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Summary. - -  A new treatment is presented for the time evolution of a fixed 
charged oscillator under the combined action of arbitrarily specified electric 
and magnetic fields. The Heisenberg equations of motion have been solved 
and quasi-coherent states are utilized to calculate the Green's function. We 
also examine the connection between the SchrSdinger wave functions of 
pseudostationary and quasi-coherent states. The Bloch density matrix is 
calculated in a special case. 

PACS 03.65 - Quantum theory; quantum mechanics. 

1. - I n t r o d u c t i o n .  

In a previous communication (1) we have considered the problem of a two- 
dimensional harmonic oscillator with arbi t rary t ime-dependent coupling. In the 
present  paper we turn our at tention to the more fundamental problem of a three- 
dimensional charged oscillator (a simple model of an atom) under  the combined 
action of arbi t rary  electric and magnetic fields. This is obviously of interest  in 
quantum optics (~) and also in electromagnetic theory (~,6). In recent  years  much 

(1) M. S. ABDALLA: Phys. Rev. A, 35, 4160 (1987). 
(2) M. S. ABDALLA, R. K. COLEGRAVE and A. A. SILEM: Physica A, to appear (1988). 
(8) M. S. ABDALLA, S. S. HASSAN and A. S. F. OBADA: Phys. Rev. A, 34, 4869 (1986). 
(t) n. K. COLEGRAVE and A. VAHABFOUR-ROUNDSARI: Opt. Acta, 33, 645 (1986). 
(5) j .  D. JACKSON: Classical Electrodynamics (John Wiley & Sons Inc., New York, 
N.Y., 1970). 
(8) H. GOLDSTEIN: Classical Mechanics (Addison-Wesley, Reading, Mass., 1980). 
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effort has been devoted to fmding an exact solution of the Green's function for a 
system with constant magnetic field (7,8) either by using a semi-classical method 
or by formally using a Feynman path integral approach (9) and this of course 
leads to the Bloch density matrix (lO). In the present paper we shall t reat  the 
problem of finding the propagator for a charged particle from a quantum- 
mechanical viewpoint in a more general case when the magnetic field is time 
dependent and in addition an external electric field is present. Also we shall 
consider the Boson operators for this system and the connection with the Green's 
function. Our starting point is the Lagrangian for a charged particle of charge e 
and unit mass in a variable magnetic field ~ ( t )  in the z-direction which has the 
form 

(1.1) 1 3 2 2 q2~1)1 ' L=-~[~l(q~-oJ, qi)+~(t)(qlq2- 

where ~o~ (i = 1, 2, 3) are, respectively, the frequencies along the x, y and z 
directions and 2(t)= e~qC(t)/C is the time-dependent Larmor frequency. The 
Hamiltonian for this system is obtained from 

(1.2) H(p, q, t) = ~ 3L �9 �9 - ~ q ~ - L ( q ,  (t,t). 

From eqs. (1.1) and (1.2) we find that 

(1.3) 
3 

1 ~1 (p~ + t)~(t) q~) - (~(t)/2)(qlp2 - q2Pl), H(p, q, t) = 

where 

• /  22(t) 
~gi(t) = oJ~ + 4 

In the presence of the external electric field the Hamiltonian becomes 

(1.4) H(p, q, t) =-~l [ ~ (p~ + D~(t) q~ - 2E~(t) qi) - ~(t)(qlp2 - 

where Ei(t) is an arbitrary function of the time. 

(7) B. K. CHENG: J. Phys. A, 17, 819 (1984). 
(8) I. M. DAVIES: J. Phys. A, 8, 2737 (1985). 
(9) R.P. FEYNMAN and A. R. HIBBS: Quantum Mechanics and Path Integral (McGraw 
Hill, New York, N.Y., 1965). 
(,o) j. M. MANAYAN: J. Phys. A, 19, 3013 (1986). 
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Since we can separate the motion in z-direction, therefore without loss of 
generality we can drop the terms in this direction, and by restricting ourselves in 
the present paper to the case ~1 = ~2 = ~, then eq. (1.4) can be written in the 
form 

(1.5) 1 2 H(t) = -~ [(p~ + p~) + D2(t)(q21 + q~)] - 

+El(t)q~+E2(t)q2]. 

In the absence of the external electric field eq. (1.5) is exactly eq. (92) of ref. (11) 

and eq. (1) of ref. (12). Our intention in the following sections of this paper is to 
give an exact solution for the Heisenberg equations of motion in sect. 2, followed 
by the Green's function in sect. 3. In sect. 4 we use the Boson operators to find 
the quasi-coherent states and to give an alternative derivation of the Green's 
function. In sect. 5 we give an exact solution for the SchrSdinger equation and 
the connection to the quasi-coherent states. Finally we give a discussion. 

2. - The equat ions  o f  m o t i o n  and their  so lut ion .  

In this section, we shall consider the solution in the Heisenberg picture of 
quantum mechanics. For the Hamiltonian given by eq. (1.5) we have 

dq~ )~(t) 
(2. la) dt = P l  + ~ q2, 

(2.1b) 
dpl 2(t) . 
-~ = - 192(t) q~ + ---~-P2 - El(t),  

dq~ ~(t) 
(2.1c) dt =P2- -~ -q~ ,  

; ( ( t )  + 
dp2 _ t)2(t) q2 - "-'~-t,1 E2(t). (2.1d) dt 

In order to solve eqs. (2.1a-d) we introduce the transformation 

rql rcos  sin  0 o 
l -~ L q 2  ---- - -  sin f(t) cos f(t) 0 0 

p~ 0 0 cos f(t) sin f(t) 
P2 0 0 - sin f(t) cos f(t) Py 

(1,) H. R. LEWIS and W. B. RIESENFELD: J. Math. Phys. (N. Y.), 10, 1458 (1969). 
(,2) M. S. ABDALLA: Phys. Rev. A, 37, 4026 (1988). 
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where  

t 
1 (2.2) f(t) = ~ j  ~(t) dt .  

F rom eqs. (2.1) and (2.2) we find 

(2.3a) d x  ~-~ =p~,  

dp~ - D~(t) x + E~(t), (2.3b) dt = 

(2.3c) dy - ~ = P y ,  

dpy 
(2.3d) dt 

E~(t) and Ey(t) are 

(2.4a) 

(2.4b) 

- ~92(t) y + Ey(t).  

E~ (t) = E1 (t) cosf(t) - E~(t) sinf(t) ,  

Ey(t) = E2(t) cosf(t) + E~(t) sinf(t).  

M .  S E B A W E  A B D A L L A  

Following the technique used in ref. (18) and after some minor algebra the result  
in physical coordinates and momenta is 

(2.5a) qi  (t) -- r(t)[ql (0) cosf(t) + q2 (0) sinf(t)] + 

+ s(t)[pl(O) cosf(t) + p2(0) sinf(t)] + [~-~(t) cosf(t) + ~( t )  sinf(t)],  

(2.5b) q2(t) = r(t)[q2(O) cosf(t) - ql(0) sinf(t)] + 

-b s(t)[p2 (0) cosf(t) --  P i  (0) sinf(t)] + [~  (t) cosf(t) -- ~-~ (t) sinf(t)],  

(2.5c) pl (t) ---- v(t)[pl (0) cosf(t) + p~ (0) sinf(t)] + 
s  ".2.. 

+ w(t)[q~(O) cosf( t )+  q2(0) sinf(t)] + [~(t)  cosf ( t )+  ~y(t) sinf(t)], 

(2.5d) p2(t) = v(t)[p~(O) cosf(t) - p~(0) sinf(t)] + 
�9 _ _  "__ 

+ w(t)[q2(O) c o s f ( t ) -  q i ( 0 )  sinf(t)] + [~y(t) c o s f ( t ) -  $~(t) sinf(t)], 

(13) M. S. ABDALLA: Phys. Rev. A, 34, 4598 (1986). 
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where 

(2.6a) 
/~(0) 

r ( t ) = - ~ - ~ c o s ~ ( t ) ~  
t/(O)/2~(O) 

V~-~(o) 
sin ~( t) , 

sin ~7(t) 
(2.6b) s(t)  - , 

V 7(o) 

f i( t) /2~(t)  
(2.6c) v(t)  = -, I' ~ cos v(t) - 

and 

sin v(t) 

(2.6d) w(t)= L ~ ~--~ [2---~] ~ /~ -~ [~ ( -~ ] J  c~ 

~(t)/2tt(t))(~(O)/2~(O)) 1 
- ~ 1 + ~ j sin~(t), 

while 
t 

(2.7a) ~(t) = f ~(t) dr, 
o 

(2.7b) X/~(t) ~--~ (t) = ~(t) = [(I~(t) - I~(0)) sin ~(t) - (I~(t) - I~(0)) cos v(t)], 

(2.7c) I~(t) = " ~ ( t )  cos v(t) dt  , 

(2.7d) 
f E~(t___~) 

I~(t) = J sin ~(t)dt 
V (t) 

and ~(t) is given by 

(2.7e) t~(t)= 1 ~ ( t ) + D 2 ( t ) p ( t ) _  1 
p2(t)' p3(t)" 

Equation (2.7e) is a nonlinear differential equation and has a solution presented 
in ref. (1,), see also ref. (12) for the physical interpretation. From eqs. (2.5) it is 
easy to check that the commutation relations [qi, Pj] = ih~j hold. 

(14) C. J. ELIEZER and A. GRAY: S iam J. Appl.  Math. ,  30, 463 (1976). 
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NOW let us define the following pairs of operators A and B such that 

(2.8a) A(t) = (2h~(t)) -1~ (t) ~- ~ 2 - ~ )  (ql cosf(t) - q2 sinf(t)) + 

+ i(pl cosf(t) - P2 sinf(t)) - K~ (t)], 

_ (~ . ~(t)~ 
(2.8b) K,(t) = ~,(t) (t) + ~ - ~ ) ,  

(2h~(t))-l/2 [(~(t)+ i #(t) (2.9a) B(t) = [ \  ~ - ~ ]  (q2 cosf(t) + ql sinf(t)) + 

+ i(p~ cosf(t) + p~ sinf(t)) - Ky(t)], 

~y(t)~ 
(2.9b) Ky(t) = ~( t )  lz(t) + ~ ~ - ~ )  , 

since these operators and their adjoints satisfy the canonical relations 

[A, A t] = 1 = [B, Bt]. (2 .10)  

Then 

(2.11) 
f AtAIn(t) ,  re(t)> = n In(t), re(t)>, 

Bt BIn(t), re(t)> = m In(t), m(t)>, 

n = 0 , 1 , 2 , . . . ,  

m = 0, 1, 2, .... 

By using eqs. (2.5a-d), we may write the expressions for the expectation values 
of the potential energy V(t), the kinetic energy T(t) and the Hamiltonian H(t) 
with respect to the states In, m>. Thus 

(2.12a) 

(2.12b) 

(2.12c) 

<V(t)> = h (n + m + 1)(~2(t)/~(t)) + l (-~(t) + -~(t))t~2(t), 

<T(t)> = h ( n  + m  + 1)~-1(t) 2(t)+ \2---~] J 

<~(t)>=-~(n+m+ l)~-'(t) ~ \2--~].i + ~(t), 
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where 

3.  - G r e e n ' s  f u n c t i o n .  

Having solved the problem in the Heisenberg picture, we are in position to 
construct the Green's function and the corresponding Bloch density matrix for 
the system given by Hamiltonian (1.5). 

From eqs. (2.5a-d) and by using the transformation in eq. (2.2) we obtain 

(3. la) x(t) = r(t) x(O) + s(t) p~ (0) + -~ (t), 

(3.1b) p~(t) = v(t)p~(O) + w(t)x(O) + ~(t) .  

Following the technique presented in ref. (18,1~,16) we find that 

(3.2a) G(x, x0, t) = (2=h[s(t)l) -1~. 

i 2 �9 exP[2-~-~[r ( t ) xo+v( t )x2-2XXo+2~( t )xo+2(s ( t )~ ( t ) - -~ ( t ) v ( t ) ) x ]  1 , 

where Xo is given by the equation 

(3.2b) x(0) ~x - xo) = x0 ~(x - x0). 

Similarly we can show that 

(3.2c) V(y, yo, t) = (2=hls(t)l) -1/2. 

(15) L. F. LANDOVITZ, A. M. LEVINE, E. OZIZMIR and W. M. SCHREIBER: J. Chem. Phys, 
78, 291 (1983). 
(16) M. SARGENT, M. 0. SCULLY and W. E. LAMB: Laser Physics (Addison-Wisley, 
Reading, Mass., 1974). 
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Then f rom eqs. (3.2a) and (3.2c), the  Green 's  function has the  form 

(3.3a) G(ql, q2, ql,  q2, t) = (2h=ls(t)l) -~. 

i {r( t ) (yl  2 + y~) + v(t)(q~ + q~) - 2[(W ql + -q2 q2) cosf(t)  + �9 exp 

+ (qlq-2- q'~ q2) sinf(t)] + 2[~-~ (~( t )cos f ( t )  + ~u(t) sinf(t))  + 

+ q-2 (~u (t) cosf(t)  - ~ (t) sinf(t))]  + 

+ 2 [ql ((s(t) ~ (t) - v(t) -~(t)) cosf(t)  + (s(t) ~u(t) - v(t) ~u (t)) sinf( t ))  + 

+ q2((s(t) ~u(t) - v(t) -~u(t)) cosf(t)  - (s(t) ~ ( t )  - v(t) -~(t)) s in f ( t ) ) ] } ] ,  
] 

w h e r e  

(3.3b) 

(3.3c) 

-ql ---- X0 c o s f ( t )  + YO s inf( t ) ,  

q--~ -- Yo cosf(t)  - x0 s inf( t ) .  

F o r  the  case when  the  magnet ic  and the  electric fields are cons tant  so t h a t  i ,  E1 
and E2 are cons tant  eq. (3.3a) assumes  the  form 

(3.4a) G(ql,q2, ql,  q2, t) = h=ls~n(Dt) 

�9 exp 2h s i n ~ t  

(3.4b) [(t) = cos 0 - - -~ sin (~t) sin (I/2 t - O) - cos (~t) cos (1/2 t - O) , 

1, 
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_ E_[.2 ] (3.4d) J(t) = ~ 2 [ ~ sin 0 sin (Dt) + cos (Dt) cos 0 - cos (;(/2 t - 0) , 

E F;(/2 = 1 k(t) = ~ [--~- cos o sin (~Tt) - cos (t)t) sin 0 - sin (;(/2 t - O) (3.4e) 

and 

(3.4f) 

275 

(3.6) z(fl) = 

By using eq. (3.5) we obtain 

(3.7a) 

where 

In the absence of an external  electric field, we get  agreement  with eq. (5) of 

+ j 

E = (E~ + E22) 1/2 , 0 = tg-l(E2/E1). 

To find the Bloch density matr ix we jus t  replace t by ( -  ihfl) in eq. (3.43). Thus 

(3.5) C(qi, q2, ql, q2, ~) = [~)/2h= sinh (~kQ)] �9 

"exp [ I  2h s~hh (~hD) ] I(-~ + -~2 + q~ + q ~) c~ (~hD) - 

] 
�9 exp h sinh (flhf2) 

In order to find the average energy for this system, we must  calculate first 
the partit ion function z(~) such that  

f ;C(ql ,q2, f l )dqidq2.  
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ref. (10). Since the average energy can be given from the equation (17) 

a In [z(~)] (3.8) (E)  = - 3-~ ' 

we find that  

(3.9a) (E} ~ - - - / ~ ( ~ ) F ( ~ ) - I ( 1  -~- o-(~)) --  2z(~) lnx(~) + -~- 

(3.95) z(~) = In [4z(~) F(~)]. 

4. - The  q u a s i - c o h e r e n t  s ta tes  and the ir  re la t ion  to  the  Green's  f u n c t i o n .  

In this section we shall introduce an alternative method for finding the 
Green's function by first deriving the quasi-coherent states. From the Boson 
operators, given by eqs. (2.8a) and (2.9a), and since these operators and their 
adjoints satisfy the canonical relations given by eq. (2.10) on using the 
Heisenberg equations (2.5) it easily follows that  

(4.1) A(t) = A(O) exp [ -  iv(t)] and B(t) = B(O) exp [ -  iv(t)]. 

To derive the quasi-coherent states, let ~ and ~ be the eigenvalues for the 
operators A(t) and B(t), respectively, such that 

(4.2a) A(OJa(t), ~(t) ) = a(O]~(t),/~(t)>, 

(4.2b) B(t)la(t), ~(t)} = ~(t)l~(t), ~(t)}. 

Therefore, from eqs. (2.8a) and (2.9a) after some calculations we find 

(4.3a) {~(t)ll/4exp[-l(~(t)2-Fl~,2)]. 
 o(x, t)  = 

�9 exp * ~2-~)  Ix - ~(t)) 2 + ~(t) ~ (x �9 

. exp [~ [(x - ~(t)) ~(t)  + ~(t)]] , 

(19 W. H. LOUISELL: Quantum Statistical Properties of Radiation (John Wiley & Sons 
Inc., New York, N.Y., 1973). 
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where x is given from eq. (2.2) and ~(t) is an arbitrary time-dependent phase 
factor adjusted to have the form 

t 

(4.3b) #~(t)=J[E~(t)~(t)-l(t~2(t)~(t)-~(t))]dt, 
similarly for the operator B we just replace X and ~ by y and/~, respectively, in 
eqs. (4.3a, b). Then the wave function in a coherent state is 

(4.4a) ~ ( q l ,  q2, t) = ~--~-) exp - 

[ 1( . �9 exp - ~(t) + ~ 2 - ~ )  [(q~ + q~) + (~(t) + ~(t)) - 

-- 2ql (~x (t) cosf(t) + ~y (t) sinf(t)) -- 2q2 (~y (t) cosf(t) -- ~ (t) sinf(t))]] �9 

i - 
�9 exp [~ [ql(~(t)cosf(t)+ }y(t)sinf(t))+ q~(~y(t)cosf(t)- ~x(t)sinf(t))] t - 

�9 exp [~/2-~--~ [ql(~(t)cosf(t)+~(t)sinf(t))+q~(~(t)cosf(t)--~(t)sinf(t))]] �9 

where 

(4.4b) 
t 

0 

L is the operator (d~/dt2 + t~2(t)) and 

(4.4c) ~(t) = ~(0) exp [ -  iv(t)], fl(t) = fl(0) exp [ -  iv(t)]. 

The coherent states are not orthogonal but form an overcomplete system of 
states. Therefore, we may calculate the Green's function using the following 
relation: 

(4.5) G(x, xo,t) =1 f f ~(x,t)~*(xo,O)d(Re~)d(Ima). 
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Substituting eq. (4.3a) into (4.5) we have 

(4.6) 

M. SEBAWE ABDALLA 

=L (=h)~ J exp 1 [ "t" .t~(t)~ 

_f f exp [ -  2 (a2(0) exp [ -  2iv(t)] + a*2(0)) - ,~'2 ] �9 

�9 exp ~(O)exp[-iv( t)]~-~(ht-~)(x-~(t))+~*(O)~xo]d(Re~)d(Im~).  

The integral in eq. (4.6) can be evaluated as follows. Let 

~(0) -- a + ib, ~*(0) = a - ib. 

Thus 

(4.7a) 

where 

~ 1 2 Yo)]J I= _f _! exp [--~[a (3 + exp [ -2 i~] ) -2a(y+ �9 

�9 exp [ - 1  [b2(1- exp [ - 2iv])-2ib(a(exp[-2iv]-1)+ (y-~,o))]]dadb, 

. 2~( t ) ,  f~/_~ ~ 
(4.7b) ~,---exp[-zv/" ~ / - ~ ( x - ~ ( t ) ) ,  yo= Y n - -  " 

By using the identity 

(4.8) f exp [ -  z2] dv = v~, 

then the result of integration is 

(4.9) i - 
~/2 sin v(t) 

[ 1 [~oexp [- 2i~]- 2yoy + ~ ]] 
- -  exPL-~ L ~e-~pV-2-~T~ ; 
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substituting eq. (4.9) into eq. (4.6) we find 

(4.10) G(x, Xo, t) = (2r:hs(t)) -1/2. 

" exP [ 2~s(t) [r(t) ~ + v(t) x2 - 2XXo + 2-~(t) xo + 2(s(t) ~( t )  - v(t)-~(t) ) x]] . 

It  is easy to realize that  eq. (4.10) is exactly eq. (3.2a). In the previous 
calculations we have set 

(4.11) 1 [ fi(t) ctg v(t)) ~ (t) ~(t) = ~(t)  ~=(t) + -~/2--- ~ - ~(t) 

and to establish this one needs to evaluate the integral in eq. (4.3b) which can be 
done with aid of eq. (2.7b). Similarly we can find G(y, Yo, t) and this leads to the 
Green's function (3.3a). 

5.  - T h e  w a v e  f u n c t i o n  f o r  p s e u d o s t a t i o n a r y  s t a t e s .  

In this section we shall consider the solution in the Schr0dinger picture to find 
the pseudostationary states. The wave function in Schriidinger representation is 
given by 

(5.1) H(t) I+(t)> = ih~t I+(t)> 

from eq. (1.5) and (5.1). Thus 

a2~b ~2~b t~2(t) 

(5.2) ~l+~q--y h2 ( +) �9 )~(t) 8~b _ q2 
- -  (q21 + q~) + - i - i f -  q 1 - ~ 2  + 

- 2i 8~ 
+ (El(t) ql+E2(t)q2)~= h St" 

In order to find the solution of eq. (5.2) we shall use the transformation given by 
eq. (2.2), therefore we need 

(5.8) 

Thus 

(5.4a) 

19 - I1 Nuovo Cimento B, 

~b(ql, q2, t)  - -  r  y ,  t)  . 

~ ar  ~r 3q~ - 8x + ~-~ sinf(t), 
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3r 3r 3r 
(5.4b) 3~  - 3y cosf( t ) -~-~sinf( t ) ,  

(5.4c) 
3~ 3r ~,.,/ 3r 

Substituting eqs. (2.2), (5.3) and (5.4) into eq. (5.2), we have 

32r 32r ~2(t) 2 - 
(5.5) t- 3x 2 3Y 2 h 2 (x 2 + y2) r + (xE~ + yEy) r = 2i 3r 

h 3 t '  

where E~ and Ey are given in eqs. (2.4a), (2.4b). 
Now let 

(5.6) r y, t) = el(X, t) r t).  

Then eq. (5.5) can be reduced to 

(5.7a) 32r 1 ~2(t) 2 _ E~.  h 2 i  3r 
3X 2 ~'~ X r  - ~ -{-Y(t)r 1 

and 

(5.7b) 32r D2(t) Ey - 2i 3r v(t) r 
8Y 2 h 2 y2 r + 2y-~- r h 3t 

where v(t) is a constant of separation which depends on time. To obtain a solution 
of eq. (5.7a) we shall introduce the following transformation: 

(5.8) x -  u + ~ ( t ) ,  
V.(t )  

~(t)  and ~(t) are given by eqs. (2.7b) and (2.7e), respectively. From eqs. (5.8) and 
(5.7a) we find 

(5.9) 
32"~-1 , 2i r ~t(t)., ~x(t)] 32~1 ~2(t) r 2 - 

3u 2 3u 

2 E~ t~2(t) 
+ ~ ( u  + ~At)) r h2~2(t) - -  ~2(t) ~1-- - - 2 i  3~1 Y(t)-- 

with r t) - r t). 
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By using eqs. (2.7b) and (2.7e) we can write the general solution of eq. (5.9) as 
follows: 

(5.10) r 2-~/2(n!)-l/2H, e x p - l u 2 / h .  

[ - i [  t~(t) 2 ~ u\Texp[_i[n+ l~(t)].  
u JJ 

�9 exp [~/[E~(t)~x(t ) -  1 (t~2(t)~(t)- ~ (t)) - h2;(t)] dt] .  

Then the solution of eq. (5.7a) is of the form 

�9 exp [ - ~ h  (~(t)+ i ~(t2~(t))(x--~(t))~+h(x--~x(t))~(t) ] �9 

�9 exp[-i(n+l)v(t)+~(3~(t)--~Jv(t)dt)J,h2/" "'~ 

~(t) is given by eq. (4.3b). 
Solution of eq. (5.7b) can be obtained directly from eq. (5.11) by replacing x, n 

and ~ by y, m and -~,  respectively. Then, on reverting to the physical 
coordinates, the solution of eq. (5.2) becomes 

(~( t )~  1/2 2 -(n+m)/2 (nT mi)-1/2. (5.12) +~(q~, q2, t) = \--~-) . . 

H [ / ~ "  ~(t))] �9 n[~-~-[qxcosf(t)-q~sinf(t)- �9 

. H~ [ ~ ( q~ cos f( t ) + q~ sin f( t) - -~y ( t ) ) ] . 

[ 1 (~  i~(t)~ �9 exp - ~-~ (t) + 2--~] [(ql~ + q~) + (~(t) + ~(t)) - 
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- 2ql (~ (t) cosf(t) + ~y (t) sin (t)) - 2q~(~y(t) cosf(t) - ~ (t) sinf(t))]] �9 

�9 exp[~[ql(~(t)cosf(t) + ~y(t)sinf(t))+ q2(~y(t)cosigt)- ~(t)  sinf(t))] 1 �9 

.exp[-i(n+m+l)~(t)+~(t)] .  

For  more details of the technique which we have used see ref. C'1~). To find the 
connection between the wave function in SchrSdinger representation and the 
quasi-coherent states, one can expand eq. (4.4a) in a power series of ~ and/~, and 
then use eq. (5.12). Thus 

[ 1 (]~r 1812)] ~ ~ ~%t)~(t) ~m(ql, q2, t). (5.13) r (ql, q2, t) = exp - -~ n~0 ~0 ~ . v  m! 

Equation (5.13) can be compared with eq. (4.2) of ref. (1) and eq. (12) of ref. Cs). 

6 .  - D i s c u s s i o n .  

In this paper we have considered the problem of a charged particle in a 
variable magnetic field together with an external electric field. The problem has 
been reduced to uncoupled form with the same variable frequencies by means of 
the canonical transformation (2.2). This leads to a situation in which we can use 
the technique presented in ref. (1,12) for finding the solution of the I-Ieisenberg 
equations of motion. Also we have calculated the Green's function by using two 
different methods. Our first method was to use the solution in Heisenberg 
picture and then apply the technique in ref. (12,15). Our second method was to 
construct two pairs of Boson operators leading to coherent states, and then by 
using the properties of these states we calculated the Green's function. We 
should like to point out that  these operators can be obtained from the wave 
function in the Schriidinger representation by differentiating the exponential 
term in eq. (5.12) and adjusting the result of the differentiation to obtain the 
accurate result (see ref. (12) for more details). Alternatively, we can proceed by 
finding a quadratic invariant for the Hamiltonian (1.5), as described in ref. C1). 

Also these operators can be obtained from a suitable linear combination of the 
solutions in the Heisenberg picture equation (2.5). Finally we have presented the 
exact solution in the Schr6dinger representation and connected it up with the 

(is) V. V. DODONOV and V. I. MAN'KO: Phys. Rev. A, 20, 550 (1979). 
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quasi-coherent s tates to show the correctness of our calculations. We regard  this 
work as an extension of that  presented in refi (13). 

* * *  

The author  is grateful  to Dr. R. K. Colegrave for his comments. 

�9 R I A S S U N T O  (*) 

Si presenta un nuovo proeedimento per l'evoluzione nel tempo di un oscillatore carieo 
fissato sotto l'azione combinata di campi elettrici e magnetici specificati arbitrariamente. 
Le equazioni di moto di Heisenberg sono state risolte e gli stati quasi coerenti sono 
utilizzati per calcolare la funzione di Green. Si esamina anche la connessione tra le funzioni 
d'onda di Schr6dinger di stati pseudostazionari e quasi coerenti. La matrice di densith di 
Bloch ~ calcolata in un caso speciale. 

(*) Traduzione a cura della Redazione. 

38p~L~eHHb~ rapMOHHqecKHI~ OCRHJL~RTOp B ~pHCyTCTBHH 3~eKTp~ecKHX H Marm~TablX 
n o a e ~ .  

Pe3mMe (*). - -  Ilpeaaa~raeTca nonoe paccuoTperme apeMeHHO~ aaoaio~rm 
qbriKCrlpoBam~oro 3ap~Kemloro oclam~I~tropa npH KOM6mmpo~aHnOM BaalIMO~eI~ICTBHkl 
3YlCKTpHHeCKHX H MaFHItTHbIX noJlel~I. Pema~oTca ypaBHeHr~ ~BrDKeHrI,q Fa~iaen6epra H 
HCrlO~Bay~OTC~I rmaanKOrepeHTHBie COCTOaHr~ ~f l  Bt,I'qHc~eHH,q q b ~ m 4  FpHHa,]VI~I TaK~e 
accaeayeM CBZ3b Memay BOaHORbtmi qbyHKmmMH IIIpearrHrepa B c~yqae ncenao- 
CTaIaIOHapHOCTrt H KBa3aKorepenrH~IX COCTO~mr~. B qaCTHOM cnyqae B~Iq~icaaeTca 
MaTpnaa rtaOTHOCTn Baoxa. 

(*) Hepe~eOeno peOaKt~uea. 


