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Mean Fractional-Order-Derivatives 
Differential Equations and Filters. 

M I C H E L E  CAPUTO (*) 

SUNTO - Si generalizza la soluzione di equazioni differenziali di ordine frazionario al caso 
in cui le derivate frazionarie sono integrate rispetto alrordine di differenziazione. 
La soluzione formale ~ trovata a mezzo della Trasformata di Laplace. Le soluzioni 
delle equazioni integrodifferenziali, def'mite a mezzo delle derivate di ordine frazio- 
nario e dei loro integrali rispetto all'ordine di differenziazione, sono discusse a mez- 
zo della teoria dei ffitri. 

ABSTRACT - The solution of differential equations of fractional order is generalized to 
the case when the fractional order derivatives are integrated with respect to the or- 
der of differentiation. The formal solution is found by means of the Laplace Trans- 
form. The solutions of the integro-differential equations, defined by means of 
derivatives of fractional order and of their integrals with respect to the order of dif- 
ferentiation, are also discussed in terms of filtering. 

Introduction. 

Since long t ime physics and mathemat ics  have given g rea t  amphasis  to 
the modelling of the energy  dissipation and dispersion in the propagat ion of 
elastic waves (Bagley and Torvik 1983) and per turbat ions  in solid anelastic 
media and of e lectromagnet ic  waves and per turbat ions  in plasmas,  liquid and 
solid dielectric (Heaviside 1989, Cisotti 1991, Cole and Cole 1941). 

Labora to ry  exper iments  (e.g., Bagley and Torvik 1983, 1986, Cole and 

(*) Indirizzo dell'autore: Dipartimento di Fisica, Universith ,(La Sapienza., Piaz- 
zale A. Moro 2, 00185 Roma. 



74 M I C H E L E  CAPUTO 

Cole 1941, Hasted 1973, Jacquelin 1991, KSrnig and Mfiller 1989) have con- 
firmed that the introduction of memory mechanisms in the constitutive equa- 
tions of the propagation of the above mentioned waves and perturbations 
represents adequately their phenomena of dispersion and energy dissipa- 
tion. 

The most succesfull memory mechanism used to represent dispersion and 
energy dissipation is that of fractional order derivative (Caputo 1969, Caputo 
and Mainardi 1971, Bagley and Torvik 1983, 1986, Jacquelin 1991) which actu- 
ally transforms the constitutive equations from differential into integrodif- 
ferential and leads to the discussion of interesting mathematical problems 
(e.g. Bagley 1989, Mainardi 1994, Caputo 1994a, b). 

In a recent work Podlubny (1994a, 1994b) solved the differential equa- 
tions of fractional order of the following type where f ( t )  is the unknown func- 
tion of the real variable t 

(1) 

where 

m - 1  

Ak ( t )aD[ (k) f ( t )  = g( t )  f ( t )  
k = 0  

t 

(2) cD[ f ( t )  = ( 1 / F ( n  - z ) ) (d /d t )  n [ f ( u )  d u / ( t  - u )  ~ - ~ + 1 
c 

with (n - 1) < z < n, n > 0 integer, c > 0 and z > 0 real, is the Riemann Li- 
ouville fractional derivative of order z. We note that in (1) appear derivatives 
of fractional order with m different orders. 

In this note we specialize the derivative defined in (2) with 

t 

(3) dn+~f ( t ) / d t  n+~ = ( l /F(1  - z)) ~f (n+ 1 ) ( u ) d u / ( t  _ u)Z 
0 

and, on the other hand, generalize equation (1) substituting the summation 
with an integral in the following way 

(4) 
b 

I A ( z ) ( d m  + z f ( t ) / d t m  + ~ )dz = 
a 

b t 

= f [ A ( z ) d z / F ( 1 - z ) ]  I [ f ( m + l ) ( u ) / ( t - u ) ~ d u ]  =g( t )  
a 0 

with A ( z )  limited in the interval a, b limited by 0 < a < b < 1, m integer and 
positive. 

The left member of (4) was used by Caputo (1969) to generalize the stress 
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strain relation of anelastic media; Caputo (1969) wrote the equilibrium condi- 
tion equations of the anelastic medium, solved them to determine formally 
the eigenfunctions of the torsional modes of anelastic or dielectric spherical 
shells and infinite plates (Capute 1989) and gave the formulae to estimate the 
split periods of their free modes. 

However the equation (4) was not studied by Caputo (1969) or by other 
authors as will be done in this preliminary work. 

The left hand member of (4), with the introduction of one more parameter 
(a and b instead of z), renders the operators (3) more flexible because it in- 
cludes a variety of memory mechanisms and is more apt to represent the dis- 
persion acting with several slightly different relaxations. In other words the 
left hand member of (4) offers a more flexible operator to be used instead 
of (3). 

For the Laplace Transform (LT) of the derivatives of order z we shall use 
the following property (Caputo 1969) 

m 

(5) LT[dm+~f ( t ) /d tm+~]=pZ+mTL[ f ( t ) ] -  ~ pn+Z-lf(m-~)(O) 
n = O  

where p is the LT variable. 

The solutions. 

Equation (4) may be formally solved by means of the Laplace Transform 
(LT) obtaining first 

(6) J f e x p ( - p t ) d t  [A(z)/F(1 - z)]dz [f(m+l)(u)/(t - u)~]du =G(p), 
o 6 

G(p) = LT (g(t)). 

It is shown in Appendix A that it is possible to change the order of inte- 
gration of dz and dt in (6) and write 

[f If ]] (7) ~[A(z)/F(1 - z)] exp( -p t )  [ f(m+l)(u)/( t  - u)~]du dt dz = G(p) 

or (Caputo 1969) 

b 

F(p) -- LT [ f(t)] .  
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Integrating the left hand member of (8) and expliciting F(p) we fred the 
solution 

(9) 

b 

F(p) = G(p)/pmIA(z)p~dz + ~ p-n-l f(n)(O),  
a n = O  

f(t) = g(t)* TL-1 1/p A(z)p~dz + ~. tnf('~)(O)/n! 
n = O  

When A(z) is an analytic function of z then we may write 

(10) 
oo 

A(z) = EAjzJ /j! 
o 

and we fred 

(11) 

b 
~o f (Aj m - n -  1 (n) 

F(p) = G(P)/Pmj =o J zJP~/fi)dz + n=o2 P f (01, 

f(t) = g(t)* TL-1 1/ zJP~dz/j! + 2 tnf(~)(O)/n!. 
n = O  

The filtering effect. 

The derivatives of order zl and z2 with z2 > Zl, when f(0) = 0, imply filter- 
ing the function f(t) with a high pass filters whose response functions 
are 

(12) 

(13) 

Since 

(14) 

p~2 , 

p Z l  . 

{IpZ21- Ip~,l}/IpZll = IpZ2-~l - 1  

is an increasing function of I Pl,  the response function (13) is increasingly 
more severe than the (12) in cutting the high frequencies (see figure 1). Set- 
ting p = i~ ,  it is seen that the phase shift is zz/2 when ~ > 0 and -~zz/2 
when Q < 0. 

When A(z) = 5(z - Zo), (a ~< Zo ~< b), equation (9) is reduced to the classic 
case considered above. 
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Figure 1. - Transfer functions of the filters associated to the derivatives of fractional 
order indicated near each curve which represents the response of the filter applied to 
f ( t )  when A(z)  = 5(z - zo) for the values of z0 indicated near each curve. The abscissa is 
frequency. 

When 

(15) A ( z )  = kz  + h 

then 

(16) 
b 

I p~ (kz  + h)  dz  = (((kb + h)  p b _ ( ka  + h)  p a) _ k ( p  b _ p ~ ) / ( l n  p))/ln p .  

The case when k = 0 is simple and of interest because it gives the same 
weight to all the derivatives of fractional order in the range [a, b]. The re- 
sponse function O(p) and its modulus as function of ~ ,  taking the principal 
values of p~, pb and lnp, are 

(17) 

{ ~b(p) = (pb _ p a ) p m / l n p  ' 

I~b(~ll = ea 2Q,+bcos_,~ = I ~  + ~ - ~ , -  a)/211/~ I~ ~ I/l(ln ~)~ + (=/2) ~ 11/2. 

When m = 0 the properties of the response function (/)(p) at p = ~ are 
governed by pb, while at p = 0 they are governed by pa. This property rep- 
resents a relevant difference between r  and the response to the simple 
derivative of order z since it allows to model a filter with independent prop- 
erties at zero and at infinity frequency. 
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F igure  2. - T rans fer  lhnct ions opera t ing  on t h e f ( t )  lhnct ion when A(z) = h = constant  
and with the values of the lower and upper limits of integration on z given near each 
curve. The abscissa is frequency. 

The t ransfer  function of the filter (17) is shown in figure 2 for some values 
of a and b a n d m = 0 .  

Applications. 

The filter t ransfer  functions considered in the previous paragraph,  when 
solving equation (8), appear  in the denominator of the r ight  hand member.  
The effect of the filter response applied to G(p)  is therefore  that  of the recip- 
rocal of the filter response applied to F(p) ,  that  is the filter from high pass 
becomes a low pass as one verifies directly in the case when A ( z )  = 5(z - z0) 
and equation (9) is reduced to the classic case 

(18) 
F(p)  = G(p) /p  m § ~o + ~=o p - ~ -  ~ f(~) ( ) , 

f ( t )  = g(t)* t "~+~~ ~ / ( m  + z - 1)! + ~ o t ~  f ( ' ) (  O)/n! .  

When A ( z )  is as in (15) with k = 0, the t ransfer  function is 1 /O(p) ,  with O(p)  
given in (17), which now appears  in the denominator of G(p).  

The filter curves applied on g(t) are shown in figure 3 for some values of Zo 
and m = 0. 
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Figure 3. - Transfer functions operating on the g(t) function in the equation (3) in the 
case when A(z) = 5(z - zo). The value of zo is indicated near each curve. The result of 
the filtering gives the solution of the equation (3) when the initial values off(t) and its 
derivatives of order up to m are zero. The abscissa is the dimensionless parameter 

Assuming k < 0, h > 0 in (16) implies that the transfer functions of the 
derivatives with lower order are weighted relatively less. 

When k = 0, all the derivatives and the corresponding transfer functions 
are weighted equally; substituting (15) in (9) gives 

(19) f m F(p) = (G(p) lnp) /h (p  b - pa )pm + ~_~ p - ~ - i f ( n ) ( 0 ) ,  
n = O  

f ( t )  = g(t)* L T - i ( l n p / h ( p  b - p a ) p m )  + ~ tnf (~)(O)/n! .  
n = O  

It  is verified that 

(20) 

{ l h n  p l n p / ( p b + m - p a + m )  = oo, {o, 
l i m p  l n p / ( p b + m - p a + m )  IO '  
p---) :~ [ 0 0  

O ( 1 - b )  if m = 0 ,  

O ( m + b - 1 )  if m > 0 ,  

O ( 1 - a )  if m = 0 ,  

O ( m + a - 1 )  if m > 0 ,  
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and also that 

(21) lim In p/(pb+m) _ p a + m )  ___ 0 ,  O(m + b) if m >I 0 p--~oo 

where the order of the infinitesimal or of the infinity are indicated in 
brackets. 

The limit (21) verifies that (19), with k = 0, may be a LT; (20) imply 
that 

(22) 
f Oo lira L T - ~ ( l n p / ( p b + m - p a + m ) )  = I ' 

lim LT-~ (ln p/(pb+m _ p a + m ) )  = I O, 
t----~ ~ [ 0r 

O ( 1 - b )  i f  m = 0 ,  

O ( m + b - 1 )  if m > 0 ,  

O ( 1 - a )  if r e = O ,  

O ( m + a - 1 )  if m > 0 ,  

which give the values of the filter weight function at t = 0 a n d  t = ~ .  
The first term of the right member of (19) may be written 

(23) g ( t ) , [ { [ L T - 1 1 n p / p ~ ) ] , [ T L - l (  - 1 / (p  b - ~ -  1 ) ) ] } , t m - I / F ( m ) ]  

where the L T - I ( -  1 / ( p  b - a -  1)) exists and is discussed in Caputo (1984), 
while the L T - l ( l n p / p  a) must be computed numerically for each value 
of a. 

In order to see the filtering effect of 1/r with k = 0, on g(t), let us as- 
sume p = i ~ , f o )  ( O ) = O, ( j  = O, 1, 2, ..., m)  in (29) and consider its modulus, 
we obtain, assuming the principal values of p~, pb and In i~9, 

(24) IF(it~) = IG(it2)l [ l n ( i ~ ) l / [ ( i t 2 )  b - (iYJ)~ l h~2 m = 

= IG(i~2)l I(ln ~)2 + (z/2)2 11/2/hly2b + y2a _ 2tga+bcosz(a  _ b)/211/2t'2 m 

which implies a low pass filtering of g(t) whose transfer function is shown in 
figure 4 for several values of a and b and m = 0. In general the filter response 
function in (24) causes phase changes in f ( t ) .  

In particular when 

(25) A(z)  = Az  n 
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Figure 4. - Transfer functions operating on the g(t) function in the case when A(z) = 
= h = constant with the values of the lower and upper limits of integration on z given 
near each curve. The result of the filtering gives the solution of the equation (3) when 
the initial values off(t) and of its derivatives of order up to m are zero. The abscissa is 
the dimensionless parameter v~. 

we find 

[ (26) f ( t )  = g ( t ) , L T  -~ 1 lAp  m - 1 ) n m ( m  - 1),. .  

A generalization. 

Equation (4) may be generalized as follows 

(27) ~ Aj(z)[d '~+~f( t ) /dt~J§ = g(t) 
j = l  aj 

where m and n are positive integers and 0 < aj < bj < 1. 
By taking the LT of both members  of (27) and interchanging the integra- 
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tions in dt and dz, the formal solution is readily obtained 

(28) 

~j bj 
F(p)=G(p) ~ pmJ f pZAj(z)dz 

a~ 

+ 

+ [p- l  f(0) + p -2f(1)  (0)  + .. .  + p - ~ f ( ' ~ -  1) (0) + 

j= 

+p -mj - if(rap (0)]p~ + z I pzAj (z)dz 
c~ 

Constraints for physical applications. 

It is be noted that, in the formulae previously obtained, after the Laplace 
transformation and the integration with respect to z, may appear sums of 
powers of p (or of w) which have different dimensions, which would be physi- 
cally unacceptable. 

This limiting aspect of the result may be avoided by assuming 

(29) A(z) = v~B(z) 

where v has the dimension of time. 
Substituting in (9) we find 

b 

(30) F(p) = G(p)/pmIB(z)(pv)Zdz + ~ p-n-~f(n)(o). 
n = 0  

a 

As an example we may consider the case when B(z) = h = constant, one 
fmds 

m 

F(p) = G(p) In (pv)/hp m ((pv) b - (pv) a) + ~ p- ' - l f (n )  (0) 
n ~ O  

When m = 0, f(0) = 0, and h = 1 we obtain a generalization of the case 
when A = 5(z - z0) which is of interest in the study of the propagation of 
waves in anelastic or dielectric dispersive media (Caputo 1994, Caputo 1995) 
with a variety of slightly different relaxations; in this case formula (31) is 

(32) F(p) = G(p) In (pv)/( (pv) b - (pv) a) 

where it is seen that the determination of the solution consists in a filtering 
of the function g(t) with a filter whose transfer function is of the type 1 / r  
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represented in figures 3 and 4 where however the abscissa, in this case, 
would be the dimensionless parameter ~gv (where ~9 is frequency). 

One may note the difference between the curve with z0 = 0.5 of figure 3 
and the curve with a = 0.5, b = 0.6 of figure 4; it is also seen that the lines of 
figure 4 resulting from (32) ( A ( z ) =  const.) have very different geometry 
than those of figure 3 (A(z)  = 5(z - Zo)). 

Appendix A. 

In order to show that in (6) we may change the order of integration in dz 
and dt, for the theorem of Fubini Tonelli it is sufficient to show that the fol- 
lowing function of z 

{; ,[o; ]} (A.1) [[A(z) /F(1 - z)][ exp ( -p t )  f ( '~+l ) (u) ( t  - u ) - ~ d u  dt 

is summable with respect to z in the interval a, b where a and b satisfy the 
condition 0 < a < b < 1. 

Caputo (1969) has shown that, in the hypothesis that the LT o f f  (m § 1)(t) 
exists, we may change the order of integration in (A.1) and write 

(A.2) ' [ A ( z ) / F ( 1 - z ) ] [ { j [ f ( m ~ l ) ( u ) l [ J ~ ( e x p ( - p t ) ( t - u ) - Z d t J d u }  : 

{J = I[A(z) /F(1 - =)]1 if(m+ 

{j = [[A(z) /F(1 - z)] f(m + 

~)(u)] p~-  ~ I [ (p t  - pu)-~(exp( - p t ) d p t ] d u  = 
Z 

1) (u)l p,  - 1 exp ( - p u )  F(1 - z) du}  = 

{f  } =A(z) pZ-  1 [ f ( ~ + l ) ( u ) e x p ( _ p u ) d u [  . 

The hypothesis is that the integral in du in the last line of (A.2) exists and 
is finite; since this integral does not depend on z and the factor A ( z ) p  ~- 1, as 
function of z, is summable in the interval [a, b], then (A.1) is summable in 
[a, b]. 
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