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Summary. — A new treatment is presented for the time evolution of a fixed
charged oscillator under the combined action of arbitrarily specified electric
and magnetic fields. The Heisenberg equations of motion have been solved
and quasi-coherent states are utilized to caleulate the Green’s function. We
also examine the connection between the Schridinger wave functions of
pseudostationary and quasi-coherent states. The Bloch density matrix is
calculated in a special case.

PACS 03.65 — Quantum theory; quantum mechanics.

1. - Introduction.

In a previous communication (*) we have considered the problem of a two-
dimensional harmonic oscillator with arbitrary time-dependent coupling. In the
present paper we turn our attention to the more fundamental problem of a three-
dimensional charged oscillator (a simple model of an atom) under the combined
action of arbitrary electric and magnetic fields. This is obviously of interest in
quantum optics (**) and also in electromagnetic theory (). In recent years much

() M. S. ABDALLA: Phys. Rev. A, 35, 4160 (1987).
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() M. S. ABDALLA, S. S. HASSAN and A. S. F. OBADA: Phys. Rev. A, 34, 4869 (1986).
() R. K. COLEGRAVE and A. VAHABPOUR-ROUNDSARL: Opt. Acta, 33, 645 (1986).

() J. D. JACKSON: Classical Electrodynamics (John Wiley & Sons Inc., New York,
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effort has been devoted to finding an exact solution of the Green’s function for a
system with constant magnetic field (*®) either by using a semi-classical method
or by formally using a Feynman path integral approach (®) and this of course
leads to the Bloch density matrix (¥). In the present paper we shall treat the
problem of finding the propagator for a charged particle from a quantum-
mechanical viewpoint in a more general case when the magnetic field is time
dependent and in addition an external electric field is present. Also we shall
consider the Boson operators for this system and the connection with the Green’s
function. Our starting point is the Lagrangian for a charged particle of charge e
and unit mass in a variable magnetic field SZ(f) in the z-direction which has the
form

1.1) L=

DO | =

[Zf (@ — 2D+ A1 G2~ @2 (21)] ;

where w; (1=1,2,3) are, respectively, the frequencies along the x, y and 2
directions and A(f) =eJF(t)/C is the time-dependent Larmor frequency. The
Hamiltonian for this system is obtained from

(1.2) H(p,q.0=552 4~ L@, 4.
From eqs. (1.1) and (1.2) we find that

1.3) H(p,q,0)= %23 (P2 + Q%) ¢®) — A@)/2)(q1 p2 — @200 »

NI
Q,(t)— w,z+ 4 .

In the presence of the external electric field the Hamiltonian becomes

where

0 Hp,g0=33 01008 2002060 0,

where E;(t) is an arbitrary function of the time.

(O B. K. CHENG: J. Phys. A, 17, 819 (1984).

(® I. M. Davies: J. Phys. A, 8, 2737 (1985).

(® R.P. FEYNMAN and A. R. HiBBS: Quantum Mechanics and Path Integral (McGraw
Hill, New York, N.Y., 1965).

(% J. M. MANAYAN: J. Phys. A, 19, 3013 (1986).
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Since we can separate the motion in z-direction, therefore without loss of
generality we can drop the terms in this direction, and by restricting ourselves in
the present paper to the case w; = w; = w, then eq. (1.4) can be written in the
form

1.5 H@b)= %[(p% +pB) + QG + D] -

t
- [A-(Z—) (@102 —P1q2) + E1(£) g1 + Ex(D) QZ] .

In the absence of the external electric field eq. (1.5) is exactly eq. (92) of ref. (%)
and eq. (1) of ref. (**). Our intention in the following sections of this paper is to
give an exact solution for the Heisenberg equations of motion in sect. 2, followed
by the Green’s function in sect. 3. In sect. 4 we use the Boson operators to find
the quasi-coherent states and to give an alternative derivation of the Green’s
function. In sect. 5 we give an exact solution for the Schrédinger equation and
the connection to the quasi-coherent states. Finally we give a discussion.

2. — The equations of motion and their solution.

In this section, we shall consider the solution in the Heisenberg picture of
quantum mechanics. For the Hamiltonian given by eq. (1.5) we have

@.10) 9(1%1=p1+¥qu,
(2.1b) %= -0 q + %pz +E\@®),
2.1¢) %=p2—¥q1,
2.1d) —d(% =—Q%t)q,— A(z—t)pl + Ey(0).

In order to solve eqs. (2.1a-d) we introduce the transformation

* cos f{t)  sin f(}) 0 0 z
g2 |_| —sinfid) cosft) 0 0 Y
P 0 0 cos fit)y sinfie) || po |’
P2 0 0 —sin fit)  cos f{X) Dy

() H. R. LEwis and W. B. RIESENFELD: J. Math. Phys. (N.Y.), 10, 1458 (1969).
(*) M. S. ABDALLA: Phys. Rev. A, 37, 4026 (1988).
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where
106 .
2.2) fit) = Eof Ad)di.

From egs. (2.1) and (2.2) we find

do

(2.3(1/) a‘ =Px>
dp. 2
(2.3b) T QN x+ E, ),
dy
2.3¢) a =Py
dp, )
(2.3d) _(F= -’y +E,Q@).

E. () and E,(?) are
(2.4a) E.() =E () cosf(t) — E4(t) sinf(t),
(2.4b) E,(t) = Ey(t) cosf(t) + E () sinf(?).

Following the technique used in ref. () and after some minor algebra the result
in physical coordinates and momenta is

2.5a) q1(0) =r(®)[q:(0) cosf(t) + ¢2(0) sinf(H)] +
+ s(®)[p1(0) cosf(t) + p2(0) sinf(t)] + [£,(t) cosf) + &, (D) sinf@®)],

(2.5b)  ¢2(t) = r(®)[g2(0) cosf(?) — . (0) sinf(®)] +
+s(D[p2(0) cosf(t) — p1(0) sinf(t)] + [&,(2) cosf(t) — &:(t) sinf(®)],

2.5¢)  pi(t) =v®)[p:(0) cosf(t) + ps(0) sinf(#)] +
+w(®)[q1(0) cosf(E) + g2(0) sinf(B)] + [£,(8) cosf(t) + £,(8) sinf(®)],

2.5d)  pa(t) = v()[p2(0) cosf(t) — p:(0) sinf(t)] +
+ w(®)[ ¢2(0) cos () — ¢:(0) sinf®)] + [£,(t) cosf(t) — &, () sinf(t)],

(*) M. S. ABDALLA: Phys. Rev. A, 34, 4598 (1986).
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where

(2.6a) 7(t) = /ﬁ% cosy(t) + M sin n(?),
# u(t) u(0)

©.6b) sy = S

w(8) 2(0)

(2.6¢) v(t) = ff(% cosn(t) — M sin n(f)
# u(®)u(0)

and

e (i@ [0 [0 )
(2.6d) w“)‘[ ) (2;«0)) V@ (mt))] cos (%

(EO)/2u)(@0)/240) | .
— Vu(®)u(0) [1 + 0 0) ] sinn(),

while

2.70) 0= [udi,

@.70) V@) &) = &1 = [I(t) — I(0)) sinn(®) — (1) — I(0)) cosn(H)],

E.®

2.7¢) Ii(t) = |—— cosn(H)dt,

Vu(®)
@.7d) Lo=| O inntyat

w(®)
and p(?) is given by
1 . 1

2.7 t)=——, D+P ) = —.
2.7e) w(t) 0 60 + (D)o (B) )

Equation (2.7¢) is a nonlinear differential equation and has a solution presented
in ref. (), see also ref. (*¥) for the physical interpretation. From eqs. (2.5) it is
easy to check that the commutation relations [g;, p;] = thd; hold.

() C. J. ELIEZER and A. GRAY: Siam J. Appl. Math., 30, 463 (1976).
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Now let us define the following pairs of operators A and B such that

(2.80) A(t) = @hap(t)™ [(y(t)ﬂ 5 (t)) (1 cosft) — gzsinfit)) +

+ (1 cos ft) — pasinfit)) — K, (t)] ,

&(®)
2.8) K.()=E() (u(t)+ Ex(t))

(2.90)  B@®) = (2au®)? [(#(t) +1 (g2cosf(t) + i sinfiD)) +

50)

+ 'L(pz COSﬂt) + D1 Slnﬂt)) - Ky (t):l )

£,(
@.9b) K,®)=E,@ (y(t) izt t)>

since these operators and their adjoints satisfy the canonical relations

2.10) [A,AT1=1=[B,B'].
Then

AT Alnc), m()) = nln(®), m®) n=0,1,2,..,
(2.11)

B B|n(t), m(t)) = m |n(®), m@®)), m=0,1,2,....

By using eqs. (2.5a-d), we may write the expressions for the expectation values
of the potential energy V(f), the kinetic energy T(f) and the Hamiltonian H(?)
with respect to the states |#,m). Thus

@120) (V) =R+ m+ @O +5E0O+ T 20,

(%)

@125)  (T) =2 +m+Du® [ %) + (2 )

) +IE@Eo+T0),

_h - u(t)
@120 (H®)=5@+m+ Dy (t)[,ﬁ dt(z (t)) +F(Q),
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where

FH= —;-[?2 O+ 220 + (@D, O + 2O D) E, () + @D EM) ~ AD E, B EO)].

3. — Green’s function.

Having solved the problem in the Heisenberg picture, we are in position to
construct the Green’s function and the corresponding Bloch density matrix for
the system given by Hamiltonian (1.5).

From eqs. (2.5a-d) and by using the transformation in eq. (2.2) we obtain

3.1a) () = (&) 2(0) + $) P, (0) + E;(8),
(3.10) Pa(®) = (1) . (0) + w(t) 2(0) + E,(1).

Following the technique presented in ref. (****) we find that
(8.2a) G(z,x,,t) = (2xh|s(t)|) 12
i

- exp [27:3(5 [r(t) 2% + v(t) 2% — 2xx, + 2Z,(£) 20 + 2(s(F) 'Ex &) — £, v@) x]} ,

where x, is given by the equation
3.2b) 2(0) &(x — x9) = X X — ) .
Similarly we can show that

(B.2¢)  G(y,yo,t) = 2rh|s(®)|)"2-

‘exp [z& UL+ 008~ 20+ 2O+ 260 E,(0) ~ o) y]} .

(*) L. F. LANDOVITZ, A. M. LEVINE, E. Oz1ZMIR and W. M. SCHREIBER: J. Chen. Phys,
78, 291 (1983).

(*) M. SARGENT, M. O. ScuLLy and W. E. LAMB: Laser Physics (Addison-Wisley,
Reading, Mass., 1974).
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Then from eqs. (3.2a) and (3.2¢), the Green’s function has the form

B.30)  G(a1, 2 01, Gz, B = hx|s(D)) -
Xp [% ) {rO@% + 7D +vt)gi + gD — 2(T1 1 + Tago) cosf(B) +
+ (g1 G2~ T1g) sinf(®)] + 2[G (. (1) cos () + &, (1) sinf(D)) +
+ 25, (®) cosf(t) — &,(t) sinf(5))] +

+ 201 () E,(8) — v E, (&) cos f(t) + (s(8) gy(t) —v(®) &, (1)) sinf(®) +

+ g (SO E, () — v E, (1) cos f(E) — (5B E () — v E(D) sinf(t))]}] ,

where
(3.3b) q1 = %y cos f(t) + y, sinf(?),
3.3¢) Gz = Yocos f(t) — xo sinf(?).

For the case when the magnetic and the electric fields are constant so that A, E,
and E; are constant eq. (3.3a) assumes the form

3.4a) G(q1 » 42, G1, G2, b= (ﬁﬂls_fimf'—)o -

. _ﬁ_ =2 1 72 2 9 _
P [Zh sinQt [(‘11 + Gz + g + g2) cos (@)

2 [@ ¢+ T2 ) cos (g t) (0T~ Tyao) sin (% t)ﬂ] .

exp [h L U T+hO T+ IO 0 + k(D) qz)] ,

@.4b) U= %[cos b— % sin (Qf) sin (/2 — 6) — cos (Qf) cos (W2t — e)] ,
w

3.4¢c) k()= [sm 6— —/2— sin (Qt) cos (A/2¢ — 6) + cos (Qf) sin (W2t — 0)]
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B.4d) Jit)=-— —[1/2 sin 6 sin (Qt) + cos (Qt) cos 6 — cos (W21 — 0)]
E |2

B.4e) k)= —2[3 cos 9 sin (Qf) — cos (Qt) sin6 — sin (A/2¢ — G)J

and

3.41) E=(E:+ED2 |, o=tg \E,/E,).

To find the Bloch density matrix we just replace t by (— i48) in eq. (3.4a). Thus

(35) C(qh 9z, -(717 729 B) = [‘Q/Zhn sinh (Bh'Q)] *

Q —p | =2 | 9 9 z
-exp|| ———— + G5+ ¢ + ¢3) cosh (BAR) —
p [[ o7 sinh (ﬁhﬁ)} [(ql g3 +qit+q3) @

~2((@0r+ Tog0 cosh (B4) 0y To~ T sinh (352 ||
I
exp [ # sinh (‘Eh!)) (@) G+ B Gz + T (B) g1 + k() qz)] .

In order to find the average energy for this system, we must calculate first
the partition function 2(8) such that

(3.6) 2(8) = f f C(q1, 92, B dqr g, .

—o —c0

By using eq. (3.5) we obtain

(3.7a) «(B)= —F‘I(B) exp [ hgﬁ; tgh( )(xg(ﬁ)l“ 1([3))}
where

(8.7b) I'(B) =sinh [% Q+ /\/2)] sinh [% Q- 1/2)] ,
(3.7¢) x(B) = —E [cosh ('BZQ) cosh (ﬂgl)]

In the absence of an external electric field, we get agreement with eq. (5) of
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ref. (). Since the average energy can be given from the equation (V)
(3.9 (B)=— a% In[2(B)],

we find that
@30) (E) = KON+ 3) =25 Z iy + I cosoen B
(3.90) o(B) = In[42(8) I (B)].

4, — The quasi-coherent states and their relation to the Green’s function.

In this section we shall introduce an alternative method for finding the
Green’s function by first deriving the quasi-coherent states. From the Boson
operators, given by egs. (2.8¢) and (2.9¢), and since these operators and their
adjoints satisfy the canonical relations given by eq. (2.10) on using the
Heisenberg equations (2.5) it easily follows that

4.1) A®)=AQ©) exp[—in(®)] and B(t)=B(0) exp[—in®].

To derive the quasi-coherent states, let « and 2 be the eigenvalues for the
operators A(f) and B(f), respectively, such that

(4.2a) A®)a®), BE)) = al®)|al(®), BD)),
(4.2b) B@®)|a®), A®)) = Bd)|(t), BD)) .

Therefore, from eqs. (2.8a) and (2.9a) after some calculations we find

1/4
4.30) ¢ (x, D)= (%)—) exp [— %(a(t)z + [alz)] .

e - 2u®, <
-exp [— Elﬁ (M(t) + z%) (@ —&@®F +a) -Mh— (- &®) |-

-

e[ L= EOEO +40]

(") W. H. LOUISELL: Quantum Statistical Properties of Radiation (John Wiley & Sons
Inc., New York, N.Y., 1973).
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where « is given from eq. (2.2) and &,(f) is an arbitrary time-dependent phase
factor adjusted to have the form

(4.3b) 0= [E DED-T@DOED-E (i»] di,

similarly for the operator B we just replace x and « by % and 3, respectively, in
eqs. (4.3a,b). Then the wave function in a coherent state is

12
(4.40)  Yulq1,q2, 0= (%?—) exp [— %(a(t)z + B2+ |af? + ]BIZ)] -

- exp[ 1 (u(t) +i ;‘(z)) lit+ g + 20 + B o) ~

— 2, (£,(t) cosft) + &,(2) sinfit)) — 2¢5(E,(t) cosf(t) — &,(t) sinﬂt))]] -

- exp % [0 G, () cosfit) + £, () sinfi) + ga &, @) cosfit) — £.(2) sinﬂt))]] :

L

2
- eXp M(t) —— g1 (a(?) cos f(t) + B(t) sinft)) + ¢2(B(t) cos f(t) — a(t) s1nf(t))]:l

o

@4h) 20 = [[(EOLO+E,OLD) + 2 EO+ED - TLEG + ED),

t _ _ .
";f ) O LD + O, ®) + %a(t)} ,

where

L is the operator (d%dt* + Q%%)) and
(4.4¢) at) = (0) exp[—in()],  B() = B(0) exp[—in(®)].

The coherent states are not orthogonal but form an overcomplete system of
states. Therefore, we may calculate the Green’s function using the following
relation:

@5) Gw,a0,0=2 [ [ 4.0 0,00 dRex) dIma).
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Substituting eq. (4.3a) into (4.5) we have

B u(0) ® -
4.6) G, %, t)= ["(——;)3—] exp[ ((t)+z; (t))(x—sx(t))z]-

© @

| J o] - 3 @@expi-2in01+ 40) -l

-0 —o

[2ut), - 2
- exp I:az(()) exp [— in(®)] iff—) (& = Z, () + 2*(0) “f(lo) wo] d(Re ) d(Ima).

The integral in eq. (4.6) can be evaluated as follows. Let
a0)=a+1ib, «*0)=a—1b.

Thus

@ ©

4.7) I= f J’ exp [— %[az(S +exp[— 2in]) — 2a(y + yO)]] .

—% —o

- exp [— % (621 — exp[— 2in]) — 2ib(alexp[— 2in] — 1) + (v — 70))]] dadb,

where

2u(t - 2u(0
@m  ymepl i\ A2 @-E0),  r= .

By using the identity

4.8) [ expl-+*de=Vx,

then the result of integration is

~ - 1| vdexp[—2in] —2roy+ ¢ |1
4.9) I ___Zsinn(t) exp[ 2[ 1 — exp[— 2ix] H
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substituting eq. (4.9) into eq. (4.6) we find

(4.10) G, xo, t) = (rhs(®)) 12

- exp { 250 [r(®) % + v(®) ? — 2way + 28, (F) 2o + 2(s(t) 20 — v E () x]]

It is easy to realize that eq. (4.10) is exactly eq. (8.2a). In the previous
calculations we have set

(t)

41D LO=LOLO+5 (2 &

@) ctg n(t)) E{U)

and to establish this one needs to evaluate the integral in eq. (4.3b) which can be
done with aid of eq. (2.7b). Similarly we can find G(y, ¥, t) and this leads to the
Green’s function (3.3a).
5. — The wave function for pseudostationary states.

In this section we shall consider the solution in the Schrodinger picture to find

the pseudostationary states. The wave function in Schrédinger representation is
given by

(5.1) H®U)) = zh |<P(t)>

from eq. (1.5) and (5.1). Thus

%y Y _Qz(t) B (t) oY o
(6.2) W+—aq2 (¢ + By (1a—q2 P aq)+
— 97 3
+%(E1(t)‘11+E2(t)‘I2)Sb=_%a_s:~

In order to find the solution of eq. (5.2) we shall use the transformation given by
eq. (2.2), therefore we need

(5'3) Sb(ql’ q27 t) = ¢($, ?I, t) -
Thus

oY % %
(5.4a) a_ql =73z S ) + 3y sinf(?),

19 — Il Nuovo Cimento B.
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3y _ o 3 .
(5.4b) Eq'; = -a—y COSf(t) - % s1nf(t) ’

o 395 o¢
(5.4¢) & =— +ﬂt) ( ax) .

Substituting eqs. (2.2), (6.3) and (5.4) into eq. (5.2), we have

32¢ % Qz(t)

5.5
(5.5 Py %

—92; 3
@+ e+ BaE+yB)s=—E 2,

where E, and E, are given in eqgs. (2.4a), (2.4b).
Now let

(5.6) $(x, Y, 1) = ¢, 1) ga(y, 1) .

Then eq. (5.5) can be reduced to

% Qz(t) —2i 9%
(5.7a) g Tt 2 ¢1=h—1 5 e
and

Ry QA 3
(5.7b) a—;; P2 ) Yo+ 2y h2¢2 —&—E—v(tm,

where () is a constant of separation which depends on time. To obtain a solution
of eq. (5.7a) we shall introduce the following transformation:

(5.8) €= +E&®),

Viu(®)

£,.(t) and u(f) are given by egs. (2.7b) and (2.7e), respectively. From egs. (5.8) and
(5.7a) we find

27 . . . 277 2
59 ° ¢1+%[ B0 ) - E“(t)]a b 0O ey or yulF+

u? 2u(t) ) | du  APu@)
E, QXt) — 23 9%, v(b)-
+2k2 200 @+ &) ¢1— ) —— () 6= P §+p._(5 1

with ¢,(u, ) = ¢,(x, £).
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By using eqs. (2.7b) and (2.7¢) we can write the general solution of eq. (5.9) as
follows:

610 B, b= (“”) 2% )V H, () exp - L]
\/f?

—i(_#0 2____%_ il L )
exp[ 7 < 170 = u)] exp[ z(n+ 2) n(t)]

2V
e [%f [E HELO-L@ORO-FH) - (t)] t]

Then the solution of eq. (5.7a) is of the form

#(t)

(t) 1/4 _

‘exp [ ( O+ g‘%) (@ EOF+Le-L0) m} :

- exp [— z(n + )n(t) +—= (8 ® B v(t) dt>]
8,(t) is given by eq. (4.3b).

Solution of eq. (5.7b) can be obtained directly from eq. (5.11) by replacing x, n
and v by y, m and —v, respectively. Then, on reverting to the physical
coordinates, the solution of eq. (5.2) becomes

5.12)  donl@r, gs, ) = (“( )) B0 (] yt) 2.
b «() . -
-H, T(ql cos f(t) — gz sinf(t) — &,(t)) | -
H w(t) ( . -
“Hu| \ (g2 cos ) + qusinft) - E,®) |

- exp [ ( @®+1 ; ((z)) [(E+d+ED+EWB) -
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— 2¢, (€, (8) cos ft) + &,(D) sin (B)) — 2¢z (&, () cos fit) — &, () sinf(t))]] .
“exp| 1 B ) 0810 + §,0 snf10) + G, D coss) ~ £ 0 sing)] |-

-exp[-— i +m + 1) () + %a(t)].

For more details of the technique which we have used see ref. (***). To find the
connection between the wave function in Schrédinger representation and the
quasi-coherent states, one can expand eq. (4.4a) in a power series of « and 3, and
then use eq. (5.12). Thus

= = (B
(5.13) qua(ql, qz,t)=expl:——%(la|2+ 'ﬂIZ)] Z 2 ()ﬁm()

n=0 m=0

L)bmn(ql » Q2, t) .
n!m!

Equation (5.13) can be compared with eq. (4.2) of ref. (*) and eq. (12) of ref. (*¥).

6. — Discussion.

In this paper we have considered the problem of a charged particle in a
variable magnetic field together with an external electric field. The problem has
been reduced to uncoupled form with the same variable frequencies by means of
the canonical transformation (2.2). This leads to a situation in which we can use
the technique presented in ref. (*2) for finding the solution of the Heisenberg
equations of motion. Also we have calculated the Green’s function by using two
different methods. Our first method was to use the solution in Heisenberg
picture and then apply the technique in ref. (2%). Our second method was to
construct two pairs of Boson operators leading to coherent states, and then by
using the properties of these states we calculated the Green’s function. We
should like to point out that these operators can be obtained from the wave
function in the Schrodinger representation by differentiating the exponential
term in eq. (5.12) and adjusting the result of the differentiation to obtain the
accurate result (see ref. (*?) for more details). Alternatively, we can proceed by
finding a quadratic invariant for the Hamiltonian (1.5), as described in ref. (*).

Also these operators can be obtained from a suitable linear combination of the
solutions in the Heisenberg picture equation (2.5). Finally we have presented the
exact solution in the Schrédinger representation and connected it up with the

(*¥) V. V. DopoNov and V. I. MAN'Ko: Phys. Rev. A, 20, 550 (1979).
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quasi-coherent states to show the correctness of our calculations. We regard this
work as an extension of that presented in ref. ().

ok ook
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® RIASSUNTO (%)

Si presenta un nuovo procedimento per l'evoluzione nel tempo di un oscillatore carico
fissato sotto I'azione combinata di campi elettrici e magnetici specificati arbitrariamente.
Le equazioni di moto di Heisenberg sono state risolte e gli stati quasi coerenti sono
utilizzati per calcolare la funzione di Green. Si esamina anche la connessione tra le funzioni
d’onda di Schrédinger di stati pseudostazionari e quasi coerenti. La matrice di densita di
Bloch & calcolata in un caso speciale.

*) Traduzione a cura della Redazione.

3apsuKeHHbIH TAPMOHMYECKHH OCIMILIATOP B DPHCYTCTBHH 3JIEKTPHIECKMX M MATHMTHBIX
noJjeH.

Pestome (¥). — I'Ipenna‘raeTcsI HOBOE DacCMOTPEHHME BPEMCHHOH  9BOIIOLUH
(pUKCHPOBAaHHOrO 3apssKCHHOIO OCIMULIATOP2 IPY KOMOWHMPOBAHHOM B3aHMOICHCTBHH
JJIEKTPAYECKUX M MAarHUTHBIX nojel. PemaroTcs ypaBHeHust nBu>KeHus IafiseHOGepra u
HCIIOJIB3YIOTCS KBa3UKOTE€PEHTHBIC COCTOAHHS AN BeraucaeHus hyaknyw I'puna, MEl Takxke
MCCIEeNyeM CBA3b MeXAy BONHOBbIMA yEKIMAMu Ipenuarepa B cnydae IceBIo-
CTallMOHAPHOCTH M KBAa3WKOTEPCHTHBIX COCTOSAHHM. B YacTHOM ciyuae BbIMHCIAETCH
maTpHna miotHoctn bioxa.

(*) Ilepeseoeno pedaxuueli.



