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Abstract: The deficiencies of the first threshold Guillou- 
Quisquater signature scheme presented by l.i-San Liu, Cheng- 
Kang Chu and Wen-Guey Tzeng are analysised at first, and 
then a new threshold Guillou-Quisquater signature scheme is 
presented. The new scheme is unforgeable and robust against 
any adaptive adversary if the base Guillou-Quisquater signa- 
ture scheme is unforgeable under the chosen message attack 
and computing the discrete logarithm modulo a prime is hard. 
This scheme can also achieve optimal resilience. However, 
the new scheme does not need the assumption that N is the 
product of two safe primes. The basic signature scheme un- 
derlying the new scheme is exactly Guillou-Quisquater signa 
lure scheme, and the additional strong computation assump 
lion introduced by the first threshold GuillowQuisquater 
scheme is weaken. 
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0 Introduction 

T hreshold signatures are parts of a general approach 
known as threshold cryptography. This approach has 

received considerable attention in the literature; we refer the 

reader to Ref. l-l] for a survey of some of the work in this 

area. 
To present fully novel threshold signature schemes and 

construct new threshold scheme based on well-known digital 
signature schemes, are hot topics in applied cryptography 
field. Many schemes such as threshold Elgamal like, threshold 
DSS and RSA signature schems have already constructed Ee 41. 

In recent years, threshold signature schemes based on other 
widely-spreading signature schemes, e.g. Fiat-FiegeSharnir 
scheme and Guillou-Quisquater scheme, are presented E5 r~. In 

ACNS 2003, the first threshold GQ (Guillou-Quisuater) sig- 
nature scheme based on a variation of GQ scheme is given E~?. 

The scheme presented by Li-San Liu, Cheng-Kang Chu 
and Wen-Guey Tzeng (referred to I.CT-TGQ scheme) EG~ is 
very efficient, but more rigorous assumptions is additionally 
introduced. Thus, some limitations are resulted in. The first 
limitation is due to that LCT-TGQ scheme needs an assump- 
tion that N is the product of two safe primes. Known methods 
to jointly generate an RSA modulus cannot be easily adapted 
to generate a safe prime modulus. Thus, a fully distributed 
construction for LCT-TGQ is more difficult. Note that there 
may be also good reasons to avoid safe primes, other than the 

�9 s ~E2~ distributed key generation ]s:ue . 
The second limitation is that an additional computation 

assumption is introduced. The key generation of basic GQ 
scheme is that randomly select a number r~ Z~(, as the private 
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key, where Z} = {:rl :r ~ ZN, (x, N) = 1 }. In LCT-TGQ 
scheme, the trusted dealer set s--g~ mod N be the main 
secret and hand s~ =g:(~) to player P~ secretly as share. 
Thus, additional assumption like strong RSA assumption 
is needed to achieve security. This assumption is too 
strong and strict. Nevertheless, verifiable secret sharing 
technique is not easy to adapt and the trust for dealer is 

difficult to remove. 
The third is the inaccuracy of applying (t,n) verifia- 

ble secret sharing over integers. In LCT-TGQ scheme, 
the basic build block is INT-JOINT-RVSS protocol, 
which is a variation of Pedersen unconditionally secure 
VSS (Verifiable Secret Sharing) over the integers E<. 
However, due to the truth that each player cannot know 
the order of QN, which is exactly the range of the con- 
stant-term coefficient of f~ Cr), that protocol expands the 
range loosely to l N/4 J - 1 .  It does not fit well and 

has more strictness. 
In this paper, a new threshold GQ signature scheme 

is contributed. We firstly construct several building 
blocks for our purpose. Then, we provide the first ro- 
bust threshold version signature scheme based on original 
GQ scheme E< . The scheme can withstand the limitations 
of LCT-TGQ scheme. Nevertheless, our threshold GQ 

solution maintain robustness. 
Our communication model is composed of a set of n 

players P 1 , " ' ,  P, who can be modeled by polynomial- 
time randomized Turing machines. They are connected 
by a complete network of private (i. e. untappable) 
point-to-point channels. In addition, the players have ac- 
cess to a dedicated broadcast channel. The communica- 
tion channels provide a partially synchronous message 
delivery. We assume that a polynomially bounded static 
or adaptive adversary can corrupt up to t of the n players 
in the network. 

1 Building Blocks 

1.1 New Revisited Pedersen VSS Protocol 
The idea of the protocol is first suggested by M. 

Abdalla E52 and applied to robust threshold FFS 
scheme [73 . 

Initial parameters: Two large primes p and q are 
generated and N = pq. Another large prime P such that 
P = a : N + I  for some positive integer ~c is generated, and 
g,h E Z; = { 1 , 2 , " ' ,  P -  1 } are two generators of order 
N. It is assumed that the discrete logarithm of h with re- 

spect to g is unknown to each party. 
Let secret a~  ZN. Let P 1 , " ' , P , ,  be n parties, and 

t is the threshold. Let L=n! and L * =L  1 rood N. 
@ Shares distribution: The dealer chooses two ran- 

dom polynomials fCr)=ao +< x + ' "  q - a ~  and g ( x ) =  

bo + b l x + ' " + b , ~ " ,  where ao = a  and al ," ' ,a,  ;bo ,bl, 
�9 " ,b, E ZN, a,, b, :r O. Then secretly transmits to each 

party Pi his shares s i=f( i )mod N and ti =g ( i )mod  N 

respectively. The dealer also publishes yk--g%~k rood P 

where k=0,1 ,2 , . . .  ,t. 
@ Shares verification: Each party Pi verifies its 

l .k 

shares as. g~,h', ~- H y k '  rood P. If the verification is 
k=o 

not passed, then Ps broadcasts a complaint to the dealer. 
When the complaints are more than t + l ,  then dealer is 
disqualified. Otherwise, dealer must broadcast the cor- 

rect shares satisfied with the verification equation. 

@ Secret reconstruction: Each party shows its 
shares and verifies them with the verification equations. 
Let{s/, , '" ,s i , ,  } is t + l  correct shares and A = {ii , ' " ,  

i,+1}. They calculate L~--  H ( -  j ) ( L / H  ( i - -  
j~A\{i} jGA\{i} 

j ) ) .  Then the secret a can be reconstructed by interpola- 

tion: a = ~-],s~LiL ~ rood N. 
i~A 

We denote the shares distribution of new revisited 

Pedersen VSS as NVSS(a, bo ) [g , h ] ~  ( si , ti ) ( yo , ' " ,  
y,). And we denote the corresponding joint-random se- 
cret sharing version as JR-NVSS(rl , ' " ,  r,) ~ ~ r where 
ri is Pi ' s  share for random secret rE RZN\{0} . 
1.2 Two Term Distributed Multiplication Protocol 

Using the new VSS protocol, NVSS, in place of the 
protocol E~~ PedVSS, we get a new two term distributed 
multiplication protocol for our purpose. We denote the 
two term distributed multiplication protocol as NDM 
({Ai }, {Bi }) ~ -~ ({ C/})  where (7, is Pi's  share for the 
product of secrets A and B. 
1.3 Multiple Term Distributed Multiplication Protocol 

Assumed K secrets & ,  A2,'", AK E ZN are shared 
securely as the protocol in section 1.1, R k is the random 

companion secret of Ak : 
NVSS(& ,R k ) I-g, hi ~ ( & , ,  R~ ) (EA~, ..., EA~ ), 

where Ak,,R~ are the shares of party Pg, EA~ = gA~h1? 

rood P,and EA~ =g/',h% rood P, a2 and bj are randomly 
selected from ZN ,for j ~  {1,2,"',t} and k~ {1,2,'",K}. 

Each party Pr executes the following VSSs, 
where R~ e , R~ are the random companion secrets. < > 
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means that the variable can be locally computed by the 
recievers,or it has been sent before. 

,E  1 N V S S ( & , , R ~ ) [ g , h ~ ( U ~  4,R~.j)((VA~.)  U,1, 
�9 ..,EUL ) 

z,j E 2 N V S S ( A 2 . , R ~ ) [ g , h ~ ( ~  4 , R ~  ) ( (VA2. , )  U~,~, 
...,EUL) 
NVSS(Ae, ,R~ ~ )[VA ~,, hi--* ((~,j),R~.} ) (EW~,o ,. . . ,  

N VSS( A e., R} ) ~ g, h ~-+ (Uf.,, R5,j ) (( VAe., ) E U~,I, 
...,EUL) 
NVSS(& ) [-<EWL 1 ) ,hi 
-~ ((U~.~), R~j ) ( EW}.o, "", EWe., ) where k = 3 , ' " ,  K 

K K K--I K 

NVSS II  , + E IV II  + ) 
k = l  k=2 k=2 /=k+l  

�9 [-g,h-] -+ (C/,j ,Ri,j ) ( <EW~o >, EC,1 , ~ 1 7 6  E C i , t  ). 
In aboveVSSs,U! R I , C , j  Ri4 andU~ ,R~,j t,J ' i,J ' t , j  , 

R~j ,k~ {2,"" ,K} ,are the subshares of party Pj. VA~.i 

=ga,,,hR,* mod P, k ~  {1 , ' " ,K} ,  EWe,,0 =(VA, . , )  a~., 

h R~* mod P,EW~o =(EW. k--a )A'"hR~' rood P , k ~  {3, ' " ,  
, i,0 

E k , , K} ,and Ui,a=g",~h~*., mod P, k~{1, . . . ,K} EV~,a 
= (VA~.i)~e.~ h ~'~ rood P , EW},a = (EWk~ ~ )~" h"*~ 
rood P , k ~  {3, "" ,K}, where Ue,a ,Ve.d ,We.a and me.a are 
randomly selected from ZN for d ~  {1,2, "" ,t}. EC~.u = 
F,h ~ rood P, where ca and Zd are randomly selected 
from ZN for d ~  { 1,2,... ,  t}. 

@ Each party Pj verifies: 

gV,!.,h~],, =-- Val,i I ~  EUI'ljl mod P 
l=1 

Ue Re I I  g - h  ,., --= VAe,I EU~.z / rood P 
/=1 

VAI.U~,h~.e, = ~ I  EWe.,/mod P 
l=0 

gq.,h I 5., V&,, IC[ * / EUi.z mod P 
l = l  

Eur~-~ uk n EWe./' "i,o ,,,.LRa,,, = mod P 
l=0 

where k = 3 , ' " , K  
gO.hi% =- EW~o mod P 

If verification is failed, then Pj broadcasts a complaint to 
[10~ P~, and the subprotocol DisQualification is performed. 

@ Let I is qualified set and III II >~Kt+l  Each 
party Pj calculates. 

Sj  = E)ti,iCi,jmod N 
i ~ l  

Rj = ~-~fl/,IR~,jmod N 
i ~ l  

ESt = HEC~.a' , 'mod P,I = O,'",t 
i E l  

where ECi,o = EW~o. 
We denote the multiple term distributed multiplica- 

tion protocol as MDM( {A,. }, k = 1, ..., K) -- . ({ S~ }) 
where & is P~ 's share for the product of secrets A1 ,Ae, 

' ' ~  , A K .  

2 Proposed Robust Threshold GQ Sig- 
nature Scheme 

{N;P,g,h} is generated as the new revisited Ped- 
ersen VSS protocol. A tuple (t, n) is selected properly. 
A secure hash function H. {0,1} ~ -*ZN is chosen. The 
trusted center publishes {N; t ,n;P,g ,h;H( .  )}. 

2.1 Key Generation 
The key generation is also executed by the trusted 

key distribution center. Note that these steps in key gen- 

eration phrase is just like the basic GQ signature scheme. 
It selects a secure exponent e~ ZN \ { 0 }, ( e, ( p -  1 ) ( q -  
1)) = 1. Randomly selects a secret a ~ Z~ as the private 
key. It then calculates values v where v =  a -~ rood N. 
Public key is v. The trusted center distributes the secret 

values a by running: NVSS (a, bo ) I-g, h ] ~ ( si, ti ) ( yo, 
' " ,y , ) .  As a result, each partial signer Ps gets his share 
s~ for secret a. 

2.2 Signature Generation 
Assumed m is the message to be signed. 

@ All parties jointly run the protocol JR-NVSS to 
create a joint-random verifiable secret sharing for r~RZN\ 
{0}. JR-NVSS(rl , ' " , r , ) ,  ~r. The shares is rl ,"',r,. 

�9 All parties run distributed multiplication protocol 
to securely share the product R = / m o d  N as following. 

If n>~ ( e +  1) t +  1, then run e-term multiplication 
protocol. MDM( { rl }, k = 1,..., e) -- "( { R~ } ). 

Otherwise, if n>~2t+ 1, let public value e - - ( 0 , " ' ,  
O,l ,<,e2 , ' " ,eK,  1 K ~ , 1 ) = 2  K2+2K2+l< + ' " +  
2K, leK, j ~e+2 K' ,KI-I>K2>~O,ekE{O,1}. First- 
ly, the protocol MDM({FI} {ri})-" ; ( '  (e) , /r~ }) recurs K1 

(2) is ith-share for r e and eventually re- times, where r~ 

suit in secure sharing rS ' .  Then noninteratively iterate 
the two term multiplication protocol in this order �9 the 

initial state is {O1 ~ ri-(~2) } ; from k = l  to K I - l - K 2 ,  

if ek = 0, no need to do anything but resist current sha- 

ring state {O(k)~ = ~o(k-l>}; when ek = 1, perform 

MDM({~k-1)} , (e~ ~) ~ ,~ . ,/ri })"-~({O~,k)}), whererl e~ '~s 
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ith-share for internal secret r 2 ~ '  and generated in former 
recursion phrase. Finally, all parties perform 

~2~' ~ } ) ( { Ri }) and securely MDM({~K~ ~ K~}, {r~ *-* 

share the product R- - /mod  N. 
@ Each party P~ publishes R~ mod N and its dual 

share. The correctness of the published shares can be 
verified by every party. Now R - - / m o d  N can be inter- 
polated by any t-]-I correct shares. 

@ Every party calculates u = S ( m  II R),where [1 
denotes concatenation. Just like @, all parties perform 
the multiplication protocols to distributedly share the 
product a" mod N by replacing e and r. 

@ All parties run two term distributed multiplica- 
tion protocol to create shares for the product r �9 a" mod 
N, where a"mod N is shared by @. Note the shares for 
the final product by {t~ }. 

@ Each party P~ publishes t~mod N and its dual 
share. The correctness of the published shares can be 
verified by every party. Now s = r  �9 a " m o d  N can be in- 
terpolated by any t §  1 correct shares. The signature for 
m is (u,s). 

3 Discussion 

As discussed in Ref. ]-10], our distributed multipli- 
cation protocols are robust and secure. The scheme pres- 
ented above can be proved secure and unforgeable by 
standardly constructing simulated protocols. Due to space 
limitation, the security analysis and proof are omitted. 

Thereom 1 If the basic underlying GQ signature 
scheme is unforgeable under the adaptive chosen message 
attack, and the discrete logarithm of h with respect to g is 
unknown to each party, then the proposed new threshold 
GQ signature scheme is unforgeable and robust against the 
adaptive adversary who corrupts up to t players. 

4 Conclusion 

We propose a novel robust threshold GQ signature 
scheme. This is the first robust threshold version of the 

original GQ signature scheme. 
The distributed multiplication protocols are the main 

techniques. Our scheme still needs the trusted dealer. 
However, because our scheme is exactly designed to the 
basic GQ scheme, the technique for fully distributed con- 
strction of RSA signature scheme is feasibly adapted to 
devise a fully distributed version threshold GQ scheme 
without trusted dealer. We remain this problem as a fur- 
ther research subject. 
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