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Abstract. Hyperfinite representation of distributions is studied following the method
introduced by Kinoshita [2, 3], although we use a different approach much in the vein
of [4]. Products and Fourier transforms of representatives of distributions are also
analysed.
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1. Notation and preliminary results

A nonstandard treatment of the theory of distributions in terms of a hyperfinite representa-
tion has been presented in papers [2,3] by Kinoshita. A further exploitation of this
treatment in an N-dimensional context has been given by Grenier [1]. In the present paper
we offer a different approach to the hyperfinite representation, based on the nonstandard
theory of distributions developed in [4]. Some basic acquaintance with nonstandard
analysis (NSA) is assumed. For the most part little more is needed than what is contained
in the description in [4] of an elementary ultrapower model of the hyperreals. For a more
detailed study of the fundamentals of NSA see, for example, Luxemburg [6] or
Lindstrgm [5].

Let s be any given infinite hypernatural number which, without any loss of generality,
will be supposed to be even; then define ¢ = k=1 2 0. Hence,

K K K
TR U
5 2—1—5 0 > €

- {(—g—l—j— De:j= 1,2,...,;&} C*R
is an (internal) hyperfinite set of hyperreal numbers with internal cardinality 2. IT will be
referred to as the (unbounded) hyperfinite line. Given a standard point r € R, define the
II-monad of r by

mony (r) = sty' (r) = mon(r) NI,

where mon denotes the usual monad of a standard number in *R. Then the set
I, = U,egmony (r) = st;! (R) C I is the nearstandard hyperfinite line and 11, = II\II,
is the set of remote points of the hyperfinite line. For every subset A C R define
*Ag = *ANTI and nsp(*A) = *A N 1T, = Useamonyy(a). The notation throughout will be
the usual in the field.
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Now consider the basic set of internal functions
TF = {F .1l — *C : F is internal}

and suppose, if necessary, that each F € [ is periodically extended to the infinite grid
g -*Z. Defining addition and scalar multiplication componentwise, "'F is a *C-linear
space of hyperfinite dimension x2. Moreover, defining also componentwise the product of
two functions, ''F is in fact an algebra. The operators D ,D_ : 'F — "'F defined, for
every function F and x € II, by

D . F(x) =c '[F(x+¢) — F(x)] and D_F(x) = ¢ '[F(x) — F(x — ¢)]

are called, respectively, the forward and the backward II-difference operators (of first
order). Iterating D, (or D_) we obtain higher order II-difference operators: for every
(finite or infinite) n € *N

D'F(x) =D, (D" 'F(x)), xell

and similarly for D" . It is easily seen that for any two functions F, G € 'F we have (both
for D, and D_),

D(F + G) = DF + DG and D(F - G) = (DF)G + F(DG) + £(DF)(DG),

where we take 4+ or —¢ according as we use D or D_, respectively.
For every «,x € II define the II-intervals (containing only points in II) J (x) and
J, (x) as follows:

i ={

—
=

n fx<a

)

=
L 8

o) ifx>a

o, x)p fx<a

70 ={

while for x = o we have J (x) = ) = J, (x). For any F € ''F define the functions S, F
and S_F to be the forward and backward II-sums of F which are zero at the origin and
which, for every x € II\{0} are defined by

S.F(x) = Z eF(t) and S_F(x) = Z eF(1).

reJ (x) reJy (x)

(o, x]p if x>«

The TI-sum operators S, and S_ both transform 'F into 'F. Moreover, for every F € T,
we have

D+S+F == F arld D,S,F - F

that is, S, and S_ are left inverses for D, and D_, respectively.

1.1 SII-continuous functions

Given a (standard) function f : A — C defined on a subset A of R we always consider its
extension to the whole of R, denoted again by f, by setting f(x) = 0 on A° = R\A. For
any such function consider the nonstandard extension *f and then define * fi; to be the
restriction of * f to II (periodically extended to € - *Z). Hence, for every standard function
f, we clearly have * fi; € 'F.
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DEFINITION 1.1

An internal function F € IF is said to be SII-continuous on a nonempty subset € of IT if
and only if

Veyl,y €Q and xmy = F(x) = F(y)].

From the nonstandard characterization of (standard) continuity and uniform continuity
there follows

Theorem 1.2. If f : R — C is a (standard) function which is continuous at a point r € R
then * fi : 11 — *C is SII-continuous on mony(r). If f is continuous on the set A C R
then * fi is SIl-continuous on nsy (*A). Moreover, if f is uniformly continuous on A, then
* fr1 is SII-continuous on *Ar.

The converse does not necessarily hold. The internal function * fi; may have infinitesimal
variation over the II-monad of a (standard) point, but this fact does not ensure that the
variation is kept at an infinitesimal level over the entire monad of the same point.
Consider, for example, the (standard) Dirichlet function

{1 if x € [0, 1\@

0 otherwise.

d(x) =

Since II contains only hyperrational points, *dyy is zero for all x € II and it follows that
*dyy is SII-continuous on II, while *d is not S-continuous anywhere on *[0, 1] C *R.
Consider an internal function F € "'F such that

(a) F(x) is finite on II,, and
(b) F is SlI-continuous on II,.

Then it make sense to define the (standard) function st F : R — C by setting for every
teR

stF(t) = [sto F](x), for any x € mony(¢).

If ¢ is any choice function picking up one and only one point from each set to which it is
applied then we may write st F = sto F o ¢ o sty!.

Denote by SCp = SCrr(R) the set of all functions in 'F which are finite and SII-
continuous on II,.

As the above example concerning the Dirichlet function shows we cannot expect in the
general case to recover the original function f : R — C from its II-extension. However, it
is not difficult to see that

Theorem 1.3. If f is a continuous function on a subset A of R then we have st(* fi1) = f
on A.

and, more generally,

Theorem 1.4. If f is a function which is k times continuously differentiable on a subset A
of R then stD’, (* fi) =fU),j=0,1,2,...,k, hold on A. (The same holds if we consider
D/ instead of D’,.)
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2. SII-distributions

Given any F € SCp, the function S, F (or S_F) is again in SCy;. In fact, for any x € II,,
considering S F for example, we have

S F()I < Y elF(n)] < { maX)IF(t)I}IxI

redy (x) ey (x
and thus S| F is finite on II,. Also, for any x,y € II,

S FO) =S4 F)| < D elF(0)] < ly—x- max |F(r)],

€l {3}

where J/ = Jo o (max{x,y}). Hence, if x ~ y then S, F(x) ~ S, F(y) and therefore
S, F € SCq, as asserted.

The same result is not generally true for II-differences. If F € SCy then the most we
can say about the function D F (or D_F), in principle, is that it belongs to "'F.

2.1 The *Cp-module "D,

For any F in SCy, st F is a (standard) continuous function on R which therefore defines a
(regular) distribution in D’. Denoting by vr either the function st F or the distribution it
generates as the context demands, we have

) = [ e = [ (stoPgndhs, (n

1 (1)

where st o F' and ¢ = st o *oyy are (external) functions defined on IT, K is a compact of
R containing the support of ¢ and A, denotes the counting Loeb measure on II. Since
F -*prp is an STI-lifting for the external function (st o F)pr we may replace the Loeb
integral in (1) by a proper II-sum to obtain

(vr,0) = st< 3 cF() *san<x>>.

e Ky

It is easy to see that ¢ ~»*(ry is a linear and continuous map and therefore every internal
function F € SCy; generates in this way a regular distribution. Since the map f~*fi
embeds C= C(R) into SCyy and the distribution generated by f coincides with v+ 4, the map

stp : SCyp — D

defined by stp(F) = vr, establishes an onto correspondence between SCy; and the sub-
space of D' comprising all regular distributions generated by continuous functions on R.

Now, if F € SCyy and ¢ € D is a function with support in the compact K C R then,
taking Theorem 1.4 into account, we get

Y eDiF(x) en(x) = Y [F(x+e) — F(x)]"en(x)

xell xell
=Y eF(x)(-D_*pn(x) ~ / (sto F)(—g )gdAr
xell Stﬁ](K)

= (vp, —¢') = (Dup, @),
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where Dup is the (standard) distributional derivative of vr. Let D (SCyp) be the set of
first order II-differences of all functions in SCyy. Since for every F' € SC; we have that
F =D, (S;F) where S, F € SCy; then SC; C D, (SCq). Then the stp-mapping may be
extended onto D (SCpy), by setting

stp(D+F) = Dvp = D(stp(F)).

The same idea may be generalized to II-differences of any finite order of a function in
SCq. Hence, if F € SCyp and ¢ € D, we obtain, for every j € Ny,

ZED’ F(x ZEF 1)/D7 *pp(x)]
xell xell
z/ (stoF)(—<p<j))HdAL
st ! ()

Sty
= <VF7 (_1)]SD<]>> = <Dj(VF)> S0>7
that is, stp(D’, F) = D/ (stp(F)).
Denoting by D’ . (SCn), for every j € Ny, the set of DJ -differences of all functions in
SCry, then we have the inclusion D, (SCyy) c D/ (SCH) and therefore

Do = "D (R) = D/, (SCn)
j=0
is the (external) set of all finite-order II-differences of all functions in SCy;. Since for
every F' € SCy the translate 7. F is also in SCyy and, moreover, D_ = D o 7. then oD
may be obtained using indifferently either D, or D_. Hence we may also write, more
generally,

D’ D (SCpy).

e
¢

"D, ="D(R) =

0 k=0

J

We may now extend the map stp to the whole of D, as follows: for every ® € "D,
there exist F € SCyy and j € Ny so that & = D’, F. Hence, stp(®) = D/vp € D'. Note
that stp(®P) does not depend upon the representation of P as a finite order II-difference of
a function in SCyy. In fact, suppose we also have ¢ = DmG with G € SCy; and m € N
(where, without any loss of generality we may assume m > j). Then from the equation
D/ F = D! G it follows that S /F + P,, = G, where P,, is a polynomial of degree < m
(and coefflclents in *C). Thus, for any ¢ € D, we get

(D"vG, 0) = (vg, (=1)""™)
(=

~ > eG)[(—1)"D" pn(x)]
xell

=Y elSTTF(x) 4+ Pu(x)][(=1)" D" (x)]

= e F(x)(=1)D! "oy (x) + > e DIP(x) oy (x)
xell xell

~ (v, (—1)j<p0)> = (D/vg, )

and therefore D"y = D/uy which proves the assertion made.
The D-standard part map stp:"D, — D' is clearly linear; its kernel,
K = K (stp), comprises all internal functions in Im. which generate the null
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distribution. These are all the functions which are finite order derivatives of infinitesimal
functions in SCy;. The factor space e =1D, /K is a C-vector space which may be
shown to be isomorphic to C, the space of all finite order Schwartz distributions.

DEFINITION 2.1

The internal functions in "D, C "F will be called finite order II-predistributions and the
classes [®] € 1IC,., with ® € "D, will be called finite order STl-distributions.

The II-predistributions are internal functions in ' which do not grow too fast on II,
according to the following result:

Theorem 2.2. For every internal function ® € "D, there exists a finite nonnegative
integer m = mg such that for every compact K of R

|®(x)] < Cio - K", on "Kp (2)

where Ci g is a finite positive constant (depending on K and ®).

Proof. The inequality (2) clearly holds for every ® € SCy; with m = 0. Now, if we have
® =D, F with F € SCy, then

B(x) = D, F(x) = £ [Flx +2) - F(x)

and therefore, for every compact K C R, we obtain

max |P(x)| < 2{ max |F(x)|} - K.

xe* K xe*Kn

Hence the inequality holds with Ci ¢ = 2max,e i, |F(x)| € “Ry and m = 1.
Suppose now that the inequality holds for all internal functions of the form D/, F with

F € SCy. If ® = D/ F with F € SCyy then we obtain,

max |®(x)| < 2{ max |D’+F(x)|} K < C[E,étpl] AR
g ,

xe* K

where C, [Eéfl)l] is, for every fixed j € Ny, a positive bounded constant. Therefore the result

follows by finite induction. Note that there are functions /' € SCyy such that D F € SCyy;
then, for a general function of the form ® = D’_F with F € SCyj, equation (2) may be
satisfied with m < j. |

Now, define "G, to be the subset of 'F comprising all internal functions ® satisfying
(2) for some number m € Ny and every compact K of R with Ci ¢ a bounded positive
constant. "G, is a II-difference algebra which contains "D ... Within "G, the ordinary
product of II-predistributions make sense although the product of two II-predistributions
is not generally a II-predistribution. By imposing appropriate restrictions on the factors,
however, the product of two elements in "D, may still be a II-predistribution. In
particular, we have

Theorem 2.3. Let ©,® € "D, be such that DO € SCyy and ® € D'} (SCn) for some
given m € No. Then, ® = D'VF with F € SCyy, and

stp <@<I> - D" (Z (’7) (—1)1511'[(1)1/‘@)1?])) =0,

J=0
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where G = Z;"ZO ('j") (—l)jS$7j[(D'17j@)F] is a function in SCry.

Proof. For m =1 we have
OD,F =D, (0F) — (D,0)F — (D, O)(D;F)
and therefore
stp(OP — D, [OF — S, (D, O)F]) = stp(—e(D,O) (D, F)).
For any ¢ € D, with support within the compact K C R, we have that
(stp(—e(D1O)(DLF)), ) = st( Z eD,O(x +e)— F(x)])
x€* Ky
and the result follows from the fact that F(x 4 ¢) ~ F(x) for all x € *If. The proof now
proceeds by induction on m € N. O
This result allow us to introduce the notion of Schwartz product in 'C. by setting
0-[@] = (03],
where © and ® are as above.

2.2 The *C,-Module "D

For any subset A of R let x(A) be the family of all compact subsets of A. Denote by 'D
the subset of all functions ® € I'F such that for each I € x(R) there exist ®x € D, so
that ® = &g on *Ky. Every function in D) determines a family

{‘I’K}Ken([@)
which is such that
if IK,L € k(R) and KK C L then i = $p on *Kp.

Such a family of "D -functions is said to be compatible. Moreover the converse also
holds, that is, if { @}y, (g) is a compatible family of internal functions in D, then we
can define ® € 'D by settlng

CD‘K = (I)K on KH
for all I € x(R). Hence ® € 'D.
If ® € "D, then the ‘constant’ family {@}KGK (r) 18 certainly a compatible family and
therefore defines an element in 'D); hence "D, C 'D. Every function in "D will be

called a global Il-predistribution. Finite order Il-predistributions are global II-
predistributions, but the converse is not true, as the example that follows shows.

Example 2.4. Given the internal function

k ifx=0
Rolx) = { 0 otherwise

it is easy to see that for any m € *N,
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(_1)1(7)5"1“ if x=—(m—j)e,j=0,1,...,m
DTA()()C) =

0 otherwise.

Moreover, for any ¢ € D, we get

° (z snm(x)*son(x)) = (1) (0) = (D", ¢)

and hence A is an hyperfinite representation of the (standard) delta distribution. D’} A,
is, for every m € Ny, a function in "D, and so is any finite linear combination (over *Cj)
of these (finite order) II-differences of Ay. However, the internal function

K/2—1 K/2—1

D(x) = Z DTle(x—n)E Z le‘An(x)

n=—r/2 n=—=r/2

is not in "D, although, as it will be seen shortly, it belongs to 'D. To see this, note that
for finite n the function D‘fle(x — n) is zero outside the II-monad of »n and for infinite
n it is zero outside the Il-interval [n — 1/2,n + 1/2]; which is completely contained
in IT,,. Thus for every compact KK € x(R) the intersection of *Kj; with the support of
D‘fle(X —n) is empty, provided that |n| € *N. Hence, for every K € x(R) there is
only a finite number of finite-order II-differences of finite-translates of A;. Conse-
quently, the restriction of ® to *[K is equal to a finite-order II-difference of a function in
SCyr.

The mapping stp, defined on "D, may now be extended to the whole of 'D by
setting

stp(®) = {stp, (Pw) i w>

where stp, (D) denotes the restriction of stp(P) to Dy, for every I € x(R). That is to
say, if ¢ € D

(stp(P@), ) = st( Z e(I)K(x)*apH(x)>.

xex Ky

stp is a linear map whose kernel, X = K(stp), comprises all internal functions in "D
whose D-standard part is the null distribution. Hence "D/ is a linear space whose
elements will be called global SI1-distributions.

Note that for each K € k(R) there exist mk € Ny and Fi € SCyp such that
@y = DY Fy on *IKpr. Thus, from Theorem 2 it follows that if ® € ID then for every
compact K € x(R) there exist a bounded positive constant Cg x and an integer mg € N,
such that

max |P(x)| < Cop g - K™ (3)
xe* K '
Define 'G to be the set of all functions ® € 'F which satisfy the following property:
for every compact KK € k(R) there exist an integer mg € Ny and a finite number Co
so that (3) holds. 'G is a II-difference algebra which contains D as a linear submodule
and "G, as a subalgebra. Global II-predistributions may therefore be multiplied within
UG. The product of two global II-predistributions in general will not be a global
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II-predistribution. However, if © € "D is an internal function such that Dﬂ@ € SCry
for all (finite) j € No, and if ® € 'D then ©® is a global II-predistribution in the sense
that

Stp, (@@ - D (i (mj") (—1y87x [(D’ﬁ”@)F])) =0

for all compact K = R. Hence, we define the product ©[®] to be the global II-distribution
[O].

3. The II-Fourier transform

If F is a function in "F then, for each y € II, the sum

F(y) =) & expy(—2mixy)F(x) (4)

xell

is a well-defined hypercomplex number. Thus, the right-hand side of (4) defines, for every
F € [, the internal function F : IT — *C which is also in 'F. Conversely, after some easy
manipulations, we obtain

F(x) = & expy(2miny) F(y) (5)

yell

which allows us to recover F from F.

DEFINITION 3.1

Given F € IF, the function F € IF defined by (4), is called the 1I-Fourier transform of
F. Conversely F, as given by (5), is called the inverse 11-Fourier transform of F.

Denoting the II-Fourier transforms by Fp and Fyj, respectively, then F = Fi [F] and
F = Fu[F]. Fi and Fy are linear transformations of "F onto "F and, moreover,
FroFg=FgoFn=id.

Nonstandard hyperfinite versions for many of the properties of the (standard) Fourier
transform and its inverse may be obtained. In particular, for any function F € 'F, we
obtain

FulD4F(y) = ) " expyy(—2mixy) D F(x) = [FAW)]F ()

xell

and, more generally, for any j € *N,

FulD Fl(y) = [FA0IF(), (6)
where A : II — *C is the internal function defined by

AG) = 2 [* expy(2niey) ~ 1
and which is such that A(y) ~ 2mi(st y) for every y € II,. Also, for any j € "Ny, we get

D, F(y) = FulNF](y) (7)
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and, therefore, from (6) and (7), by inversion we obtain
N(x)F (x) = Fu[D’ F](x), (8)
D’ F(x) = Ful(=AYF](x). )

Let F,G € ''F be any two internal function. Then, by simple manipulation, we may
obtain the equation

S FWG() = 3 eF()G() (10)

x€ell yell

which is the II-Parseval formula in F.

3.1 The 11-Fourier transform as an extension of the classical Fourier transform

The (standard) classical Fourier transform is defined on L', the space of all Lebesgue
integrable functions on R, by the integral

:/f(t)e‘Z”i“’dt, weR.
R

We denote by F the restriction of that transformation to Cy N L' c L', the subspace of
all continuous and integrable functions on R which tend monotonically to zero at infinity.
Now we want to show that Fj is an extension of Fj in the following sense:

Theorem 3.2. For every f € Co NL! the equality
Folfl(st y) = st o Ful"fu] (y)
holds for all y € 11,

Proof. For any (fixed) w € R, let y be an arbitrarily given point in st! (w). Defining for
every t € R

S(#) = f(2) exp[—2mi(sty)1]

and extending this function to R so that f;(+00) = 0, consider the (external) function
fy o st (x), x € II (where stoox = stx if x € I, and stoox = oo ifx € Hfo, respectively).
Then we have that

w) = /R Fi()de = /H £ o st (V)AL (),

where the last integral is the Loeb integral with respect to the Loeb counting measure on
the hyperfinite grid. The proof will be complete provided it is shown that the equality

/fV 0 Stoo (X)dAL(x) = st (Z € f(x epo(—Zm'xy)) (11)
xell
holds for all y € II,. For this purpose it is necessary to prove that the internal function
" fun(x)" expy (—2mixy)
is an SII-integrable lifting for the external function f; o sty (x), x € IL
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First, we have that
st{" fir(x)" exppy (—2mixy) } = st(* fuu(x)) - st(* expy (—2mixy))
and therefore:
e if x € I, then, from the continuity of the functions f and ‘exp’, it follows that
st{* fir(x)* expy (—27ixy) } = f(stx) exp[—2mi(stx)(sty)] = f; 0 st (x).

o if x € Il then since f € CoNL!' we have * fu(x) = 0; moreover the function
* expy(—2mixy) is finitely bounded and therefore

st{* fir(x)* expy (—2mixy) } = f(stx) exp[—2mi(stx)(sty)] = 0 = f; o sty (x).

Now it remains to show that the internal function * fi;(x)* expy (—2mixy) is, for every
(fixed) y € II,, an SIlI-integrable function, that is, satisfies the following requirements:

(a) Z e|* fi(x)] is finite,

“
xellj

(b) if A C II is internal and A(A) = 0 then Z€|*fn(x)| ~ 0,

x€A

(c) if A C IT is internal and * fi1(x) ~ 0, Voea then Y e[* fuu(x)| ~ 0.

XEA

Since * fi1(x) is finitely bounded, taking into account that

> e fulx)

x€A

<Y<l < {max ol - A

x€A

shows that (b) follows immediately. We proceed now by proving the following lemma:

Lemma 3.3. The hyperfinite 11-sum
S e )
[y1[<x< vl

is infinitesimal for every two remote points y1,7v, € IIZ (or, alternatively, v,y € 11 )
with |y1] < |y| < /2.

Proof of Lemma 3.3. Without any loss of generality we may take ~; and v, to belong to
I N*Ny. Then we have

72kl 7 (sl

> cttol = 3 ekt = 3545 ol
N2 J=nk n=y; { m=0

and therefore, taking into account that |* fiy(x)| is monotonically decreasing, we obtain

L CEDS I*fn(X)I{KZ:E} =3 Pl

71 <x<72 n=-y, m=0 n=vy,
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From the integral test it follows that the (standard) series

3170

and the (standard) integral

/ T

both converge or both diverge. Since the integral, by the hypothesis, is convergent, then
the series also converges and therefore, from the nonstandard Cauchy convergence
criterion for series, it follows that the hyperfinite sum

S [ fuln)

n=m
is infinitesimal. [ ]

Now, for any arbitrarily fixed real number e > 0, define

2
s
-1

N,=<¢ne*N: Z el*fu(je)| < e

|jl=nr

From Lemma 3.3, N, contains arbitrarily small infinite numbers; since N, is internal,
then by underflow it contains a finite number, say n, € N. That is,

h‘z

e

2
Voln€*NAn, <n<k/2= Z el* fu(je)| < ef.
|j|=nk

Hence, since we have

2

nek—1 5 nek—1
S el = Y el Gl + 3 el el < 3 el fulie)l +e
vl 720 = =0

and, moreover,

nek—1
Z el*fu(je)| < ne{ max |*fn(x)|} < 400,

—n,<x<n,
|11=0 o

then (a) follows.
To prove (c) we reason as follows: (i) if A(A) is finite, then the result follows from the
fact that

Sel s = {max (o) | A =0
X€EA
XEA

(ii) if A(A) is not finite then A certainly contains an infinite point in IIZ. Again from

lemma 3.3 it follows that for any real e > 0 there exists (standard) n, € N such that

S e <e,

[x|eAN(ne,k/2—¢]
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while

Yo el

|x|€eAN[0,n,—¢]

Thus,

ZE|*fn(x)| <e,

x€A

and, since e > 0 is arbitrary, the proof of (c) is complete.
Taking into account the definition of the (external) function f o st,,, to prove the
equality sign in (11) we need yet to show that the equality

st <Z 5*fH (x)e27rixy> st (Z c f 727rtx (sty )

xell xell

holds. For this it is enough to show that the internal function

_ Z g*fH (x)6727rixy

xell

is SII-continuous on II,. For y,y’ € II, we have that

FO) — FGN < el a1 — e 20,

xell
From the fact that f € Cy N L! we have that, given a real number r > 0, the subset
{x el : ["fulx)| <r/3}

contains arbitrarily small infinite points; since the set is internal then by underflow there
exists x, € I} such that

Velx € ILA |x| > x, = |* fu(x)| < r/3].
Then

FO) = PO <4 S0+ 57 Rel fa)] [1 — e 20

X|<x,  |x|>x,
< S e @ —e 20 42 3 eff fulx)
\x\<x, o[>,
<—+ S el fulw)] 1 — e 20,
[x|<x,

Now, if y = y' and x is finite then 27ix(y — y") ~ 0 and thus

3 e fa(o)] |1 — e 20

[x|<x:

YA * r
< {max|1e 2mix(y ’)|} Z el* fu(x)] %0<§.

[x|<x,
Hence

F(y) —F(y)| <r
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and, since this is true for all real r > 0, it follows that

VoY €y Ay =y = F(y) = F(Y)]
that is, F is SII-continuous on II, and we have

fsty) = st(F(y)), yeTl,.

The proof is thereby complete. O

Given f € Co N L' we may therefore obtain the Fourier transform of f by

f(sty) =stF(y), yell,

where F is an SII-continuous function over II. Hence }(sty) is a continuous (and even
uniformly continuous) function. Moreover, for every y € II,

FO) <Y el fuln)

xell

which, since the right-hand side is finite, allow us to conclude that F(y), y € IT and
f(sty), y € I, are bounded functions.

The function f in general, does not belong to L! and therefore, the inverse Fourier
transform as defined by

Ze i1 (y)* expp (2mixy)

yell

in general, does not allow us to recover the original function * fi; (and therefore f). For
this purpose we have to take the inverse II-Fourier transform of the function F = Fy[* fii]

x) # ZeF *expp (2mixy)

yell
= FulF](x) =" fu(x), xell

However, a nonstandard version of the Parseval’s formula involving two functions
f.g € CNL, of the form

Zé?fn 25 Sr(x)gm(x) (12)

yell xell

can be derived. Note that this is not the II-Parseval’s formula (10). To prove (12) it is
enough to show that

Z e fir(x)G(x) ~ Z e* fir(x)" g (x),

xell xell
Zel:"(y)*gn()’) ~ ZE** (y)*gu(y)
yell yell

We will prove, for example, the second one since the other may be obtained similarly.
Consider therefore

> e{F ) = () en().

xell
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For any y € II, we have that
*fr(y) = f(sty) = F(y)

and therefore the set
{yeIl: [yl > OA[F() = Ful)| < 1/]y[}

is internal and contains all finite y € II,, y # 0. By overflow it contains 1 € II¥ such that
Ve LAD <n= FO) = fab).

This fact, however, does not imply that the difference F(y) —*fi(y) is kept at an
infinitesimal level over the whole of the hyperfinite grid. Nevertheless, we have

ST FO) =) en()| < [ Y+ pelFO) — )} en()
yell l<n >0
— {max |F0) = 0|} 3 el

lyl<n

+{max F0) = a1} el (13

| >1,
[yl>n b7

Now, because g € Co NL!, then

Z el"en(y)| < /R|g(t)|dt < 400

[yI<n

and

> elen()| ~0.

[yI>n

Moreover, max‘y‘gnﬂ:“(y) —*fi(y)] ~ 0 and max|y‘>77|f7(y) —*fu(y)| is finite. Using all
these facts in (13) we obtain finally

S FG) — ful)} euly) ~ 0

yell

as asserted.
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