are isomorphic as vector

bundles.

3. Let V and V 0 be two families of vector bundles parametrized by a scheme B, i.e. two

vector bundles (flat over B) on B� X. If there is a line bundle L on B such that V is

isomorphic to V 0 
 p�BL, then from the point of view of the moduli scheme, V and V 0

are identified as being the same family. On the other hand, from the point of view of

the moduli stack, V and V 0 are identified only if they are isomorphic as vector bundles

on B� X.

4. The subscheme Ms
X corresponding to stable vector bundles is sometimes represen-

table by a scheme, but the moduli stack Ms
X is never representable by a scheme. To

see this, note that any vector bundle has automorphisms different from the identity

(multiplication by scalars) and apply Lemma 2.21.

Now we will restrict our attention to stable bundles, i.e. to the scheme Ms
X and the stack

Ms
X . For stable bundles the notions of S-equivalence and isomorphism coincide, so the

points of Ms
X correspond to isomorphism classes of vector bundles. Consider Rs � R, the

subscheme corresponding to stable bundles. There is a map � : Rs ! Ms
X ¼ Rs=PGLðNÞ,

and � is in fact a principal PGLðNÞ-bundle (this is a consequence of Luna’s �etale slice

theorem).

Remark 3.2 (Universal bundle on moduli scheme). The scheme Ms
X represents the

functor Ms
x if there is a universal family. Recall that a universal family for this functor is a

vector bundle E on Ms
X � X such that the isomorphism class of Ejp�X is the isomorphism

class corresponding to the point p 2 Ms
X , and for any family of vector bundles V on B� X

there is a morphism f : B! Ms
X and a line bundle L on B such that V 
 p�BL is

isomorphic to ð f � idXÞ�E. Note that if E is a universal family, then E 
 p�Ms
X
L will also

be a universal family for any line bundle L on Ms
X .

The universal bundle for the Quot scheme gives a universal family ~V on Rs � X, but

this family does not always descend to give a universal family on the quotient Ms
X .

Let X!G Y be a principal G-bundle. A vector bundle V on X descends to Y if the action

of G on X can be lifted to V . In our case, if certain numerical criterion involving r and ci

is satisfied (if X is a smooth curve this criterion is gcdðr; c1Þ ¼ 1), then we can find a line

bundle L on Rs such that the PGLðNÞ action on Rs can be lifted to ~V 
 p�Rs L, and then this

vector bundle descends to give a universal family on Ms
X � X. But in general the best that

we can get is a universal family on an �etale cover of Ms
X .

Recall from Example 2.29 that there is a morphism ½Rss=PGLðNÞ� ! Mss
X , and that the

morphism ½Rs=PGLðNÞ� ! Ms
X is an isomorphism of stacks.

PROPOSITION 3.3

There is a commutative diagram of stacks
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where g and h are isomorphisms of stacks, but q and ’ are not. If we change ‘stable’ by

‘semistable’ we still have a commutative diagram, but the corresponding morphism hss is

not an isomorphism of stacks.

Proof. The morphism ’ is the composition of the natural morphismMs
X ! Ms

X (sending

each category to the set of isomorphism classes of objects) and the morphism Ms
X ! Ms

X

given by the fact that the scheme Ms
X ¼ Rs==PGLðNÞ corepresents the functor Ms

X.

The morphism h was constructed in Example 2.18.

The key ingredient needed to define g is the fact that the GLðNÞ action on the Quot

scheme lifts to the universal bundle, i.e. the universal bundle on the Quot scheme has a

GLðNÞ-linearization. Let

be an object of ½Rss=GLðNÞ�. Since Rss is a subscheme of a Quot scheme, by restriction we

have a universal bundle on Rss � X, and this universal bundle has a GLðNÞ-linearization.

Let ~E be the vector bundle on ~B� X defined by the pullback of this universal bundle.

Since f is GLðNÞ-equivariant, ~E is also GLðNÞ-linearized. Since ~B� X ! B� X is a

principal bundle, the vector bundle ~E descends to give a vector bundle E on B� X, i.e. an

object of Mss
X . Let

be a morphism in ½Rss=GLðNÞ�. Consider the vector bundles ~E and ~E
0

defined as before.

Since f 0 � � ¼ f , we get an isomorphism of ~E with ð�� idÞ�~E0. Furthermore this

isomorphism is GLðNÞ-equivariant, and then it descends to give an isomorphism of the

vector bundles E and E0 on B� X, and we get a morphism in Mss
X .

To prove that this gives an equivalence of categories, we construct a functor g from

Mss
X to ½Rss=GLðNÞ�. Given a vector bundle E on B� X, let q : ~B! B be the GLðNÞ-

principal bundle associated with the vector bundle pB�E on B. Let ~E ¼ ðq� idÞ�E be the

pullback of E to ~B� X. It has a canonical GLðNÞ-linearization because it is defined as a

pullback by a principal GLðNÞ-bundle. The vector bundle p~B�
~E is canonically isomorphic

to the trivial bundle ON
~B

, and this isomorphism is GLðNÞ-equivariant, so we get an

equivariant morphism ~B! Rss, and hence an object of ½Rss=GLðNÞ�.
If we have an isomorphism between two vector bundles E and E0 on B� X, it is easy to

check that it induces an isomorphism between the associated objects of ½Rss=GLðNÞ�.
It is easy to check that there are natural isomorphisms of functors g � ~g ffi id and

~g � g ffi id, and then g is an equivalence of categories.

The morphism q is defined using the following lemma, with G ¼ GLðNÞ, H the

subgroup consisting of scalar multiples of the identity, G ¼ PGLðNÞ and Y=Rss. &

Lemma 3.4. Let Y be an S-scheme and G an affine flat group S-scheme, acting on Y on

the right. Let H be a normal closed subgroup of G. Assume that G ¼ G=H is affine. If H
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acts trivially on Y, then there is a morphism of stacks

½Y=G� ! ½Y=G�:

If H is nontrivial, then this morphism is not faithful, so it is not an isomorphism.

Proof. Let

be an object of ½Y=G�. There is a scheme E=H such that � factors

Eÿ!q E=Hÿ!�
0

B:

To construct E=H, note that there is a local �etale cover Ui of B and isomorphisms

�i : �ÿ1ðUiÞ ! Ui � G, with transition functions  i j ¼ �i � �ÿ1
j . Since these isomorph-

isms are G-equivariant, they descend to give isomorphisms  i j : Uj � G=H ! Ui � G=H,

and using these transition functions we get E=H. This construction shows that �0 is a

principal G-bundle. Furthermore, q is also a principal H-bundle ([HL], Example 4.2.4),

and in particular it is a categorical quotient.

Since f is H-invariant, there is a morphism f : E=H ! Y , and this gives an object of

½Y=G�.
If we have a morphism in ½Y=G�, given by a morphism g : E! E0 of principal G-

bundles over B, it is easy to see that it descends (since g is equivariant) to a morphism

g : E=H ! E0=H, giving a morphism in ½Y=G�.
This morphism is not faithful, since the automorphism E!�z E given by multiplication

on the right by a nontrivial element z 2 H is sent to the identity automorphism

E=H ! E=H, and then HomðE;EÞ ! HomðE=H;E=HÞ is not injective. &

If X is a smooth curve, then it can be shown thatMX is a smooth stack of dimension

r2ðgÿ 1Þ, where r is the rank and g is the genus of X. In particular, the open substack

Mss
X is also smooth of dimension r2ðgÿ 1Þ, but the moduli scheme Mss

X is of dimension

r2ðgÿ 1Þ þ 1 and might not be smooth. Proposition 3.3 explains the difference in the

dimensions (at least on the smooth part): we obtain the moduli stack by taking the

quotient by the group GLðNÞ, of dimension N2, but the moduli scheme is obtained by a

quotient by the group PGLðNÞ, of dimension N2 ÿ 1. The moduli scheme Mss
X is not

smooth in general because in the strictly semistable part of Rss the action of PGLðNÞ is

not free. On the other hand, the smoothness of a stack quotient doesn’t depend on the

freeness of the action of the group.

Appendix A: Grothendieck topologies, sheaves and algebraic spaces

The standard reference for Grothendieck topologies is SGA (S�eminaire de G�eom�etrie

Alg�ebrique). For an introduction see [T] or [MM]. For algebraic spaces, see [K] or

[Ar1].

An open cover in a topological space U can be seen as family of morphisms in the

category of topological spaces fi : Ui ! U, with the property that fi is an open inclusion
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and the union of their images is U, i.e we are choosing a class of morphisms (open

inclusions) in the category of topological spaces. A Grothendieck topology on an arbi-

trary category is basically a choice of a class of morphisms, that play the role of ‘open

sets’. A morphism f : V ! U in this class is to be thought of as an ‘open set’ in the object

U. The concept of intersection of open sets is replaced by the fiber product: the

‘intersection’ of f1 : U1 ! U and f2 : U2 ! U is f12 : U1 �U U2 ! U.

A category with a Grothendieck topology is called a site. We will consider two

topologies on ðSch=SÞ.

fppf topology. Let U be a scheme. Then a cover of U is a finite collection of morphisms

f fi : Ui ! Ugi2I such that each fi is a finitely presented flat morphism (for Noetherian

schemes, this is equivalent to flat and finite type), and U is the (set theoretic) union of the

images of fi. In other words,
‘

Ui ! U is ‘fidèlement plat de pr�esentation finie’.

Étale topology. Same definition, but substituting flat by �etale.

DEFINITION 4.1 (Presheaf of sets)

A presheaf of sets on ðSch=SÞ is a contravariant functor F from ðSch=SÞ to ðSetsÞ.
As usual, we will use the following notation: if X 2 FðUÞ and fi : Ui ! U is a

morphism, then Xji is the element of FðUiÞ given by Fð fiÞðXÞ, and we will call Xji
the ‘restriction of X to Ui’, even if fi is not an inclusion. If Xi 2 FðUiÞ, then Xiji j

is the element of FðUi jÞ given by Fð fi j;iÞðXiÞ where fi j;i : Ui �U Uj ! Ui is the pullback

of fj.

DEFINITION 4.2 (Sheaf of sets)

Choose a topology on ðSch=SÞ. We say that F is a sheaf (or an S-space) with respect to

that topology if for every cover f fi : Ui ! Ugi2I in the topology the following two

axioms are satisfied:

1. Mono. Let X and Y be two elements of FðUÞ. If Xji ¼ Y ji for all i, then X ¼ Y .

2. Glueing. Let Xi be an object of FðUiÞ for each i such that Xiji j ¼ Xjji j, then there exists

X 2 FðUÞ such that Xji ¼ Xi for each i.

We define morphisms of S-spaces as morphisms of sheaves (i.e. natural transforma-

tions of functors). Note that a scheme M can be viewed as an S-space via its functor of

points HomSðÿ;MÞ, and a morphism between two such S-spaces is equivalent to a

scheme morphism between the schemes (by the Yoneda embedding lemma), then the

category of S-schemes is a full subcategory of the category of S-spaces.

Equivalence relation and quotient space. An equivalence relation in the category of S-

spaces consists of two S-spaces R and U and a monomorphism of S-spaces

� : R! U � SU

such that for all S-scheme B, the map �ðBÞ : RðBÞ ! UðBÞ � UðBÞ is the graph of an

equivalence relation between sets. A quotient S-space for such an equivalence relation is

by definition the sheaf cokernel of the diagram

Rÿÿÿ!
p2��
ÿÿÿ!

p1��
U:
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DEFINITION 4.3 (Algebraic space) ([La], 0).

An S-space F is called an algebraic space if it is the quotient S-space for an equivalence

relation such that R and U are S-schemes, p1 � �, p2 � � are �etale (morphisms of S-

schemes), and � is a quasi-compact morphism (of S-schemes).

Roughly speaking, an algebraic space is a quotient of a scheme by an �etale equivalence

relation. The following is an equivalent definition.

DEFINITION 4.4 ([K], Definition 1.1)

An S-space F is called an algebraic space if there exists a scheme U (atlas) and a

morphism of S-spaces u : U ! F such that

1. The morphism u is �etale. For any S-scheme V and morphism V ! F, the (sheaf) fiber

product U �F V is representable by a scheme, and the map U �F V ! V is an �etale

morphism of schemes.

2. Quasi-separatedness. The morphism U �F U ! U �S U is quasi-compact.

We recover the first definition by taking R ¼ U �F U. Then roughly speaking, we can

also think of an algebraic space as ‘something’ that looks locally in the �etale topology

like an affine scheme, in the same sense that a scheme is something that looks locally in

the Zariski topology like an affine scheme.

Algebraic spaces are used, for instance, to give algebraic structure to certain complex

manifolds (for instance Moishezon manifolds) that are not schemes, but can be realized as

algebraic spaces. All smooth algebraic spaces of dimension 1 and 2 are actually schemes.

An example of a smooth algebraic space of dimension 3 that is not a scheme can be found

in [H].

But �etale topology is useful even if we are only interested in schemes. The idea is that

the �etale topology is finer than the Zariski topology, and in many situations it is ‘fine

enough’ to do the analog of the manipulations that can be done with the analytic topology

of complex manifolds. As an example, consider the affine complex line SpecðC½x�Þ, and

take a (closed) point x0 different from 0. Assume that we want to define the function
ffiffiffi
x
p

in a neighborhood of x0. In the analytic topology we only need to take a neighborhood

small enough so that it does not contain a loop that goes around the origin, then we

choose one of the branches (a sign) of the square root. In the Zariski topology this cannot

be done, because all open sets are too large (have loops going around the origin, so the

sign of the square root will change, and
ffiffiffi
x
p

will be multivaluated). But take the 2:1 �etale

map V ¼ SpecðC½y; x; xÿ1�=ðyÿ x2ÞÞ ! SpecðC½x�Þ. The function
ffiffiffi
x
p

can certainly be

defined on V , it is just equal to the function y, so it is in this sense that we say that

the �etale topology is finer: V is a ‘small enough open subset’ because the square root can

be defined on it.

Appendix B: 2-categories

In this section we recall the notions of 2-category and 2-functor. A 2-category C consists

of the following data [Hak]:

(i) A class of objects ob C.

(ii) For each pair X, Y 2 ob C, a category HomðX; YÞ.
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(iii) Horizontal composition of 1-morphisms and 2-morphisms. For each triple X, Y ,

Z 2 obC, a functor

�X;Y ;Z : HomðX; YÞ � HomðY ; ZÞ ! HomðX;ZÞ

with the following conditions

(i’) Identity 1-morphism. For each object X 2 obC, there exists an object idX 2 Hom

ðX;XÞ such that

�X;X;YðidX; Þ ¼ �X;Y ;Yð; idYÞ ¼ idHomðX;YÞ;

where idHomðX;YÞ is the identity functor on the category HomðX; YÞ.
(ii’) Associativity of horizontal compositions. For each quadruple X, Y , Z, T 2 obC,

�X;Z;T � ð�X;Y ;Z � idHomðZ;TÞÞ ¼ �X;Y ;T � ðidHomðX;YÞ � �Y ;Z;TÞ:

The example to keep in mind is the 2-category Cat of categories. The objects of Cat

are categories, and for each pair X, Y of categories, HomðX; YÞ is the category of functors

between X and Y .

Note that the main difference between a 1-category (a usual category) and a 2-category

is that HomðX; YÞ, instead of being a set, is a category.

Given a 2-category, an object f of the category HomðX; YÞ is called a 1-morphism of

C, and is represented with a diagram

and a morphism � of the category HomðX; YÞ is called a 2-morphisms of C, and is

represented as

Now we will rewrite the axioms of a 2-category using diagrams.

1. Composition of 1-morphisms. Given a diagram

(this is (iii) applied to objects) and this composition is associative: ðh � gÞ � f ¼
h � ðg � f Þ (this is (ii’) applied to objects).

2. Identity for 1-morphisms. For each object X there is a 1-morphism idX such that

f � idY ¼ idX � f ¼ f (this is (i’)).

3. Vertical composition of 2-morphisms. Given a diagram

and this composition is associative ð � �Þ � � ¼  � ð� � �Þ.
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4. Horizontal composition of 2-morphisms. Given a diagram

ð7Þ

there exists

(this is (iii) applied to morphisms) and it is associative ð � �Þ � � ¼  � ð� � �Þ (this

is (ii’) applied to morphisms).

5. Identity for 2-morphisms. For every 1-morphism f there is a 2-morphism idf such that

� � idg ¼ idf � � ¼ � (this and item are (ii)). We have idg � idf ¼ idg� f (this means

that �X;Y ;Z respects the identity).

6. Compatibility between horizontal and vertical composition of 2-morphisms. Given a

diagram

then ð�0 � �Þ � ð�0 � �Þ ¼ ð�0 � �0Þ � ð� � �Þ (this is (iii) applied to morphisms).

Two objects X and Y of a 2-category are called equivalent if there exist two 1-morphisms

f : X ! Y , g : Y ! X and two 2-isomorphisms (invertible 2-morphism) � : g � f ! idX

and � : f � g! idY .

A commutative diagram of 1-morphisms in a 2-category is a diagram

such that � : g � f ! h is a 2-isomorphisms.

Remark 5.1 Note that we do not require g � f ¼ h to say that the diagram is commu-

tative, but just require that there is a 2-isomorphisms between them. This is the reason

why 2-categories are used to describe stacks.

On the other hand, a diagram of 2-morphisms will be called commutative only if the

compositions are actually equal. Now we will define the concept of covariant 2-functor (a

contravariant 2-functor is defined in a similar way).

A covariant 2-functor F between two 2-categories C and C0 is a law that for each object

X in C gives an object FðXÞ in C0. For each 1-morphism f : X ! Y in C gives a

1-morphism Fð f Þ : FðXÞ ! FðYÞ in C0, and for each 2-morphism � : f ) g in C gives a
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2-morphism Fð�Þ : Fð f Þ ) FðgÞ in C0, such that

1. Respects identity 1-morphism. FðidXÞ ¼ idFðXÞ.
2. Respects identity 2-morphism. Fðidf Þ ¼ idFð f Þ.
3. Respects composition of 1-morphism up to a 2-isomorphism. For every diagram

�Xÿ!f �Yÿ!g �Z

there exists a 2-isomorphism �g;f : FðgÞ � Fð f Þ ! Fðg � f Þ

(a) �f ;idX
¼ �idY ;f ¼ idFð f Þ.

(b) � is associative. The following diagram is commutative

4. Respects vertical composition of 2-morphisms. For every pair of 2-morphisms � :
f ! g, � : g! h, we have Fð� � �Þ ¼ Fð�Þ � Fð�Þ.

5. Respects horizontal composition of 2-morphisms. For every pair of 2-morphisms

� : f ! f 0, � : g! g0 as in (7) the following diagram commutes

By a slight abuse of language, condition 5 is usually written as Fð�Þ � Fð�Þ ¼ Fð� � �Þ.
Note that strictly speaking this equality doesn’t make sense, because the sources (and the

targets) do not coincide, but if we chose once and for all the 2-isomorphisms � of con-

dition 3, then there is a unique way of making sense of this equality.

Remark 5.2. Since 2-functors only respect composition of 1-functors up to a 2-isomor-

phism (condition 3), sometimes they are called pseudofunctors or lax functors.

Remark 5.3. In the applications to stacks, the isomorphism �g;f of item 3 is canonically

defined, and by abuse of language we will say that FðgÞ � Fð f Þ ¼ Fðg � f Þ, instead of

saying that they are isomorphic.

Given a 1-category C (a usual category), we can define a 2-category: we just have to

make the set HomðX; YÞ into a category, and we do this just by defining the unit

morphisms for each element.

On the other hand, given a 2-category C there are two ways of defining a 1-category.

We have to make each category HomðX; YÞ into a set. The naive way is just to take the set

of objects of HomðX; YÞ, and then we obtain what is called the underlying category of C
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(see [Hak]). This has the problem that a 2-functor F : C ! C0 is not in general a functor

of the underlying categories (because in item 3 we only require the composition of 1-

morphisms to be respected up to 2-isomorphism).

The best way of constructing a 1-category from a 2-category is to define the set of

morphisms between the objects X and Y as the set of isomorphism classes of objects of

HomðX; YÞ: two objects f and g of HomðX; YÞ are isomorphic if there exists a 2-

isomorphism � : f ) g between them. We call the category obtained in this way the

1-category associated to C. Note that a 2-functor between 2-categories then becomes a

functor between the associated 1-categories.
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