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A spherically symmetric uncharged black hole with mass M is usually described (%)
by the space-time metric

(1) ds? = (1 — Byfr) c®dt2 — (1 — Rg)~1 dr? — r2(d6? + sin? 0 dg?) ,

where By = 2G M /c? is the Schwarzschild radius and r is a radial co-ordinate chosen to
make the surface area of a sphere of radius  equal to 4nr2, as in Minkowski space. Equa-
tion (1) has the well-known singularities at » = Rg and r = 0.

Solution (1) gives the static isotropic metric for the empty space-time disturbed by
the gravitational field of an outside body with mass M. It appears then that one should
not use a solution of the field vacuum equation R, = 0 to describe the space-time metric
inside a 80 massive object as a black hole where one must indeed use the full Einstein

equation (2) Buy— 3guwR = — 8nGT,,, which in standard form reads (3)
2) (8nG/c*) Tt = exp [— A](v'[r + 1/r%) —1/r2,

3) (876G [e*) T = exp [— A1(1/r2— A'/r) — L],

(4) (8nG/et) T§ = exp[— A]A[r,

where the co-ordinates r, 8, @, ¢t have been, respectively, denoted by !, 2%, #3, 2%, %0
that — gy = ¢g** = exp [— 4] = exp [v].

If we assume that the vacuum Schwarzschild solution (1) is no longer valid inside
a black hole, we need another different solution there which, in turn, should also become
no longer valid for vacuum. Thus the event horizon should be viewed as the space-time
surface separating two different space-time metries. Therefore, since the space-time
region occupied by a black hole should not be merely a given definite part of the inde-
finite vacuum space-time, but the part of another indefinite space-time which is realized
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(?) S. WEINBERG: Gravitation and Cosmology (New York, N.Y., 1971), p. 207.
() L. D. LanDaU and E. M. LirsHITZ: Teoria Cldsica de Campos (Barcelona, 1966), p. 376.
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physically, the mathematical translation of the above conceptual scheme is simply
to remove the integration limits in the formal integration of eqs. (2) and (3) for nonzero
values of the energy-momentum btensor components and impose after that, for r > By,
the so-obtained solution becomes no longer valid, such as the Schwarzsehild solution
is here assumed to do for r < Rg.

Thus, for an uncharged black hole with mass M about equal to a solar mass, the Hawk-
ing’s temperature (%) and, thereby, the average kinetic energy of the matter particles
making up the black hole should be very small, so that Ty~ — & = — Me?(4nR5/3)~* and

T}~ p (a pressure parameter that we allow to be determined later). Then, from eq. (3}, it
follows that

(5) exp[—A] = 1— (SnG/cW)fsr”dr = 1-—(ccr®+ B/r),

where « = R3® and f§ is an integration constant. The value of § is simply obtained by
considering that, in order to mach interior and exterior solutions at event horizon,
exp [-— 1] = 0 for » = Ry, so that g = 0.

Now, from eqs. (2) and (5), one obtains that

(6) v'=[(8aG/c*) pr + Rg*r](1 — R5*r?)-1;

in order to reproduce the singularity of metric (1} at r = Ry, i.e. exp [v] = exp [— 1],
the following unusual state equation in then required:

) p=—c
{which will be discussed later). We finally obtain
(8) ds?, = (1 — R3trY)? & — (1 — R3%r%) " dr® —+%(d6® -+ sin® 0 de?) .

Equation {(8) is our main result. It becomes the same as eq. (1) at » = By, Moreover,
in the same way as eq. (1) reduces to the Galilean metric for r = oo, eq. (8) reduces also
to the flat-space metric at r = 0.

The metric potentials in eq. (8) possess two properties: i) they give rise to an infra-red
divergence for r = Ry (matter confinement inside the black hole) and ii) they have an
ultraviolet free-field asymptotic behaviour for » = 0, which are just the two most dra-
matic features of strong interactions. Property i) is simply an alternative form for defin-
ing the black-hole event horizon (¥}, while property ii) is at least compatible with the
feature that only a theory with non-Abelian gauge field, such as the gravitational
theory in (%), can be asymptotically free (*). Is this a further argument in favour of
the unification between black holes and elementary particles (8)?

{*) 8. W, HAwWkING: Nature {The Hague), 248, 30 (1974).

(*) S. W. HAWKING: Commun. Math. Phys., 43, 199 (1975).

(") F. W, HegL, P. voN DER HRYDE and G. D. KERLICK: Rev. Mod. Phys., 48, 393 (1976),

(") D. J. Gross and F. WILOZEK: Phys. Rev. Lett., 30, 1343 (1973); H. D. PorLrtzer: Phys. Rev.
Lett., 30, 1346 (1973).

{*) The analogy between black holes and hadrons has been recently noted from a diﬂex-ent point.
of view by P. F, GoNzALEz-Diaz: Leif. Nuovo Cimenio, 31, 39 (1981).
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As to interpreting eq. (7), it should be thought that p >0 for matter interacting
under Coulomb-Newton-type potentials ¢ = K/r (i.e. the potentials of all known macro-
scopic interactions); but this is not the case for the potential inside a black hole which
depends on 72, We discover then that p < 0 for potentials K'#%. In this way, our most
general state equation would read (%)

(9) — 4e<Ty(=—¢ + 3p)<0.

An extension of these ideas will be soon published. The author is indebted to F. Cor-
TES-GUILLEN and C. SigENzA for useful discussions.

(*) L. D. LANDAU and E. M. LirsHITZ: Teorfa Cldsica de Campos (Barcelona, 1966), p. 111,



