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Summary. - -  Propagation of an electromagnetic wave in the field of gravitational 
waves is considered. Attention is given to the principal difference between the 
electromagnetic wave propagation in the field of random gravitational waves and 
the electromagnetic wave propagation in a medium with a randomly- 
inhomogeneous refraction index. It is shown that in the case of the gravitational 
wave field the phase shift of an electromagnetic wave does not increase with 
distance. The capability of space radio interferometry to detect relic gravitational 
waves as well as gravitational wave bursts of noncosmological origin is analysed. 

PACS. 98.80 - Cosmology. 

1. - Introduction. 

One of the main tasks of observational cosmology is to get information about 
possible existence in space of primordial gravitational waves (PGWs) generated at the 
very first instants of Universe expansion. Since PGWs are extremely weakly 
interacting with the matter they carry direct data about the birth of the Universe. 

Much has been written about the problem of PGW detection (see e.g. [1-16]). Most 
informative--with respect of PGW detection--are the processes of their interaction 
with electromagnetic radiation. This paper is devoted to a thorough analysis of these 
processes and to assessing a possibility to detect PGWs with VLBI space radio 
interferometry. 

(*) Permanent address: Space Research Institute, Moscow, USSR. 
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The paper discusses how gravitational waves affect the propagation of 
electromagnetic radiation from remote astrophysical sources and from active 
generators in the solar system. 

Section 2 presents the exact solution of Maxwell equations in the field of the 
monochromatic flat gravitational wave for the first order of its amplitude and for the 
large ratio of electromagnetic-to-gravitational wave frequencies. To compare this 
problem with that of electromagnetic-wave propagation in a medium whose refraction 
index differs from unity, an effective refraction index is introduced which corresponds 
to the gravitational wave. 

The results derived in sect. 2 are used in sect. 3 to calculate the dispersion and the 
structure function of electromagnetic radiation phase shift in a random field of 
gravitational waves. The influence of the specific features of gravitational waves (their 
transversity, their propagation velocity equal to the velocity of light) on the 
propagation of the electromagnetic waves have been analysed. The comparison is 
made with the task of electromagnetic wave propagation in randomly inhomogeneous 
media [17,18]. It is shown why for stochastic gravitational waves the distance to the 
source does not enter the solution of the problem. 

Section 4 gives restrictions on the PGW spectrum derived from the future 
observations with the help of space radio interferometry. 

Section 5 compares the capabilities of radio interferometry and pulsar 
timing [10, 19-30] to detect PGWs; PGW wavelength ranges are presented where this 
or that method appears to be most efficient. 

Section 6 briefly discusses some capabilities of space radio interferometry in 
detecting individual gravitational-wave bursts of astrophysical (rather than 
cosmological) origin. A new effect called ,,phase memory), is described. 

In closing (sect. 7) the results obtained are summarized and discussed from the 
viewpoint of future space projects. 

2. - S o l u t i o n  o f  M a x w e l l  equat ion  in a grav i ta t iona l  wave .  

For an arbitrary gravitational wave, with no sources and with the gauge condition 
for electromagnetic field chosen as 

(2.1) Ai;i = O, 

where A ~ is the 4-vector of the electromagnetic field potential, and ,,;>> is the covariant 
derivative (Latin letter indices run the values 0, 1, 2, 3), Maxwell equations reduce to 
the following wave equations [31, 32]: 

(2.2) g~  AJ;i;k = O, i, k = O, 1, 2, 3. 

The metric tensor for a weak field is written as 

(2.3) gik ---- ~ik + hik, gik = Vik _ h~k, 

where v~k = diag(1, - 1, - 1, - 1). Further  on for the first order of h~k the indices are 
raised and lowered using a nonperturbed metric tensor ~ik. Then it follows from (2.2) 
that 

(2.4) O A  j + f_ ,~A m = O, 
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where [] -- - 32/c2 ~t 2 + A, ~ is a conventional Laplacian, the operator L~m is determined 
a s  

(2.5) f , J = - ~ m h  ik 32 + h J k m + ( h ~ k - h ~  j)  ~ 
3 x  i ~ x  k , ~ x  k " 

Equation (2.5) was derived taking into account the gravitational-wave gauge choice: 

(2.6) ~ik _ ~k = 0 Iv ,k - -  Ib k 

and that hik satisfies the wave equation: 

(2.7) [] hik = 0. 

Equation (2.4) is easily generalized for the case when electromagnetic- and 
gravitational-wave interaction occurs in a homogeneous medium with the refraction 
index different from 1. To do that, it is sufficient that the light velocity in vacuum, c, in 
the [] be substituted with the phase velocity of the electromagnetic wave in a 
homogeneous medium, ct. Further  on, the operator []t is always either an operator 
with c~ = c if vacuum is meant, or an operator with c~ r c if it is the case with a 
homogeneous medium. Below we assume c = 1. 

We consider the propagation of a fiat monochromatic electromagnetic wave in the 
field of a flat monochromatic gravitational wave: 

(2.8) h~ = h~ exp [i ~g]. 

Here h and ~g are the amplitude and phase of the gravitational wave; ~ is the unit 
tensor orthogonal to the zero wave vector of the gravitational wave 

a~g 
(2.9) • = 3 x  i , ~ •  = O, ~inX~ = O. 

The nonperturbed electromagnetic wave is written as 

(2.10) ~J = A0 e J exp [i~e], 
where A0 and ~ are the amplitude and phase of the wave, e j is the unit spacelike vector 
orthogonal to the electromagnetic wave vector k ~ 

(2.11) ki  = O~ge /~X  i , e ~ k i  = O. 

The nonperturbed vector-potential ~3 meets the wave equation []t .~J--0.  
In this case the opera tor /~J  reduces to a matrix. Note that 

(2.12) f ~ J  A ~ = - A o  h b  ~ exp [i ( ~  + ~e)] 

and eq. (2.4) becomes 

(2.13) [3~ A J  = A o  h b  j exp [i (~e + ~g)], 

where 

(2.14) bJ ~" - ( $ m n  km kn) e j + (e j kn) (era x m) + (eJn e n) (kin x m) - x j ($mne n kin) �9 

The solution of (2.13) may be presented as 

(2.15) A j = Ao exp [i~e] (e j + F b J ) .  

Here the scalar function F meets the equation 

(2.16) _ 2 i k  ~ 3F + []~F = hexp [i~].  
3 x  n 
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On the other hand, a perturbed electromagnetic wave may be written as follows: 

(2.17) A~ =Ao  (1 + ~A/A)  exp [i(~e -k ~e)] ( ej  --k ~e j) 

A0 exp [i~] [(1 + i$~e q- ~A /A)  e j --b ~eJ] , 

where ~ A / A  is a fractional variation in the amplitude, ~ is a phase shift, while $e j 
represents the time delay, the deflection and rotation of the polarization vector of the 
electromagnetic wave. The comparison of (2.17) with (2.15) yields the following 
expressions for the variation in the amplitude ~A/A ,  phase shift ~ and polarization 
vector rotation ~ and for the angular deflection ~0e and delay ~te of the wave: 

(2.18) ~ A / A  = - (el b ~) Re F ,  

(2.19) $~ = - (e~ b ~) I m F ,  

(2.20) ~ = - (ai ~e i) Re F ,  

($e%) 
(2.21) r Ste - -  ~0e ~--- k R e F .  

Here a j is the unit vector orthogonal to k j and e j, and k is the 3-vector modulus, i .e.  
k = Ik~l. Greek indices take on the values 1, 2, 3. It should be mentioned that the linear 
combination of the wave delay and deflection in (2.21) does not depend on how the 
reference system is chosen whereas each of the quantities ~t~ and $0~ themselves 
depends on that choice. 

To calculate scalar products that enter (2.16) to (2.21) we present 4-vectors k ~ and x j 
in the following form: 

(2.22) k ~ = ~J k ~ + ~J (cos 0. p~ + sin 0. p~) k,  

(2.23) xj = ~ • + ~ (cos 0. n~ + sin 0. n~) • 

Here 0 is the angle the 3-vectors k and ~ form, • is the modulus of the 3-vector 
~, ~ = I• is the unit vector aligned along ~, p~ is the unit vector perpendicular to • 
and, respectively, n~ is the unit vector aligned along k ~ and n~ is the unit vector 
perpendicular to k ~. The above presentation with (2.22) and (2.23) permits the angular 
0-dependence of (2.18)-(2.21) to be straightforwardly indentifled. As follows from 
(2.14) 

(2.24) 

(2.25) 

(b ~ e~) = k 2 sin 0 ( ~  p~ p() + k• (1 - cos 0) ( ~  e" e~), 

(b~ aj)  = - k• sin z 0 (~p~  a s) (e~ hl) + 

+ kx (1 - cos 0) ( ~  e ~ e ~) - kx sin 20 (~p~  e ~) (a~ n~), 

(2.26) (b~ kj)/k = kx sin s 0 ( ~  p~ p~) (e~ n~). 

The Maxwell equations (2.2) are derived for the case when the gauge condition (2.1) 
is met, thus the solution (2.15) should satisfy (2.1). One can verify that 

(2.27) bi(k i + • = 0, 

here, with (2.15) in view, the gauge condition (2.1) reduces to the following 

(2.28) b~(Fexp [ -  i~g]),~ = 0. 
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From (2.14) one can see that 

(2.29) bn = - ~im k~ km[e~ + ~n O ( k  ) l , 

where ~ is a unit vector collinear to the vector 

(2.30) ~n = b'~ _ en(eim k i k m )  . 

So from (2.29) in the limiting case • << k one can reduce (2.28) to 

(2.31) e~(F exp [ -  i~g]),~ = 0. 

Having in mind that boundary conditions must be put on F at the surface z = 0, one 
may conclude the following. If the function F has the form 

(2.32) F = ~(z) exp [i~g], 

where O(z) is some function of z only, the function F does satisfy eq. (2.31). 
We would like to find a solution to (2.16) in the form which would make it possible to 

present the solution of the problem of electromagnetic-wave propagation in the 
random field of gravitational waves in a form identical to the solution of the problem of 
electromagnetic-wave propagation in the medium with random perturbations of the 
refraction index. 

It will help us to reveal a cardinal difference between the solution patterns of the 
first and second problems and to make important conclusions. 

We first consider the problem of electromagnetic-wave propagation in a medium 
with the perturbed refraction index. We assume that the refraction index n~ of the 
medium is homogeneous with minor perturbations added as a flat monochromatic 
wave 

(2.33) ~n* = I~n*l exp [i~*], 

where ~* = v t ~ - / x ,  I~n*l is the perturbation amplitude, vt is its phase velocity, ~ its 
frequency and ! is the wave vector of the perturbation. 

The wave equation for an e.m. wave in the medium is written as [17, 18] 

(2.34) - n .2  ~2A~ j -~- ~ J  = 0 .  
3t ~ 

For  the first order of ]~n*l we get [17, 18] 

(2.35) [::It A j = 2~n* 82 Aj 
8t e 

The solution of (2.35) may be written as 

(2.36) AJ = A0 exp [i~e] (e j + F* e j) 

and F* in this case meets the following equation: 

(2.37) _ 2ik ~ 8F* + [:]~F* = 21~n* I exp [i~*], 
~x n 

which reduces to (2.16) when 2 ISn* I is substituted with h. This permits the effective 
refraction index nQw = 1 + ~nGw to be introduced, which corresponds to a gravitational 
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wave where 

(2.38) ~nGw = 2-~ (bj ej) exp [i~g]. 

In the case • << k, and it is this case that  is most interesting, it follows from (2.38) 

] " " 2 (2.39) SnQw ~ ~ h exp [~g] sm 0 cos 2~, 

where ~ is the polarization angle between the principal axis of the polarization tensor 
~ and the k vector projection onto the plane perpendicular to the ~ vector. The fact 
tha t  gravitational waves are t ransverse manifests itself in the fact that  the refraction 
index depends on 0 and becomes zero at  0 = 0 when k and ~ are parallel. 

We will now t ry  and get  a solution for both eqs. (2.16) and (2.37), each of which can 
be reduced to the other with the simple substitution of variables as has been shown 
above. 

The solution is wri t ten as 

(2.40) F =  h e x p [ i ~ [ ~ t -  ~ 1 -  tL2(cos~bx + sin~y)]  + ikz]f(z).  

Here we use notations in the following sense: 

Symbol or designation In the medium In the gravitational wave 

F* F 
21~h* ] h 
1 = Ill • l = • 

v~ v~/c~ = v~ h* 1/c~ = h* 
(kl)/kl (k ~:)/k• = cos 0 

cos ~b (el)~1 ~/1 - ~2 (eK)/• ~/~ -- ~2 

Substi tuting (2.40) into (2.16) or (2.37) yields the following condition for the function 
f ( z )  to be found: 

(2.41) 

where 

(2.42) 

and 

(2.43) 

The solution of eq. 

dz 2 
- - +  ~ ] f =  exp [-/ .Qz],  

t)o = ~/(k + ~ ) 2  _ ~2 (1 - t~ 2) 

(2.16) or eq. (2.37), taking account of (2.40) and (2.41) and 
meeting the boundary conditions 

(2.44) F]~=o = 8_F = 0, 
z=0 
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becomes 

(2.45) ~ _ ~t eXP~oo [i~] I 1 - expt)o [i(~- ~- t~o) z] + 1 - expt)o[i +(~+ Do) z] - , 

I_ 
where ~ = ~g for gravitational waves or ~ = ~* for the inhomogeneous medium. 

Generalizing solution (2.45) for the case when h is a slowly varying function of z 
gives 

(2.46) F - exp [i~]ZOo [h(z)-.  h(0) exp [ i ( ~ t ~ o  - ~ - t)o) z] ~ h ( z ) -  h(0) exp [ i ( ~ t ) o  + ~ + t~0) z]] . 

L A 

The condition of slow h variation is the following inequality: 

I (~ ---t)o) ~ I <<1" 
(2.47) 

In another fimiting case when 

(2.48) >>1 - 

there is a resonance in the solutions of eqs. (2.16) 
characteristic distance by z, which is 

(2.49) z, = rain {z, {h/h'{~=o} �9 

Then the resonance condition can be rewritten as 

and (2.37). We denote the 

(2.50) 

or, as 

(2.51) 

I n  

+tg0 
(2.50) 

(2.52) 

{~ - t )o lZ .  << 1 ,  

follows from (2.42) and (2.43), as 

_ ~ - 2  1~-~r -~-(1-vr  ~+ t )~  << 2k~ z-----.-" 

the limiting case ~<<k we have t )o~k+~Vt,  so that ~ - t ) o ~ ( t ~ - v ~ ) ,  
-- 2k, here the solution of (2.46) far from resonance and the resonance condition 
are simplified and become, respectively, 

__ exp [i~] h (z) - h(o)exp [i~ (t~ - vt) z] 
2k~ ~t - ~ ' 

( 2 . 5 3 )  - < <  - 1  �9 

When the resonance condition (2.50) is met, function F grows proportionally to the 
distance z,. This turns out to be extremely important when the problem of 
electromagnetic wave passage in a random field of perturbations (see sect. 3) is solved 

(2.54) ~ _  iexp[i~] tt(0)z, at -2 ( ; z , ) - l < t ~ < ~ +  (;z,)-l.  
2k v~ - 

For further considerations it is convenient to introduce the following function: 

I exp [ixz,] - h (z)/h (0) 
at X Z ,  >> 1 

(2.55) ~F(x, z) = x ' ' 

l iz,, at xz,  << 1. 
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Then for both limiting cases (2.47) and (2.48) the function can be written as 

Further  let us consider the effect of relic gravitational waves on the propagation of 
electromagnetic radiation from distant sources with large red-shifts Z~. With due 
account taken of the adiabatic damping of gravitational waves caused by universe 
expansion, the amplitude of the gravitational wave is a slowly varying function of the 
distance z the electromagnetic wave passes. 

When the effect of the primordial gravitational waves on an electromagnetic wave 
is analysed it is convenient to turn to conformal time 7, d~ = dt/a, where a is the scale 
factor, and to employ a wave equation in the curved space-time [32] which is the 
generalization of eqs. (2.2): 

(2.57) g~k AJ;i;k + RJnA" = O, 

where RJn is the Ricci tensor. The second term in (2.57) can be neglected i f k / H  << 1 and 
x/H << 1, where H is the Hubble constant; (here and on the point means ~-derivative). 
In fact for a zero approximation gravitational-wave amplitude this term is of the order 
of H2Ao,  whereas the term responsible for the adiabatic damping of electromagnetic 
waves for the zero-approximation gravitional-wave amplitude is of the order of 
H~4o>>H2Ao. The first-order correction, in terms of the gravitational-wave 
amplitude, to the Ricci tensor is zero 

(2.58) ~R j = 0. 

It follows from (2.58) that 

(2 .59 )  h~ = ho a0 ~ .  
a 

Here h0 and a0 are the wave amplitude and the scale factor at present moment of time. 
As •  1 the behaviour of gravitational waves differs from the adiabatic law, 
see [15, 33]. Substituting h~ from (2.59) into (2.57) and 

(2.60) A j = vJ/a 2 

and using instead of (2.3) the metric 

(2.61) gik = a2(v~k + ao/a" ho ~ )  , 

(indices in the ease of the vector v j and the tensor e{ are raised and lowered with the 
help of tensor ~{), we get instead of (2.4) 

(2.63) D e +  ~ s  ~'~ = 0, 
g 

where [] = - (82/8~ 2) + zl and/2~ is given by (2.5) with the quantity ho e~k instead of h ~k. 
The solution of (2.63) is given by (2.56) if h(0) is substituted with ho(1 +Ns) and 

h (z)/h (0) with (1 + Zs) -1 

(2.64) i ~ e  -- i~pe + ~A/A = (1 + Zs) ~ncw k~F [x(~ - 5~), z]. 
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3. - Propagation of an electromagnetic wave in a random field of  gravitational 
waves and comparison with the case of  spatial and temporal f luctuations of 
the medium refraction index. 

(3.4) 

where 

(3.5) 

In a random field of gravitational waves (8~e) = 0. Here and below ( ) denotes the 
averaging over the random ensemble of gravitational waves. The correlation function 
for the nonpolarized PGW noise is written as 

(3.1) F(t,r,t ' ,r')=-(8~e(t,r)~*(t',r'))=~-~(1 * Zs)2H2k 2 f 
a ,  

1 

exp [ix (7 - v' - z - z')]. J dr (1 - ~2)2 ~F[x - (~ - ~ ) ,  z]. W* [x(~ - ~), Zt ] .  i 

1 

0 

Here the asterisk stands for complex eonjugacy, 

zxp = ~ / ( x  - x ' )  2 + ( y  - y ' )~ ,  x ,  = 2,~/,: , 

where ~ is the duration of observation; as the literature on pulsar timing caused by 
cosmological gravitational waves often mentions (see e.g. [10]), this limitation on low 
frequencies is associated with the fact that the observation time is nonsufficient for a 
wave with x < x. to undergo at least one oscillation, thus their effect cannot be 
distinguished from the systematic variation of any task parameters. As a result, the 
low-frequency contribution to mean-square quantities is zero. The quantity r that 
enters (3.1) is the spectrum of gravitational wave background at the present moment, 
determined as 

(3.2)  (x)dx 1 - 32~G-[8--~] 4=x4 (Ih0D dx. 

The density of gravitational wave background is expressed in terms of r as 

~(x) dx , 
J X 

where e~r = 3tF/8~G is the critical density at which the dimensionless parameter of the 
mean density 0 = 1. It follows from (8.2) that 

(3.3) (Ih0D = 3r 

The relation (3.3) is taken into account in (3.1). From (3.1) for the correlation function 
we get the squared dispersion of the phase fluctuation putting v' = v; x = x', y = y' and 
Z = Z':  

oz=P(t ,r , t , r )=3 (1 + Z,)2H2k 2 f x~(x)I,, 
x ,  

1 

I~ = f d~ I~[x(~ - ~ ) ,  z]l~q(~). 
- 1  

Here q(t0 = (1 /Z) 2 
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Before the integral (3.5) is taken, let us estimate the contribution from the angular 
range near the resonance (see (2.50). As follows from (2.54) and (2.55) 

"~r + (~z.)- 1 ] (3.6) dI(~R)~--z2, f q(tz)d~--2z2, q (• ~ ,=~(zz.) -8 = 

= 2q ~ (z.l• �9 i d2q 

It is evident from (3.6) why the factor of distance lacks in the dispersion relation for 
the case of random gravitational waves. As ~ = 1 for the latter then the coefficient of 
z.  in (3.6) is proportional to q],~i and ql~, = (1 - ~2)2[,~1 = 0 because of the gravitational 
wave transversity. Therefore, in this case, the contribution of resonance waves to the 
squared dispersion is inversely rather than directly proportional to the distance the 
e.m. wave passes, this is contrary to the situation with randomly unhomogeneous 
media for which ~t -~ 0 and ql ,~0 q= 0. 

The same conclusion can be made ff a random field of gravitational waves is 
considered as a superposition of wave packets with finite cross-sections rather  than 
flat waves. Presented in this way the above-mentioned specifical features of 
gravitational waves manifest themselves as inevitable spread of wave packets in the 
direction perpendicular to that of their propagation. 

It is interesting to note that in the case when the phase velocity of the 
electromagnetic wave in plasma exceeds the light velocity (~t -- c/c a < 1), the distance 
factor does exist, but the effect in this case is very weak. Indeed, 

(3.7) [~ - 1[ ~ ~ l / k  z , 

where o~, = (4=ne2/m~), ~pl is the plasma frequency, n = n o ( 1  +Z~) 3 is the number 
density of electrons. Assuming that the matter  density in the Universe is critical 
(t2 = 1) we have 

~1 ~ 5- 103 (1 + Z~) 3 Hz 

and 

(3.8) 1 cm] (1 + Zs) 2. 

Obviously, (ql,=~)l~---[~ - 1[. Thus to achieve the input from the distance factor (we 
assume that the distance is equal to Hubble's distance) the length of the gravitational 
wave should satisfy the inequality 

~g < RH (v~ -- 1) 2 ~ l0 s \ 1 cm] (1 + Zs) ~ cm 

which shows that the effect is extremely weak. 
In principle, random squared phase shift could be proportional to the distance from 

the source in the quadratic-in-amplitude approximation. 
This effect is also extremely weak because of the smallness of gravitational-wave 

amplitude. 
Indeed, for the quadratic-in-amplitude phase increase that depends on the distance 

to exceed the phase increase linear in amplitude the condition (1 + Z ~ ) h R ~ f ~ g >  1 
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should be fulfilled; in this case the dimensionless density of gravitational waves  t~w (• 
should meet  the inequality (even for R = RH): 

~9ow (• > (RH• (1 + Z~) -2 . 

Since for the wavelength range we are interested in the factor (RH• 101~ 
whereas  the factor (1 +Zs)-2~>4 �9 10 -2, we then see that  the quadratic effect is 
important  only for inadmissibly high t~ow. 

Thus below we assume ~t = 1 and neglect the contribution from resonant  flat waves.  
In that  case the integral (3.5) is easily taken and the dispersion (3.4) is 

(3.9) z 2 = 4 [(1 + Zs) 2 + 1]H2k 2 J ~ r  (• 
d %  

• 

In practice the value to be measured is the s t ructure  function determined as [17, 18] 

(3.10) D(t , r , t ' , r ' ) - ( l~Fe( t , r ) -~C'e( t ' , r ' )12)=o~( t , r )+o~( t ' , r ' ) -2ReF( t , r , t ' , r ' ) .  

We now consider a space radio interferometer  where  the base is perpendicular to 
the direction toward the source, while phase measurements  are strictly synchronized, 
that  is t = t' (~ = v'). 

With the help of (3.10) we calculate the t ransverse  s t ructure  function. 

(3.11) D(hp) -- D (t, r, t, r + Ap), 

where  (hp. r ) =  0. We get  from (3.3), (3.6), (3.10), (3.11): 

(3.12) 

where  

(3.13) 

J x 5 
x.  

�9 f d ~ ( l + ~ ) 2  1 
- 1  

2 cos (• (1 - ~)) + 1 ] 
1 + Z s  ~ ( 1  :] I~, 

0 

The integral over ~b reduces to the zero Bessel function J00(~)[34] 

(3.14) I~ = 2= Joo (~), 

where  a = • 5~ ~/1 - ~2 = 2= (L/2g) V ~ -  ~2, here L is the base length of the inter- 
ferometer.  In asymptotical relations for long waves  when a << 1 

(3.15) I~ = 2,2 ---~x 1_, (1 _~2),  

then in the short-wave limit when a >> 1 we get  

(3.16) I~ - 2=. 

In the asymptotical relations (3.15) and (3.16) the integral over t~ is easily taken, the 
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result being 

(3.17) 

where 

D (Ap) --= D (L) -~ 6 k2 L 2 H 2 [(1 + Z~) 2 + 1] ; d• r215 G 
x.  

(3.18) G (x) 

1, ~ < < 1 ,  

20 xL>> 1. 
3 ~ L  2' 

Next section will deal with the numerical estimates of the structure function under 
various assumptions about the spectrum of cosmological gravitational waves. 

4. - Structure function of  phase fluctuations; limitations on the density of  
cosmological gravitational waves. 

Comparison of the structure function (3.17) with the future radiointerferometry 
data makes it possible to derive limitations on the energy density of primordial 
gravitational waves at an arbitrary frequency x over a special range A• -- • and to do it 
independently of the assumptions about the spectrum of cosmological gravitational 
waves. And indeed it is evident from (3.5) and (3.17) that the contribution to the 
structure function from waves with Ax = • is equal to 

L , 2r:/z < x << L -1 , 
(4.1) D (• L) - ~ ~ [(1 + Z~) z + 1] ~Gw (• 

8• -2, x >> L -1 . 

If  the experiment provides certain sensitivity in determining the structure function 
for phase shift (we denote it as 8) then--even if we have not got positive results in 
primordial gravitational waves measurements--we can, with the help of (4.1), obtain 
the following limitations on ~ w  (x): 

(4.2) 
~2 X2 [ L-2, 

DGW (• < k2/_/2 [(1 + Zs) 2 + 1] l x2/8, 

2rdz < • <<L -1 , 

• -1 . 

A maximally severe limitation on DGw (• is reached for wavelengths with the period 
of the order of observation time and is written as 

(4.3) D* - 2 r ( TH'~2 (~'e'~2 [( 1 + Zs)2+ 1 ] - 1 _  ~ -V-] \Z] 
10er [ ~ ~-2( ~e ~2{ L ~ - 2 [ ( 1 + Z , ) 2 + 1 ]  -1 

= 2 .  - t_ 2 j ' 

where TH = (2/3)H -1 ~-20 billion years is the Hubble time. 
For  an arbitrarily long gravitational wave, electromagnetic-wave phase radio- 
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interferometry yields the following limitations on Oaw(x): 

(l~g'U') ~ ]  , )~g>~3L, 
(4.4) Oaw(x) < \ 1 cm] 2 ( Zg ~ko-z 

, 

(see fig. 1 where limitations on t2~w are given as a function of wavelength and fig. 2, the 
same as a function of baselines). 

O 
_.a 

9 '  

Fig. 1. 
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Fig. 2. 

Fig. 1. - Schematical picture of the dependence of the upper limit for the RGW energy density 
as a function of the wavelength which could be obtained from the space radio interferometry 
(see eq. (4.4)). Here O* is given by (4.3) 

~=[ ~ ~( 2~ ~zF(1+Z~)2+l]-' { L ~-4 
\lem/ L 2 ] [3.10 -z] 

Fig. 2. - The same as fig. 1, but as a function of the space radio interferometry baseline (see eq. 
(4.4)). Here 

O** [3.10_2] •lcm] L 2 J \ I A . U . /  " 

The above-described limitations on OGw may be valid for some cosmological models 
predicting a specific type of gravitational-wave spectrum. Thus models based on 
inflation and phase transitions in the early universe, within the wavelength range we 
are interested in, predict a flat spectrum of PGWs. Here [35-40] 

(4.5) r (• -- O T (tpl/t~) 2 , 
where ~ r  is the dimensionless density of relic radiation, t~  is the time from the 
beginning of Universe expansion till the beginning of its inflation. This time is tmf = tp1 
in quantum-gravitational inflation models and .t~--(103+ 10t)tp, in the models of 
inflation due to phase transitions at the grand-unification energy. To measure such a 
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RGW spectrum with a space radio interferometer the accuracy of phase determination 
should be of the order of 

tel[(1+Zs)Z+11,~[ ~____Z__~ ( ;% ~ - l f ~  
(4.6) ~<5t'--~" 2 J klyear]klcm] \ I A . U . ] '  

when Z ~ -  3 and tpl/ti~-2.10 -4 the required ~ is 

(4.7) e = 3 .  IO-~/----L--~ ~ f ~ke ~ - l f  L ~  , 
k lyea r ]  \1 cm] kl A.U.]  

which seems quite realistic[41]. 
Models with ring cosmological strings predict the following for the range of interest: 

~ c w -  10 -6 [42-48], therefore in this case the accuracy with which the phase should be 
determined is written as 

(4.8) ~ -  3- 10 -2 L , 

In fact real-world requirements on ~ should be an order of magnitude more 
stringent for the measurements to ensure the observed effect. 

5. - Space radiointerferometry and pulsar timing: comparison of their capabilities 
for estimating limitations on relic gravitational waves. 

This section had to be included in the paper, since the data on pulsar timing may 
currently yield the most stringent limitations on relic gravitational waves in the 
wavelength range of the order of 1 to 10 light years (as to the 10 to 103 Mpc range the 
most stringent limitations can be obtained from the isotropy of relic (background) 
radiation (see e.g. [36, 49-55]). 

The aim of the comparison made below is to determine the range of wavelengths 
within which space radiointerferometry may compete with, or even be better, as to its 
capabilities, than pulsar timing. Fairly rough estimates will do for such an analysis. 

In pulsar timing the accuracy with which wave amplitudes h0 are measured depends 
on the following quantities: At is the inevitable system error in determining the time of 
arrival of radio pulses and TeW is the observation time. The quantity At is now 
determined by the accuracy of the Solar system model [28] and for RSR 1937 + 21, is of 
the order of tenths of a microsecond. The quantity zTr is of the order of 10 years. 
Therefore, the value measured is of the order of 

(5.1) ho ~ Atl.~. 
For the length of the gravitational wave ~g this imposes the following limitation on 

t)GW : 

(5.2) for 
\ /  

The accuracy of h0 measurements in terms of phase shift in the radiointerferometer 
(see sect. 2 and 3) is 

(5.3) h o -  ~ ~ forL < ~<< zs~, 
l + Z s  L 
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the respective limitations on ~Gw are 

(5.4)  s ~ --~g ] 

Comparison of (5.1) with (5.3) or (5.2) with (5.4) shows that  t)~wsi/t)aWeT < 1, when 

(5.5) ~<(I+Z~)At'L~-2.IO-2(~)( AO.--~s~ ( z~ )-1[ ~. ~-I[ L..._~ 
T~ e 10 years \ l c m ]  [1A.U. ] "  

Thus, at fairly realistic ~ the space radiointerferometry may compete with pulsar 
timing. It is essential to emphasize here that  if 1 light year to 10 light years is the 
wavelength range within which the most stringent limitations can be derived for 
pulsar timing, the respective wavelength range for space radiointerferometer is ~g ~< 1 
light year. In other words, not only could space interferometry be competitive with 
pulsar timing, it can also be complementary to the latter for the other wavelength 
range. 

Another factor in favour of radiointerferometry is the one associated with adiabatic 
damping of relic gravitational waves. For distant sources with large red-shifts the 
phase shift is determined by more intense relic gravitational waves near the source. 

6. - On a possibility to detect gravitational wave background and bursts with a 
space radiointerferometer. ~Memory of  phase,> effect. 

If  satellites of RADIOASTRON type are used to record low-frequency 
gravitational radiation, with microwave interferometers to measure small variations 
in distance [56], it is possible to achieve a sensitivity similar to the optimistic estimates 
for relic gravitational-wave background. We now estimate the requirements which 
must  be imposed on such satellites and interferometers. Let the expected value of 
metric amplitude fluctuations be <h2>1~=1"10 -18 in the frequency range 
5fGw--faw--10-3Hz(*). Then the requirement to the compensation level for 
nongravitational accelerations of satellites should be relatively milder. These 
accelerations should not be higher than 

-10cm fGW 2 ~(h2>1/2~. 
(6.1) 27:2f~wL ( h 2 ) 1 ~ - - - 3 . 1 0 - ~  ( ~ )  �9 ( 1 A - ~ . )  �9  10_is ] 

If  three satellites are used and two radio interferometers between two pairs with a 
common m.c.w.-self-oscillator were used, then the requirement to the relative 
instability of the self-oscillator frequency ho~0/~0 would not be too stringent either: 

Ao~0~o ~< 2fll -1 <h2> 1/2 __ 10-14 \~"/(1~-4)-1((h2>1/2~]' (6.2) 

where fl is the fractional difference of two distances between two pairs of satellites. 
The recorded phase-shift value is relatively large 

(6.3) hpe=~L(ho>le~-l.iO-4rad(~m) -1[ L ~<h~>1/21 
[1--X-S. v .  ] \ l-i-5  ] . 

(*) According to [15], (ho2> ~a is (10-21/fGw) + (10-~0/fGW) if 5fGW ~f~w, while (h~> 1~ = 
= (3 +10). 10 -2~ according to [38] at fGw--~ 10 .4 Hz. 
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To compensate for phase fluctuations caused by interplanetary plasma it is 
necessary that each radiointerferometer should have two microwave frequencies. 
Requirements to the dynamic range of the phase measuring device are not too severe: 
about 5 orders of magnitude since for ~e --- 1 cm and L = 1.5.10 '3 cm the additional 
phase shift caused by plasma is of the order of 10 rad [57]. 

The signal-to-noise ratio is the most serious obstacle if we are to achieve a 
sensitivity at the level Age - 1" 10 -4 rad. If W is the microwave power of the wave that 
returned to the emitting antenna after its retranslation by one of the satellites, then 
the standard quantum limit of fluctuations A~SQL is, as known, equal to [58] 

, hf~0f~w 
(6.4) a~SQL----~] ~ �9 

For the condition Age-A~SQL---- 10 -4 tad to be fulfilled at L---1.5.1013 c m  and the 
transmitter power 10 s erg/s, antennas aboard the satellites should be of the order of 
103 cm in diameter and the power gain should be 200 dB. The latter requirement can 
be appreciably reduced, though in this case two high-stability self-oscillators would be 
needed for two satellites with (hoJ0/~0)= (h~)l~---1 �9 10 -'8. There are indications that 
this level of frequency stability is possible [59]. Note that the accumulation of data 
about phase fluctuation correlation during a long period of time in two branches of the 
radiointefferometer will reduce the detection threshold. 

The possible use of space radiointerferometry for gravitational-wave detection is 
not restricted only to cosmological background. Space interferometers can also be 
used to detect individual bursts generated by such astrophysical processes as 
supernova explosions, by two gravitating bodies passing each other, etc. It is essential 
that, when a single burst, without memory ( h ( - ~ ) =  h(+ ~ ) =  0) (see [60-63] for 
bursts with memory), is passing through an electromagnetic wave moving towards us 
from the source, the wave gains an additional phase shift 

(6.5) ~  1 ( ~g ) 
A~e~--"~Jnzzaz-- - -~hzz  ~ee " 

If the emission and retranslation of an electromagnetic wave can be provided for a 
long time, the above-mentioned phase shift will be memorized forever, with which the 
quantity age could be measured very accurately, since that accuracy is determined by 
N -1~, where N is the number of photons used. 

A similar system also operates in a laser-interferometer with mirrors multiply 
reflecting a laser beam [13, 64, 65]. 

In the case of a space radiointerferometer the range of gravitational waves detected 
with its help shifts to low frequencies. This property makes space radiointerferometry 
a unique way to detect gravitational-wave bursts whose duration varies from minutes 
to days. 

7 .  - C o n c l u s i o n .  

We have shown that the propagation of electromagnetic waves in a random 
gravitational-wave field considerably differs from electromagnetic-wave propagation 
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in randomly unhomogeneous media. Their behaviour is specific since gravitational 
waves are first transverse, second tensorial, thus they are ~,twice transverse- (the 
solution includes the factor sin 2 0 rather than merely sin 0, as would be the case for 
certain vector transverse fields) and also since the propagation velocity of 
gravitational waves is exactly equal to the light velocity. Due to the cumulative effect 
of the above factors, the squared phase dispersion does not grow with distance to the 
source of electromagnetic waves as is the case for randomly inhomogeneous media. As 
was already mentioned above, however, despite even the above said, space radio- 
interferometry will provide nontrivial limitations on t~aw (or it may even lead to relic 
gravitational-wave detection). 

Principally new possibilities should also be mentioned of optical interferometry 
which, reducing the length of the wave used, results in greater sensitivity of phase 
measurements in ~r~o/~ by a factor of 105 which corresponds to a factor 101~ in t~GW. 
(See eq. (4.4).) 

* * *  
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