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S u m m a r y .  - -  We find tt parametrization for the most general ~r: partial- 
wave amplitudes consistent with crossing symmetry and isospin inw~riance. 
This enables us to write all the constraints on the partial-wave amplitudes 
which follow from, and which ensure, crossing symmetry. We then 
discuss how these relations might be useful, and apply them in particular 
to Brown and Goble's model for ::~ scattering. 

1 .  - I n t r o d u c t i o n .  

I n  a prev ious  pape r  (~), we solved the  B a l a c h a n d r a n - N u y t s  (") crossing 

equa t ions  for ~~176 scat ter ing,  which enabled us to  wri te  the  m o s t  general  par t ia l -  

wave  expansion,  convergen t  in the  M~mdelstam t r iangle  ( s ~ 0 ,  t ~ 0 ,  u ~ 0 ) ,  
consis tent  wi th  crossing s y m m e t r y .  I n  the  course of the  analysis  we found  all 

the  cons t ra in t s  on the  par t i a l -w~ve  ampl i tudes  in the  region 0 < s  ~ 4m~ which 

follow f rom and  which  ensure crossing s y m m e t r y .  

h i  this pape r  we generalize t h a t  analysis  to  ~u sca t te r ing  wi th  isospin. 

We again  find the  m o s t  general  pa r t i a l  w,~ves in the  region 0 <: s ~ 4m~ consis tent  

wi th  crossing and  isospin invar imwe.  The general  fo rm gives rise to cons t ra in t s  
on the  pa r t i a l -wave  ampl i tudes ,  some of which have been repor ted  elsewhere (3). 

We find two  cons t ra in t s  invo lv ing  only  s-waves,  th ree  more  involv ing  s and  p 

waves,  and  the  n u m b e r  increases rap id ly  wi th  the  n u m b e r  of waves.  As an 
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468 R. ROSKIES 

e x a m p l e ,  the s-wave constraints  are (in units  where 4m~----1) 

1 

f( 1 - -  s)(2]o(~ - -  51~2'(s)) ds ---- 0 ,  

0 (1.]) 

.]'(1"_ - -  s)(3s - -  ] )(]<o~ :F 2]~2)(s)) ds = 0 ,  

0 

where ]~(s) denotes the  s-wave with  isospin I .  These constra ints  are not  only 
necessary bu t  sufficient. Tha t  means,  given f(0) and t <-.~ sat isfying (1.l), t ha t  there  J 0  J 0  

always exist ampl i tudes  wi th  the proper  crossing propert ies,  of which r t(2) �9 / 0  ' s O  

are the I---- 0, 2 s-waves respectively.  Similarly,  the  five constra ints  on s and  p 

waves are sufficient to ensure the  existence of ampl i tudes  wi th  the  proper  

crossing properties,  of which the  given waves are the s and p waves.  

These relat ions always involve the  ampl i tudes  in an unphysiea l  region. 

Bu t  using" dispersion relations, it is possible to t rans form t h e m  into const ra in ts  

on the  imag ina ry  par t s  of par t ia l  waves in the  physical  region. However ,  in 

this form the constraints  are not  ve ry  useful because they  involve an infinite 

n u m b e r  of pa r t i a l  waves. 
The chief use of the  constra ints  will be  to models for the  low par t ia l  waves 

of nn scat ter ing which do not  have  crossing bui l t  in. By  adjust ing some para-  

meters  in the  model,  one can t r y  to ensure the  va l id i ty  of our relations, thus 
guarantee ing  t ha t  crossing is satisfied for the par t ia l  waves under  consideration.  
Or else, given models for the  par t i a l -wave  ampli tudes ,  one could insert  t h e m  
in our relat ions to get a feeling for how bad ly  crossing s y m m e t r y  is v iola ted 

in the  models.  
The paper  is organized as follows. In  Sect. 2, we review some k inemat ic  

aspects of nr: scattering. In  Sect. 3, we outline the lquyts -Balanclmndran  ap- 
proach to this problem and derive the  form of the  crossing equations,  which 
are solved in Sect. 4. I n  Sect. 5, we app ly  this solution to derive constra ints  
on the  ampli tudes.  In  Sect. 6, we discuss how these results could be applied 

to var ious models of nn scattering,  and in Sect. 7 we app ly  them to the Brown 

and Goble model, in an a t t e m p t  to use our crossing relat ions to determine the  

mass f rom the p mass.  The a t t e m p t  is unsuccessful and reasons for the  fai lure 

are discussed. Finally,  the  conclusions are presented in Sect. 8. 

2. - K i n e m a t i c s  of ~ scattering.  

The ampl i tude  for 7:7: scat ter ing in the  s-channel can be wri t ten as (4) 

(2.1) T=#zo(s , t, u) = ($~#~A(s, t, u) -F ~r6#~B(s, t, u) -F 6~6#yC(s, t, u) , 

(4) G. F. CHEW and S. MANDELSTAM: Phys. Rev., 119, 467 (1960). 



where aft(y6) denote the isospin indices of the outo'oing (incoming) pions (see 
the Figure). B y  crossing symmetry ,  

(2.~) 

(2.3) 

A(s,  t, u) = A(s,  u, t) , 

(2.4) 

B(.% t, u) - -  A(t,  s, u ) ,  

In  the  s-channel ,  the isospin ~mplitudes ~:~t'e given hy 

C(,r t, u) - -  A ( u ,  t, .~) . 

(2.5) T(~ t, u) = 3A(s ,  t, u) + A(t,  .~', u) ~ A(u ,  s, t ) ,  p 

(2 .6 )  T(1)(8, t, u) = A(t ,  s, u ) - -  A(u ,  s, t ) ,  

(2.7) T(2)(s, t, u) A(t ,  s, u) + A(u ,  s, t ) .  

The ampli tudes T (~ T (1) and T ~ will be compatible 
with crossing symmet ry  and iso.~pin invariance if and 
o~ly if we can find ~ funct ion A(s,  t, u) subject  to (2.2), 
such tha t  (2.5)-(2.7) ~re valid. 

As a funct ion of three v~rizb|e.s, A cnn be wri t ten  
~s a linear combinat ion of functions which t ransform 
irreducibly under  the permutnt ion  group operating on 
the w~riables 
most general 

CF~OSSING ]r ON 7r~ l~A't%'lq'A], WAVES 4(~[) 

Fig. I. Schem~.~io 
diagram of Toy: scat- 
tering, with isospin 

indices ~, fl, ~,, 6. 

s, t and u. I t  is shown in Appendix A that ,  in view of (2.2), the 
A can be wri t ten as 

(2.8) A(s,  t, u) = / ( s ,  t, u) ~- ( 2 s - - t - - u ) g ( s ,  t, u) + (.s" t~--u~)h(s ,  t, u) , 

where ], g and h are total ly  symmetr ic  in s, t, u. In  terms of these new functions, 
We Call write 

(2.9) T'~ t, u) : 5](8, t, u) + 2 ( 2 s -  t -  u)g(s, t, u ) +  2(2s ~ -  t~ --u~)h(s ,  t, u) ,  

(2.10) T(1)(s, t, u) -~ 3 ( t - -  u)g(s, t, u) + 3(t"---u2)h6% t, u ) ,  

(2.11) T(2)(s, t, u) = 2/(s, t, u) + (t + u - - 2 s ) g ( s ,  t, u) + (t 2 + u 2 --2s2)h(s ,  t, u) . 

The amplitudes T (~ T (1), T (2) will be consistent with crossing and isospin inva- 
riance if and only if there  exist three total ly  symmetr ic  functions /, g, h such 

tha t  (2.9)-(2A1) hold. In the nex t  Sections, we shall exploit the ideas of 
BALACktAI~DRAPr ~,1~(~[ NUVTS ;~O examine the imp I i c~ io~s  of (2.9)-(2A I) for the 
p~rtial-wave amplitudes. 

30 - I 1  N u o v o  C i m e ~ d o  A .  
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3. - The l~alac]~a~dta~-Nuyts approach. 

The investigations of BALACItAS~DRAN an~! Nuu (~) have indicated t h a t  
to simplify crossing symmetry ,  it  is useful to expand the amplitudes in the  
Mandelstam tri~mgle (s>~O, t>O, u > 0 ) ,  in terms of the functions 

(3.~) 

where P~ i~ ghe Legendre polynomial~ P~'*~'~ ts the Jacobi  polynomial  O) z, 

is the  ~ca~e~r~g zng[~ in the  ~-r 

3t 
(3.2) z , = l  + ~ _ i  ' 

a is an integer ~unning from 1 to ~ ,  and we h~ve taken units such tha t  

(3.3) 4m~ = 1 .  

We shall denote the Mandelstam triangle by  A. 

We write 

~=0 a - l  

where " (m (a, h are constants to be de te rmined  Since S~_~(s, t) form a complete 
orthogonM set m A, any 2f2-function can be expanded in terms of them. 
(We assume tha t  T~(s ,  t, u) has no poles in A, so tha t  the expansion (3.1) is 
possible.) The ~dvantages of this par t icular  complete set are twofold. Firs t ,  

the  part ial-wave expansion is easily obtained~ namely 

(3.5) 
r 

P'J~+Lm[28 - -  1) 

where )~" is the  l^th ])a~.~i~l wave of isospiu i Secondly ~here exists a sell- ad)oint 
operator  (:) O, symmetr ic  under  permutat ions  of t, t, u of which all the  funct~on~ 

S~,_z(s, t) are eigenfunctions with eigenvalues a(a § 2), dependent  only o~ 
and not  on l. Thig simplifies the crossing relatmns enormously, as we now show. 

The usual crossing relations can be formulated as 

2 

~ _ A , E  (s, t, u),  (3.6) T("(t ,  s, u ) =  ~ 
J~O 

(5) ~er [q~ ex~mp[e. Higher Tranzcendenr F(~ncLtaJ~s. Bate~,a,~ Manuscript Pra]ect, 
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where Ai~ is the crossing matrix.  Subst i tut ing (3.4) gives 

(3.7) 
co co 

~: X 2(,~' + a)(2t' + " '  " a)(ao, ),,So,_,,(t, s ) - -  

- -  ~ 2((~ + l )(2l + l ) X; A ..(a (j)~ S t ~s t) 
~=0  or=|  .~ -0  

Using the orthogonality relation (2) 

(3 . s )  

we find 

(3.9) 

where 

(3.10) 

; i "  d z , 1 (S~-z, S~-~)~ .~(lt S~_~(s, t) '~ ' - -  s~_~(s, t) - 2(~ + ii)(2~ + 1) . / d  
A 

- -  (~Im (~(/v ? 

ca r 2 

(a~, )z '  - -  ~ ~2(a-~  1)(2/~- :1) ~?A.(a(~)~ ( T  z' 
I = 0  (r=~ ~'~0 

r ~' To,_r(s , t) - -  ,U r (t s) 

l '  2 Since both To._t, , So_ t are eigenfunctions of 0 with eigenvalues a ' ( a ' + 2 )  
~ud a(a + 2) respectively, tile scalar product on the r ight-hand side of (3.9) 
vanishes unless a --a'. Thus, the crossing relations, expressed as contraints 
on the (a~~ take tlle form of finite-dimensional matr ix equations involving only 
those a's with the same value of a. They are 

(3.1]) " (i)' -- i i G  ~ (-(J>' 
1 =0  l = 0  

where 

( 3 . 1 2 )  G" ,,,.,, 2 (~  p 1)(2~ + 1 ) A , ( ~ ' o ' _ , , ,  So_,)' . 

The explicit form of G can be worked out bu t  is not  necessary for what  follows. 
The problem of finding the most general amplitude consistent with cros- 

sing symmetry  is the problem of finding all the eigenvectors of G of eigenvalue 1. 
We shall now do this by exploiting the result of Sect. 2. 

4.  - S o l u t i o n  o f  t h e  c r o s s i n g  p r o b l e m .  

In  this Section, we follow tile techniques of I very closely. Briefly, the 
idea is the following. The amplitudes T ") given by (2.9)-(2.11) will satisfy cros- 
sing symmet ry  for any choice of symmetric  f~nctions ], g, h and will therefore 
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have  an  expans ion  of the  f o r m  (3.4) wi th  " (i)x (a, h sa t i s fy ing  the  crossing equu t ion  
(3.11). B y  choosing a comple te  set of func t ions  for  ], g, h we will genera te  a com- 

ple te  basis for  the  solut ions of (3.11). I n  par t icu la r ,  we shall t ake  ], g, h to  be 

s y m m e t r i c  po lynomia l s  in s, t, u, which  are also po lynomia l s  in the  var iables  

( 4 . 1 )  

(4.2) 

(4.3) 

As an  example ,  suppose  

(4.4) ](s, t, u)  - -  x 'ny  q , 

Then  

x : st § s u  § tu  , 

y = s t u ,  

w = s + t + u  1 .  

g(s, t, u)  h(s,  t, u )  : 0 .  

o o  

(4.5) T(~ t, u) - -  5 x m y ~ =  ~ 2 ( a + l ) ( 2 / ~ - 1 ) ( a  (~ ~ ,~  t~ t) 
/=0 ~=Z 
co r 

(4.6) T(1)(8, t, u)  : 0 ~ ~ ( o "  ~ - ] ) ( ~ / +  1 ) ( a  `1) ] ~ , , ,~ .~ ,~S~_ds  , t) , 
l=O (1~l  

(4.7) 
c o  

T(2)(s, t, u)  : 2x '*y  ~ : ~ 2(a -~ 1)(2/-r- 1) (a (2) ~ ,~ t- t) 
~ 0  a = l  

Since b o t h  sides of (4.5)-(4.7) are  po lynomia l s  in s and  t, the  sums on the  r igh t  

are  finite sums;  there  is no ques t ion  of convergence ,  and  the  equa l i ty  holds 

for  all s and  t. 

5Tow consider  the  l imi t  s--> ~ ,  zs fixed. I n  this  l imi t  

8 
(4.8) t ~ ( z - - 1 )  , 

(4.9) 

so t h a t  

(4.10) 

(4.1 ] ) 

8 
u ~ - ~ ( z §  1), 

y ~ - - s3  _ , 

so t h a t  the  l e f t -hand  side of (4.5) goes as 
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Each t e rm on the r ight -hand side of (4.5) is a po lynomia l  of degree a in s, 

so tha t ,  asymptot ica l ly ,  the terms with the highest value of a will dominate ,  and 
the largest  a mus t  be of the  form 

(4_12) ~ - -  2m q 3q.  

For  this value of a, using the a sympto t i c  result  (~) 

(2~ - f  1 ) ! 
(4.  I a ) ( I ~ ~ ..~2+~ .~). ,) , ;  r ~ _ ,  ( _ e - -  i ) ~ ( - -  I }' 

(c,--li!Ca + l +  [)i s+' 

and equat ing  the leading' terms iu s, we find 

(4.14) 

1 (o, )' ( 2 o ' +  1 ) ! P z ( z )  

This relat ion is easily inverted to give 

(4.1.~) 

with a given b y  (4.12). Similarly we find, for this value of % 

(4 ,16 )  (~-) Ca (~ 

(4.17) (~) - . (a o)~= 0 

Eqaa t ions  (4 .15 ) - (4 .17 )  give one solution of the  crossb~g eqnat ion (3.11) when (r 

is given by (4.12). For  fixed a, there are as m a n y  solutions of this kind as there 
are different soluti-ons of (4,12) for nonnegat ive  integer m, q. As was shown 

in ][, these solutions can be pu t  in one-to-one correspondence with the integers 
in tile closed in terva l  [a/3, a/2]_ 

One can repeat  the same kind of calculation by  taking ] =  h =  0 and 

g ~ x '~y q or ] = g - -  0 and h = x '~y ~. I n  t ha t  way, we generate  different solu- 
t ions of (3.11). The a rguments  of I show t h a t  these solutions are l inearly 

independent ,  and form a complete  basis for the  solutions of (3.11). After  

doing the  simple calculations, one finds t ha t  the  most  genera] solutions of (3.11) 

(~) Ref. (s), vol. 2, p. 170, and vo[. 1, p. 61. 
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can be writ ten as 

[~ [(~ [(o'--'~ )/'~] 

( 4 . 1 8 )  (a~' ) t  = 2 5c;(~;), -~ ~ 2d;(fl;), -~ ~ 2e;(y;), ,  
1o-{~ ~-{(o--1) ]3}  ~ ={(0"I2) I3} 

[(ct--1)12] [(r 

( 4 . 1 9 )  (a<~))~ = - ~ d;(6;), + ~ 3e;(e;)t, 
l~={(o--1)/~} ~-{(o- -2) /8}  

[a/2] [(a--1)12] [ (a- -2) /2]  
o o o 6 o (T (4.20/ (~;%= Z 2c,(~,)~- Z d,(~,),-- ]~ ~(y~),, 

~=(~r/8} ~ - { ( ~  ~={(a--2)13} 

~ ~ ~rbitr~ry constants and with c3, , d~, e~, 

1 

( ~)~-- ( a - - l ) ! (~  ~- / ~- 1) z ( z ) ( z ~ § 1 7 6 1 7 6  

--1 

1 

(4.22) (fl~)~ = (~ - -  l)!(~ + l ~- 1)!jP~(z)(z ~- ~- 3)3~-~§ - -  z2)o-2~-~dz, 

--1 

1 

- -1  

1 

(4.24) o ~ f P  , (~,), = - -  ( e - -  l )!(a + l + 1)t ,(z)(z~ + 3 ) ~ - o + ~ ( 1  - -  zDo-~,-~z dz 

--1 

1 

( 4 . 2 5 )  ( e ; ) z  = ( a - - l ) [ ( a  ~- l -[- l ) [  ;Pz ( z ) ( z  ~- ~- 3)3v-~ - -  z2)z-2v-2zdz  . 

--1 

We have used the nota t ion 

(6/3} ~ (smsll~st nonnegative integer > : /3) , 

[a/2] _: (largest integer < r  

d Z  

5.  - R e s u l t s .  

We insert the solutions (4.18)-(4.20) into the expansion (3.5). This will 
give us the most general expression for the part ial-wave amplitudes in d which 
have the proper crossing properties. The point of these solutions is tha t  tile 

~ do not depend oa l, which gives rise to correlations arbi t rary  constants c~, d~, e~ 
~.mong the par t i~bw~ve ~n~t~litudes. 
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Suppose, for example, tha t  the s-waves for I ~  O, 2 are known. :By the 
(1,o)( 8 completeness and orthogonali ty of Pa .2 --1)  on the interval O < s < l ,  this 

fixes ~(o)~ (_(2)~ (%)o and ,% )o for each 0,  i .e .  it fixes 

(5.1) 

~nd 

(5.2) 

[a/2] [(a--1)/2] [(a--2)/2]  
~(0)~ a ~ a  a a a a (% J o =  ~ 5%( v)o-F ~ 2d~o(/3r)o-~ ~ 2%(7,) 0 

V-{a/a} ~={(a--1)/3} V-{(a--2)13} 

[a/21 [(a--1)/2] [(a--2)/2] 
~(2)~ ~ a a a a a (~ Jo= 2 2c,(~)o- y. a,(/~2o- 2 e~(~,)o. 

~-{a13} ~ffi{(a--1)[3} ~*{(a--2)I3} 

Suppose a ~ O. 

(5.3) 

(5.4) 

i . e .  

(5.5) 

Then 

~(0)~ o 0 (% Jo = 5Co(%)o, 
~ ( 2 ) \  0 0 

(%)o = 2%(%)0 , 

(0)~ - ( 2 ) \  
ao )o= ~(% )o" 

:But from (3.5) and the orthogonali ty of (1.o~ Pa (%---1), we can write 

1 

(5.6) (a~Z')o =.f(1 - -  s)/(oZ)(s) ds ,  

0 

so tha t  (5.5) becomes 

(5.7) 
1 

f (1 - -  s)/~~ ds = 

0 

1 

f ( 1  - , )  ]':'(s) d s .  
o 

This is one constraint on the s-waves of ~r: scattering. Now suppose a :  1. 
Then 

(5.s) 

(5.9) 

so tha t  

(5.10) 

(0) _ _  ~ 1 1 
( a l ) o -  2do(/~o)o, 

(2) _ _  1 1 
( a l ) o -  - ao(/~o)o, 

(o) 
(a~)o  + ~ ( a ~ ) o  = o .  

Writing this as an integral relation, we have 

(5.11) 
1 

j o - 8 ) ( 3 8 -  ~ )(/~~ + 2/~:'(8)) d~ = 

0 

0 .  
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Since the  ~%:o amp l i t ude  is �89176 2T'~)), this  resul t  can also be  wr i t t en  as 

(5.12) f (1  - -  s)(3s - -  1 )/o~176 = 0 , 

where ]~~ is the  n~ ~ s-w~ve. This e q u a t i o n  was a l ready  der ived  in I. 

One can see t h a t  there  are no more  res t r ic t ions  on the  s-waves fl 'om cros- 

sing alone, because,  for  a~2, at  least  two  a r b i t r a r y  cons tan t s  en ter  in to  (a." (o~,jo 
and  " (~)' [a,  )o, so t h u t  no re la t ion  exists be tween  them.  I f  t he  p - w a v e  is also con- 

sidered, we find one more  re la t ion  for  a ~ 1, ano the r  for  a ~ 2 and  ano the r  

for  a : 3 .  These are 

(5.~3) 

(5.J4) 

(5.~5) 

(0) (1) (a~)o + = 0 ,  2(al )1 

2(a~,)o _ (~) _ (1) 5(a2 )o--  6(a.~ ) , ,  

,),_(o), 5(a~ )o (~' "(% ~o-- (~ ==--15(a3  )x" 

The  in tegra l  form of these re la t ions  can be  wr i t t en  as 

(5A6) 

(5A7) 

(5A8) 

1 

f ( l  - -  s ) (3s - -  1 ,o) )/o (s) ds 

o 0 

1 

1 

- 2f(1  - m s )  ds ,  

f ( l  1 '~ ,~ (o) s)( o ~ - - 8 s +  J)(~]o ( s ) -  51~%~)) 

o 

1 

f (l - -  s)(35s~ - -  45s: + 

o 

1 

d s - - 6 f ( J - - , ) 2 ( ~ , - - , ) / , ' " ( 8 ) 0 ~ ,  
0 

158 - -  1)(2]~~ - -  5/~2)(s)) ds := 

- -  15f(1 - -  s)~(21 s ~ - - 1 2 s  + l)1~%~,) ds .  

For  a rb i t r a ry  a, t he  u n k n o w n s  are c~, d~ and  e~ for app rop r i a t e  values  of p.  

The  n u m b e r  of u n k n o w n s  is [a/2] + 1. The knowledge  of all p~u'tial waves  

l<L, for all isospins, de te rmines  [3L/2] + 2 condi t ions .  Consequent ly ,  g iven  

all pa r t i a l  waves  for  l < L for  all isospins, the  n u m b e r  of cons t ra in t s  for a g iven 

a is (assuming a>~L) 
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if this number  is posit ive.  Thus for L =  1, we find two constraints  for 

( r - - l ,  one for a = 2 ,  and one for a - - 3 .  Going to the d-waves yields ten 
more constraints ,  and higher waves lead to even more.  

I t  should be stressed tha t  the constraints  we have  derived are not  only 
necessary bu t  sufficient. Tha t  is, given functions r (~ and I (~) sat isfying (5.7) 

, ' 0  10  

and (5.11), there  exist crossing symmet r i c  amplu tudes  T(~)(s, t, u) of which /(o ~ 

and r (~) are the  I =  0 and I =  '~ s-waves, respectively.  In  this sense, (5.7) 

and (5.11) express the  full content  of crossing s y m m e t r y  when restr ic ted to 

s-waves. Similarly,  the  addi t ion of (5.16)-(5.18) to these two relat ions ex- 

presses the  furl content  of crossing s y m m e t r y  ~pplied to s and p waves. 

Using the Froissar t -Gr ibov ~'epresent,~tio~ for the  par t ia l  wa,ves, "~he inte- 

gral equalities can be rewri t ten  as constraints  on the absorp t ive  par ts .  For  

1>2, we have  (~) 

(5.20) / ( ~ ) ( s ) = ( - - l ) Z ~ l _ i .  t ( , t ) Q ~ \ l _ s - - I  d t ,  
l 

where At,~(s, t) is the  absorp t ive  pa r t  in the t-channel with isospin i in the .~-chan- 

nel. Because of the possibil i ty of subtract ions,  the representa t ion  m a y  not  be 

val id for l 0 or l =  1. But ,  following M.xg~N" (s), we show in Appendix  B 

t,h~t t,i~e s and p w~ves ca.n be  determined in te rms of the absorpt ive  par t s  
up to the  arbi t rar iness  

(5.21) /'o~ .) -~/'o~ + 5a + 2b(3s - ] ) ,  

(5.22) (1) . (1) 1~ (,~)-*I~ (s) - -  b ( 1 - - s ) ,  

(5.23) (2) (2) /o (s) -~/o  ( s ) + 2 a - -  b ( 3 s - - ] ) ,  

where a ~nd b are ~rbitr~ry constants.  

] ~ v i u g  expressed the  purtiM wa.ves in te rms of ti~e absorpt ive  p~rts, we 
can rewri te  all the  eonstrMnts like (5.7), (5.] 1) in terms of integrals over the 

absorp t ive  par t s  A,:~(s, t) or (d/ds)A:,~(s, t), where the in tegra t ion domain is 
0 < s < l ,  l < t <  ~ .  l~ecalling t ha t  

(5.24) flttil(g't)~ ~(2lz=o t-1)Imf*il(t)P~(l -- t2Sl) ' 

(7) y ,  S. ,[IN ~ltd A_, MARTIN: Phys, Ro:,, 135, B 1375 (1964).  

(~) A.  ~h~t'~'~N: Nuovo Ci,~te'~,to, 4,7 A, 2~5 (~967). 
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these constraints  become integral  const ra in ts  of the form 

(5.25) 

r 

t Im]~ ( t ) B . ( t )  = 0 ,  
J i - O  ~ 0  
1 

(i) t where Bz.,( ) are known functions.  These equat ions (for different n) are the  

necessary and sufficient conditions on the  absorp t ive  par t s  in the  physical  

region to ensure crossing s y m m e t r y  (p rov ided /d t )  is such t ha t  the  ampl i tude  

has the  requisi te ana ly t ie i ty  so t h a t  the  usual dispersion relat ions are satisfied). 

Moreover,  f rom the derivat ion,  it follows t h a t  the  relat ions are independent  

for different n. 
For  example ,  the relat ion (5.11) can be rewr i t ten  as 

(5. .6) 

r 1 

1 0 

{ [ 1  
�9 ( 1 - - s ) ( 3 s - - l )  t + 2 s - - 1  

1 2 In t ] 
~- t - - s  ]~--s  i~-  s - - l J  + 

[i 1 ]} + 2s(] - - s )  2 t + 2 s _ 1 ) 2  ( t - - s )  2 = . 

I n  principle,  expanding --,A :~ + 2A~ 2~ in te rms of par t i a l  waves in the  t-clmnnel, 
as in (5.24), one could per form the  integral  over  s to obta in  a relat ion like (5.25), 

bu t  i t  is difficult to get  a closed-form expression for B(z~)(t). 

6. - Appl icabi l i ty .  

T h e  chief appl ica t ion of the  results  of Sect. 5 will be to models  for the  low 

par t ia l  waves of ~:: scattering, which do not  have  crossing s y m m e t r y  bui l t  

in. For  example,  in a model  for s and p waves, one could t ry  to choose some of 

the  pa ramete r s  in the  model  so t h a t  (5.7), (5.11) and (5.16)-(5.18) were satisfied. 
One would then  have  incorporated the  full content  of crossing s y m m e t r y  into 

these models. (We are implici t ly  assuming t h a t  the  models can be cont inued 

into the  unphysieal  region 0 < s < 1.) 
For  example ,  WANDERS and his collaborators (9) construct  models for the  

s-waves of 7:n scat ter ing with  free pa ramete r s  which they  fit so t h a t  the  ampli-  

tudes are consistent wi th  all the  constraints  which have  been derived on the 

(9) G. AUBERSON, O. PI(~UIiT and G. WANDI,IRS: Phys. Lett., 28 B, 41 (1968). 
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basis of anMytic i ty ,  un i t a r i ty  and crossing. Al though ATKII~S02~ (~o) has shown 

t h a t  there  is ~ ve ry  large class of functions,  labelled by  a symmet r i c  funct ion 
of two variables,  consistent  with these general principles, the  work of MARTIN 
and his co-workers (11) has shown tha t  for low par t ia l  waves, at  least, the ampli-  
tudes are numer ica l ly  constrained below threshold. The authors  of ref. (9) 

choose a par t icular  pa ramet r i za t ion  of the s-wave ampl i tudes  which au tomat ic -  

al ly satisfies elastic uni tar i ty ,  and which has free parameters .  They  find t ha t  

the  constraints  of ref. (~1) severely restr ict  their  parameters ,  and lead to phase  

shifts  in the  physicM region which are in rough agreement  with exper iment .  

Our results represent  fu r ther  constraints .  Since they  are equNities,  t hey  

serve to el iminate some of the parameters ,  r a ther  t han  to restr ict  their  range, 

as do the  inequali t ies of ref. (~1). Fur thermore ,  WA?~])ERS (~2) has pointed out 

t ha t  since the  a im of his work is to obta in  results on the  general  shape of the  

phase shifts, our constraints ,  involving integrals over the ampli tudes,  are perhaps  

be t t e r  suited to this purpose  than  those of MARTIN, which often take  the form 
of inequalit ies on the  ampl i tudes  a t  certain isolated values of s. I t  should be 

pointed out, though,  t ha t  MARTIN has really derived inequali t ies over  a range 

of s, bu t  t ha t  they  are sharpest  a t  the isolated values which he tabulates .  
Another  appl icat ion couht be to the theory  of Pad6 approx iman t s  applied 

to the par t iM w~ves of ~r: scattering,  derived in some Lagr~ngian frame- 

work (~3). B y  tak ing  the  Pad(~ app rox iman t  of the par t ia l -wave  ampli tudes,  

one can sat isfy uni tar i ty ,  bu t  one violates crossing. By  compar ing  various te rms 

in our equations,  one has a measure  of how badly  crossing s y m m e t r y  is violated 
in this way. This cheek has been carried out by  BASI)EWNT et al. (14) for the 

Padg t r e a t m e n t  of the  2~v ~ theory,  and indicates tha t  crossing is very  well 
satisfied. 

Still another  appl icat ion could be to models which a t t e m p t  to unitarize 
crossing symmet r i c  ampli tudes ,  e.g. Lovelace 's  work (~) on r:r: scat ter ing based 
on the  Veneziano model.  LOVELACE interprets  the  Veneziano ampl i tude  as 
the  K-ma t r ix .  In  this way, he au tomat ica l ly  satisfies un i ta r i ty  and violates 

crossing. Bu t  since the  lef t -hand cut in his model  is l~rgely arbi t rary ,  one could 

(1o) D. ATKINSON: Xucl. Phys., B 7, 375 (1968); B 8, 377 (1968). 
(11) A. MARTIN: Nuovo Cimento, 47A, 265 (]967); 58A, 303 (1968); CERN pre- 

print TH. 1008 (1969); A. K. CO_~I.~ON: Nuo~,o Cimento, 53A, 946 (1968); 56A, 524 
(1968); G. AUBFRSON et al.: CERN prcprint TH. 1032 (1969). 

(12) G. W~_NDEI~S: priwtte communic~tion. 
(13) Sec, for example, D. BESSIS and M. P U STEm~t: Nuovo Cimento, 54 A, 243 (1968); 

J. L. ]:IASDI,;VANT, D. BI,'sSIS :rod J. ZINN-JUSTIN: NUOVO Cimento, 60A, 185 (1969); 
J. L. ]~ASDEVANT ~lld B. ~V. ]A~E: Saclay prcprint DPh-T/69-27 (1969). 

(14) j .  ]~. BASDEVANT, G. COltI';N-TANNOUDJI and A. MOREL: CERN prcprint 
TH. 1t)63 (1969). 

(i5) C. LOVELACE: CERN i)reprint TII. 1041, l)resent.cd ~t the Argo,nne Con]erence 
on ~ and Kr: Interactions (May 1969). 
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t r y  to  de te rmine  i t  in the  low par t i a l  waves  to  be  consis tent  wi th  our  crossing 
relat ions.  A similar p rob lem will be  inves t iga t ed  in more  deta i l  in the  n e x t  

Sect ion.  

7. - The model  of Brown and Goble. 

BROWN and  GOBLE (~) have  g iven  a pa r t i cu l a r  p resc r ip t ion  for  un i t a r i z ing  

the  cur ren t  a lgebra  resul ts  on ~ :  sca t te r ing .  T h e y  write,  for the  s and  p waves  

li.~ 

where  (i)o.a. ]~ (s) is t he  cur ren t  a lgebra  resul t  (~). F r o m  elastic un i t a r i t y ,  one has  

k 
(7.2) I m  h~*' (s) = - -  ~j~ , 

where  

�9 2 4.m~ < s < 16mr:, 

(7.3) s = 4(k 2 + m~) .  

I n  order  n o t  to bui ld  in a si~tgularity a t  s =  0, t h e y  chose 

(7.4) 
ik + 2Jq 

where  k(~)(s) m u s t  be a real  ana ly t i c  f u n c t i o n  w i t h o u t  cuts  in the  range  0 < 

s <  16m~. Their  in i t ia l  choice was to  t ake  ..~(~ = 0 for  the  s-waves,  and  a 

c o n s t a n t  for  the  p -wave .  The  c o n s t a n t  was chosen so t h a t  ]~)(s) has a r e sonance  

a t  t he  mass  of the  ~. T h e y  t h e n  f o u n d  t h a t  t he  ~ w i d t h  was well p red ic t ed  

( ~ 1 3 0  MeV). This success can pe rhaps  be  t aken  as evidence  t h a t  the i r  fo rm 

for  t he  p -wave  is reasonable  f r o m  th resho ld  up to the  O mass.  
However ,  recen t  d a t a  (~s) have  shown evidence  for  a resonance  in t he  

I =  0 s -wave as well. This was no t  ob ta ined  in the i r  in i t ia l  fo rmula ,  which 

took  k~~ 0. I n  ana logy  wi th  the  p -wave ,  t h e y  t h e n  (19) t ook  k~)(s) to  

(16) L. B~ow~ and R. GOBLE: Phys. Ilev. Lett., 20, 346 (1968). 
(17) S. WEINBERG: Phys. _Rev. Lett., 17, 616 (1966). 
(18) W. D. WALKER, J. C~ROLL, A. GARrlX~:nL and B. Y. OIt: Phys. Bey. Lett., 

18, 630 (1967); E. MALAMUD and P. E. SCHLEI~: Phys. Bey. Lett., 19, 1056 (I967); 
S. MARATECK, V- HAGOPIAN, W. SELOVE, L. JACOBS, F. OPPENHEIMER, U .  SCHULTZ, 
L. J. GUTAY, D. g .  MILLER, J. ~)RENTICE, ]~. WEST and W. D. WALKER: Phys. Rev. 
l~ett., 21, 1613 (1968). 

(~) L. B~ow~ ~nd R Go~L~: University of W~sI~ing~on pr~print (1969). 
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be a constant ,  whose wHue was cllosen to reproduce the a mass. They  have 
shown tha t  for 

(7.5) m~ > 700 MeV 

their  formula is consistent with the phase shifts of ref. (~s). 
However,  by  unitarizing the amplitudes, they  have destroyed the cros- 

sing symmet ry  of the current  algebra result.  We have a t t empted  to restore 
the crossing s y m m e t r y  by ~sing the relations of Sect. 8. If one is interested 
only itt tim I =  0 s-w:t, ve and I =  1 p-w~ve, there  is only one velatiott 

1 1 

o o 

in units where 4m~----1. (Since we shall discuss only the I----0 s-wave and 
I ~  I p-waves, we can drop the isospin superscript.) If one takes Brown and 
Goble's form for ]~, and parametriaes J~ as in (7.1), (7.4), with ko an arb i t rary  
constant ,  one ('an t ry  to solve for k, by  imposing (7.6). One would then have 

predict ion ou the ~ m~ss 5~sed on the p-wa.v~ ~nd crossing. 
The integrals cannot  be done analytically,  bu t  we h~Lve compared both  

sides of (7.6) numerical ly  for different wflues of mo. The result is tha t  it is 
not  possible to satisfy tha t  relat ion for any value of the G mass ~bove threshold. 
This means t ha t  the parametr iza t ion  of BROWS- and Gom.E is not  sat isfactory 
in the re~'ion 0 < s -< 1. 

One can explain the failure of the parametr iza t ion  as follows. The unitari-  
zation has given the ampli tudes the rio'hi analyt ic  s t ructure  above s - - 1 ,  
bu t  their  parametr iza t ion  has no left-hand cut at  all. But  we know from eros- 
sing and uni ta r i ty  (~o) tha t  f~')(g) must  have a cut beginnin~ at  s 0, and 
with a discont inui ty  behaving bke 

(7.7) 

(7.8) 

h n  ]~O)(s)..~ ( 2 ,o, 10 ) ~ifo (1)1~+ ~- [ / f0 ) ]  '~ (-8)~, 

Im/Y(s)~ (-~ G~ + ~ G~'(,), ~) (- s)', 

for s <  0, ]s] small. Because of the factors (1- - ,q ,  ( l - - s )  ~, (7.6)is more sen- 
si t ive to the ampli tudes near s----0 than  to their  values near s ~  1, and 

(79} Sec, fox" ex~mplG G. W~woI~Rs sad O. PIGUET: N'~,OVO Cim,ento, 56 A, 417 0968), 
Appendix. 
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since the  ampl i tudes  have  the  wrong analy t ic  fo rm near  s = 0, i t  is not  sur- 
prising t h a t  (7.6) is violated.  

One can t ry  to choose kds)  to have  a branch  point  a t  s =  0 wi th  the  
proper  discontinuity.  The results  will depend on how one parametr izes  the  

:function. We  chose two different pa ramet r iza t ions  of kt(s), which were mot iv -  

a ted b y  the  following considerations, kt(s) mus t  have  a discont inui ty  behav ing  

like s t near  s ~ 0. Moreover, we wan t  kz(s) to tend to a cons tant  at  large s, 
so t h a t  the  s ingular i ty  a t  s =  0 does not  affect the  form of the  ampl i tude  

near  the  a- or p-meson. Final ly,  we wan t  the  current  a lgebra result  to be ap- 

p rox ima te ly  val id in the  region 0 < s  <1 ,  which is the  smoothness  a s sumpt ion  

of PCAC. F rom (7.1) this will be  t rue  if 

(7.9) ht(s)J~ << 1 ,  0 , ~ s ~ : l .  

Numerical ly ,  ]~'~'(s) is small, so t h a t  (7.9) will be satisfied if h~(s) does not  

have  a pole in the  region 0 4 s < l  or if the  pole of hds ) coincides wi th  the zero 

of ]p'. 
The first choice of kt(s) was 

(7.]0) kt(s) = c~ q- s ~ _  sa , 

where cz, ~t are constants  to be  determined,  and st is the  location of the  zero 
of the  current  algebra ampl i tude  ]~'~'. The pa ramete r s  ~t were fi t ted to sat- 
isfy (7.7), (7.8) where ](o~)(1) was t aken  to be the  current  a lgebra value. This  
choice of ]~(1) was reasonable in view of (7.9). c~ was then  fi t ted to repro- 

duce the  p-resonance and Co was de te rmined  f rom (7.6). The result  was ~gain 
t h a t  no value of mo above threshold was consistent  wi th  (7.6). 

The second pa rame t r i za t i on  was 

(7.14) k~(s)- 
s t 

at + bts ~ ' 

where az, bt are constants  to be determined,  at was again de termined b y  (7.7) 

and (7.8), and bj chosen to produce the  p pole. al and bl then  have  the  same sign 

so t ha t  kds)  is not  singular in the  region 0 < s < 1. However ,  if bo is to give rise 

to a a resonance,  we find t h a t  ao and bo mus t  have  opposite signs and t h a t  ko(s) 
must  have  a pole in the  region 0 < s < l .  The location of this pole does not  coin- 

cide wi th  the  current  algebra zero, so t h a t  condit ion (7.9) is violated.  This 

solution for bo would give rise to two zeros of ]~)(s) in the  region 0 < s < 1, 
whereas current  algebra predicts  only one. This would viola te  the  spirit  of 

PCAC. 
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In summary,  we have not  found a parametr iza t ion of the I - - 0  s-wave 

which is consistent with uni tar i ty ,  the val idi ty  of the current  algebra and PCAC, 
the  crossing relations (7.6)-(7.8), and the existence of a ? and a resonance. 

One can in terpre t  this in two possible ways. First ,  perhaps none of the 
parametr izat ions  we gave was really adequate.  Since (7.6) is sensitive to the 
ampli tudes near  s - - 0 ,  one should perhaps have t~ken greater  care in de- 
termining Italy(s) on the  left-hand cut. In  fact,  given an assumed form for 
the  s and p waves near  threshold, the arguments  leading to (7.7) and (7.8) 
can also fix the coefficients of {--s)~, (--s)~ and (--s)~ in Im]~)(s). The in- 

clusion of these higher terms will define the left-hand cut much more precisely, 
and it is possible tha t  a parametr iza t ion  which satisfies these constraints would 
be consistent with all the  principles outlined above. 

I t  may  also be tha t  no simple parametr iza t ion of the amplitudes will have  

the features of the p and a resonances, the current  algebra, un i ta r i ty  and cros- 
sing symmetry .  This view has some support  from the investigations of ref. (9) 
into 7:z~ amplitudes consistent with Martin's results (n) and satisfying elastic 
uni tar i ty .  In  their  parametr iza t ion they  cannot  reproduce Weinberg's seat- 
tering-length predictions. There is no doubt  tha t  there  exist functions con- 
sistent with all the  propert ies listed above. For  example, Iliopoulos' ('-'~) so- 
lution a) is consistent with crossing, current  algebra, the constraints of 5iartin,  
and uni tar i ty  to a given order in ( l - - s ) .  Although this model cannot  in- 
corporate  resonances, one could extrapola te  it  to higher s in many  ways, so 

as to yield a s and a p. But  the hope of B~owN and GOBLE WaS more ambitious.  
They  wanted a simple parametr iza t ion (however badly  defined tha t  may  be) 
valid f rom threshold up to the p mass at least, satisfying elastic uni tar i ty  exactly,  
consistent with current  algebra and predicting the resonances. The constraints  
of crossing may  mean tha t  their  functions have to be quite complicated. 

One point  should be emphasized in these considerations. Since the ampli- 
tudes should be well approximated  by  the current  algebra results, one might  
argue tha t  changes in/~(s) could hardly affect Ole val idi ty  of (7.6). However,  
since the current  algebra resuits are buil t  to be consistent with crossing, they  
automat ical ly  stat isfy (7.6), so that  one should really in terpret  tha t  equat ion 
as a relat ion on the deviations h'om the current  algebra predictions. Then 
changes in k,(s) play a significant role. 

8 .  - C o n c l u s i o n s .  

We have found the necessary and sufficient conditions on the =r: partial-  
wave ampli tudes in the region 0 ~ s  ~<4m~ which follow from, and ensure, cros- 

(e~) J. ILIOI'OULOS: ~VJ~ovo Ciraento, 53 A, 552 (1968). Scc also G. AUB~RSON et al.: 
CER~N preprint TH. 1032 (1969). 
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sing symmet ry .  Moreover, we have  found the  mos t  general  i )arametr izat ion 
of the r~r~ ampl i tudes  in the  Mande ls tam tr iangle  which is consistent with cros- 
sing symmet ry .  

I t  follows f rom this pa ramet r i za t ion  t ha t  if, for example,  we are given s 

and p waves consistent  wi th  the  relat ions (5.9), (5.11), (5.16)-(5.18), then  it  

is possible to construct  m a n y  different ampl i tudes  with the  proper  crossing 

proper t ies  of which the  given waves are the  s and p waves. I t  will usual ly  be 

the  case, however,  t ha t  none of these ampl i tudes  will have  other desirable 

propert ies  like un i t a r i ty  or analyt ic i ty .  Tha t  is to say, these other  principles 

restr ic t  the s and p waves fur ther  t han  our relat ions do. Examples  of such re- 

str ict ions are given in ref. (11). 
In  this respect  our work is com p l em en t a ry  to t ha t  of YI~-DURAIN ("e), who 

has found the  necessary and sufficient condit ions on, for example ,  the  ~o~o par-  

t ia l -wave  ampl i tudes  below threshold which follow f rom and ensure the  proper  
ana ly t ic i ty  and the  posi t iv i ty  of the  absorp t ive  par t .  Combining his const ra in ts  

with our general  pa ramet r i za t ion  will give the necessary and sufi3cient condi- 

t ions to ensure crossing, ana ly t i c i ty  and the  pos i t iv i ty  of the  absor t ive  pa r t .  

So far, however,  it has been ve ry  difficult to ex t rac t  any  significant conse- 

quences f rom the combina t ion  of the  two approaches.  
One of the  l imi ta t ions  of our results is t ha t  the  constra ints  are fo rmula ted  

in the  region 0 < s ~< 4m~. Using dispersion relations,  we have  shown how these 

constra ints  can be rewri t ten  as constraints  on the  imaginary  par t s  of the  par t ia l -  
wave  ampl i tudes  in the  physical  region. Bu t  the  equat ions do not  seem very  
useful in this form, since each involves an infinite n u m b e r  of par t i a l  waves.  

We have  suggested t h a t  these const ra in ts  would be mos t  useful in models  
for the  par t i a l -wave  ampl i tudes  which do not  have  crossing bui l t  in, fo r i t  migh t  
be possible to adjust  cer ta in pa rame te r s  to guaran tee  t h a t  crossing is not  

v iola ted in the  low par t ia l  waves.  I n  these models,  we could also test  how bad ly  

crossing s y m m e t r y  is violated,  b y  compar ing  various te rms  in our equat ions.  
We have  appl ied our ideas to the  model  for ~ scat ter ing due to BROWN 

and GOBLE. We have  tr ied to use the  f reedom of the i r  model  to sat isfy t h e  

one re la t ion  be tween the  I - - 0  s-wave and the  1 =  1 p -wave  in an a t t e m p t  

to de termine  the  a mass f rom the p mass.  Bu t  we have  not  found a simple par-  

amet r iza t ion  for which this ra ther  naive ~,bootstrap ~> is successful, and consistent  

wi th  current  algebra and PCAC. We have  suggested t h a t  the  fai lure can be 

t raced to an improper  t r e~ tmen t  of the  lef t -hand cut, or else t h a t  our a t t e m p t  
to find simple paramet r iza t ions  for the s and p waves, consistent with uni tar i ty ,  

current  algebra,  the  existence of the  p and a and crossing, is over-ambit ious.  

We hope to pursue this m a t t e r  fur ther  in a later  work. 

(22) F. J. YNDURAIN: CERN preprint TH. 1045 (1969). 
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The nex t  problem tha t  arises is the general izat ion of these techniques to 

processes wi th  nnequal  mass, or with spin. The general f r amework  for the 

unequal-mass  case, or the case of mS" scattering', has been developed b y  BALA- 

(JHANDRAN et al. (2a). However~ since the appl icat ion of these techniques will 
p robab ly  be to models for the low par t iM-wave ampli tudes ,  it m a y  not  be 
necessary to find the general solution to the crossing equations.  I t  is impor t an t  
to find all the constra ints  on the low par t ia l  waves, and to write t hem out 

explicit ly,  so t ha t  they  can be readily applied. The technique for this has 

been given in ref. (,4), for any  elastic-scattering" processes. 

I t  is also possible to derive results on a rb i t r a ry  processes relat ing (,he low 

par t ia l  waves of A B  § CD ~o those of AC ~]~D. This depends on the exist- 

ence of a region R in the (s, t)-phme with  the following" proper ty :  for fixed 

s, z~ varies front - -1  to l ;  for fixed t, zt varies from - - 1  to 1, and similarly 

for fixed u. Such a region aRrays exists ("4) if the scat ter ing particles are st'~ble, 

and not  massless. We continue the full ampl i tudes  of A B ~  CD or A C  ~ B D  

into this region, where the  ('rossini' condition implies tha t  they  are equal. We 

tben  mul t ip ly  the two ampl i tudes  by  the same i)olynomial in .~' and t~ and integrate  
over R. The results mus t  still be equal. Since for fixed .,, t is linear in z,, and 

for fixed t, s is linear in z~, we then ~et integral  , 'elations between u finite number  

of par t ia l  wave,s in the  ~wo ch~nnels. Crossing ,~ymmetry in If. is equiva lea t  to 
sat isfying these constraints ,  for a rb i t ra ry  polynomials  in s and t, because a 

funct ion or thogonal  to all polynomials  in R necessarily vanishes. 

I t  is a pleasure to acknowledge frui t ful  discussions with S. COLEMAN~ R. L. 
GOBLE, t I .  IIARARI, M. KUGLER~ A. )IARTIN, O. PIGUET a n d  G. WANDERS. 

I am indebted to Y. ZAR3tI for carrying out the (.omputer calculations ment ioned 
in Sect. 7. Finally,  I am grateful  for the ~'enerous hosl)i |ali ty of the D e p a r t m e n t  
of Nuclear  Physics  :~t the Weiznmnn Ins t i tu te ,  and of the TheoreticM Study  
Division a t  CERN. 

A P P E N D I X  A 

We wish to show tha t  if F(.% t, u) is an analyt ic  function in a domain D 
where D is invar ian t  under  all permuta t ions  on s, t, u, then  on D we ean 

(zs) A. P. •ALACIIANDRAN st al.: Syramtse Univers i ty  prcpr in t  NY()-3399-192 
SU-1206-192 (1969). 

(24) I am dc(o ly  grat(~fu[ t() S. COLt':MAN for po in th lg  this m~t to me., and for a discus- 
si(m of tim points  tha t  follow. 

31 - l l  Nuovo Cimento A .  
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uniquely write F(s,  t, u) as 

(A. 1 ) F(s ,  t, u) = ](s, t, u) + (2s - -  t - -  u) g,(.% t, u) + (t - -  u) g2(s, t, u) + 

+ ( 2 s 2 - - t ~ - - u ~ ) h , ( s ,  t, u) + ( t2 - -u2 )  h.~(s, t, u) + ( s - - t ) ( t - - u ) ( u - - s ) j ( s ,  t, u ) ,  

where /, g~, g2, hi,  h.~, j are symmetr ic  functions which are analytic  in D. 
This decomposition of F is tile decomposition into irreducible representa- 

tions under  the group $3 of permutat ions  of s, t, u where ] and ] correspond 
to the symmetric  and ant isymmetr ic  terms, respectively, while the terms 
with g~ and g2 or h~ and h 2 form bases for the mixed reI)rescr, ta t ion in whicll 
the (t, u) permuta t ion  is taken to be of the form 

(A.2) (' i) (tu) = 
0 - -  

To prove the decomposition, we first project  out those pieces of F trans- 
forming according to a given row of a given representat ion.  So we define 

(A.3) S(s, t, u) = ~ IF(s, t, u) + F( t ,  u, s) + F ( u ,  s, t) + 

+ F(s, u, t) + F(t, s, u) + F(u, t, s ) ] ,  

(A..J) A(.~., t, u) - ~  [1:(,~', t, u) + F(t, u, s) + l:(u, ,~,, t ) -  

- - F ( s ,  u,  t) - -  F(t ,  s, u) - -  F ( u ,  t, s ) ] ,  

= ~ [ . t  (s, t, u) F(t ,  u, (A.5) ~//1(8, t ,  U) 1 ,) t' * - -  8 ) -  I'~(U, 8, t) ~-  

+ ";F(s, u, t) - -  F(t, ,~, u )  - -  F ( u ,  t, s ) ] ,  

(A.(;) M~(.~., t, u) = ~-[2 F(s, t, u ) - - / f i t ,  u, . ~ ) -  F(u,  ,~, t ) -  

- -  2F(.~., u, t) + 1,'(t, s, u) + F(u, t, s ) ] ,  

so tha t  

(A.7) 

We now ident i fy  

(A.8) 

(A.~0) 

(A.11) 

F = S + A + M I +  M2. 

](s, t, u) = S(s,  t, u ) ,  

(.~-- t ) ( t - -  u ) (u - -  s)j(s, t, u) - A(.~, t, u ) ,  

(2s - -  t - -  u) g~(.% t, u) + (2s ~ - -  t ~ - -  u ~) h~(s, t, u) = M, ( s ,  t, u ) ,  

(t - -  u) g2(s, t, u) + (t 2 - -  u 2) h.~(s, t, u) --- M2(s, t, u) . 

I t  is clear tha t  /(s~ t, u) is total ly  symmetr ic  and an 'dyt ic  in D. Sinlilarly, 
j(s, t, u),  being the quotient  of two totMly ant isymmetr ic  functions,  is sym- 
metric. Moreover, it is analyt ic  because A is analyt ic  and ant isymmetric ,  
so tha t  A / ( s - - t ) ( t - - u ) ( u - - s )  is also analytic.  I t  remair, s to show tha t  M1, 
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M2 have the representat ions (A. t0) and (A.11). We write 

(A.I 2) gd.% t, u)  Md.s' , t, u ) [ s  2 4- u ~ -  2t 2] - -  MI(I , 8, ' tt)[t 2 _u , a 2  282] 

t )  . . . . . . . . . .  ' 

( A . ]  3)  h l ( s ,  t, u )  - -  M l ( s ,  t ,  u ) . [ 2 t  - -  s - -  u ]  - -  M , ( t ,  s, u)[2s - -  t - -  u ]  
3(t  - -  s)(s - -  u)(u - -  t) 

(AA 4) g~(s, t, u) Mds ,  t, U_)[_s a - - u  ~] - - M d t ,  s, u ) [ t " - -u  ~] 
( t - -  s ) ( s  - -  u ) ( u  - t )  

(A.15) h2(s, t, u)  - -  M~(s ,  t, u ) ! u - y s ) - -  M~( t ,  ~, u ) ( u  - - t )  
( t  - -  s ) ( s  - u ) ( u  - t )  

I t  is easy to show tha t  this ansatz s'~tisfies (A.10) and (A.11), and using (A.5) 
and (A.6), it ~lso follows tha t  g~, g.~, hi ,  h 2 arc symmetr ic  and analyt ic  in D. 

To prove the uniqueness of the decomposition, it is sufficient to prove the 
linear independence of tile terms on the r ight-hand side of (A.1), i .e .  tha t  if 
F(s, t, u) vanishes identically, so do /, g~, g.,, h~, h.a, j. Using the result tha t  
terms corresponding to different representations, or different rows of the same 
representation,  are independent,  it remains to show tha t  if 

( A . 1 6 )  

and 

(A.17) 

(2s - -  t - -  u ) g , ( s ,  t, u )  + (2s  z - -  t ~ - -  u 2) h d s ,  t, u)  = 0 

( t  - -  u )  g 2 ( s ,  t ,  u )  § ( t  a - -  u 2) h 2 ( s ,  t ,  u )  = 0 , 

then  gl, h i ,  g2, h~ all vanish. Suppose for example tha t  gl ~ 0. Then 

(A.18) 2 s - -  t ~ . u  . _ h d s  , t, u)  
'2s 2 - -  t 2 - -  u 2 gl(S, t ,  U)  " 

The r ight-hand side of this equation is to ta l ly  symmetric;  the left-hand side 
is not,  which is a contradiction. Thus g~ must  vanish and similarly, g~, h i ,  h2 
,%lso vanish. 

I t  is also (.lear tha t  if F(s, t, u) is symmetr ic  in t and u, thon gu, h2, j M1 
vanish. 

A P P E N D I X  B 

Given the Froissart-Gribov representat ion for part ial  waves for I > 2 ,  

(K~.)  /liq,~) = ( _  I ) ' -  - 2 2 
A~q(s,  t ) Q t  1 s" . . . . . . . . .  1 d r ,  

J t l - - s  
1 
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we wish to  solve for the  pa r t i a l  waves /~o), ~o t(=>, ]~:)in t e rms  of the  absorp t ive  
par t s  A~J(s, t). 

F o r  i = 0 ,  2, we wri te  

( B . ' 2 )  T'"( ,~ ' ,  t) = ~ (2~ + ])]i"(8)P,(z~) = 
even 

(B.3) --/o"'(.~') + ~ (21 + ll]',"(,s,)P,(z,). 
e v e n ~  2 

Inse r t ing  (B.1) in to  (B.3), and  using the  Darboux-(2hris toffel  :[ormula 

(B.4) ~ ( 2 1 + l ) P , ( z ) Q , ( w ) =  5 ; v ~ z - t -  - - - - I n  , . . . .  >~, ~,, + z . ( - - - , ,  

we find 

(B.,~) T'"(,~, t) =/a"(*) + 
co 

~Jd [ I 1 ~_;]nt,+:_. t ] 
q- t'A~'~(s, t') ~ + t '+  t + s - - 1  1 " 

1 

Similar ly ,  we can wri te  for  i = 1 

2t ~ +  I [ ' t , A m  ` (B.6) T(~'(s, t) = 3/IX)(s) ] + s~- - i ]  ~ j ( l  , (s, t')" 

1 

[ 1 1 6 ( l - - s - - ' ~ t ) { 2 t ' + s - - ]  
�9 ( - - t  t ' + t + s - - I  + ( l - - s )  ~ l - - s  

t I] l n t , +  s _ ]  2 . 

I n  the  t -channel ,  we have  ~T(~ s) and  T(>(t, s) synnne t r i c  under  inter-  
change  of s and  u, while T(1)(t, s) is an t i symnle t r i c .  This implies 

(B.7) T"(t, *)l,o~ = 0 ,  

(B.8) --dsd T(0)(t ' s) ,-~ = d T(~)(t ' s) ,~ = 0 .  

B u t  since s + t + u = 1, t r e a t i ng  s and  t as i n d e p e n d e n t  we find t h a t  

(B.9) t = 1 - - 2 s  

assures t h a t  

( B J O )  s = u .  

Using the  eqs. (B.7) and  (B.8), the  crossing relat ions 

2 

(B. l I) TW(t, s) = ~. A ,  T(i)(s, t ) ,  
J = 0  
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W he L'e 

(B.I 2) A ,  = 

1/3 1 5/3~ 

1/3 1/:2 - -5 /6}  , 
~ /3 - -  : ,/~ ~ /~ / 

and the reI)resentations (ILS) and (B.6), we lind equation.~ for 

(,~) - g ] o  (x)~ ti~'(.~l ~ + . ,  

(b) :~ d--~-~' - + 3  ds + 3 / t { - - ~  l - -  '-"(~ "~) -2111'(~') (z -*)~l 
8 

(C) :~l dI;~ '1 (il dfl~ '2'3/d/~l>(s)/~ ' 1 5 2(lx s) _ 21~1>(.~.) ~ _ , ~  j ,  

in terms of the absorptive pa.rts. These determine/ ;+,  ];'~) ~nd ]~' u]> to solutions 
~>f the homv/eneous eqnn.tions 

(B. ~'~) (a) =: (b) (c) -- 0.  

Tire solution ~f (B.13) ean be obtained by adding (b)-I 2(e) to (~btain 

(o) 1o (*)+- ='t;"'(.~') :: , 'onst, 

st)lvin/ for ][:) from (a), inserting this solution into (b) and using (B.1.1) to 
eliminate flo 2' to get an elemeI)tmy equation for ];0). The result is tha t  the 
amplitudes ];"', :2) ]~1> ]o ,  a, re determined by the absorptive l>arts up to the 
ambigui ty  

(B.16) (1) ~ __ ]1 (") --~ /'Lt'(S) - -  b(l 'e) 

(1~ ~7) 

where a, b are a rb i t ra ry  constants. 
I t  is easy to see from our expressions (4.18)-(4.2o) tha t  the ambiguity in ~0, /{1> 

]~ , r is ~'iven by (B.15)-(B.17). Since the absorptive p,~rt fixes all pa, rtial 
waves for 1>2 ,  all the coefficients ,~ ~ ,~ c~, d~, (v are fixed for ~/,- -.  '~ The coefficients 

o l for ~ = 0  and ~ = 1  a ' e  co and d o respe:,tively. They enter only into the s 
~nd p waves, and are ~herefore not  determined by the absorpl~ive par/,. Leavin,g 
t, hem arbitra~3r, %nd usin~ (,3.5), (4.1~)-(1.72) and (1.'24) Kivos the result 
(B. 15)-(B.17). 
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R I A S S U N T O  (*) 

Si t r o v a  u n a  p a r a m e t r i z z a z i o n e  pe r  le pifl genera l i  ampiezze  d ' o n d a  parz ia le  di r:r:, 
coeren t i  con la s i m m e t r i a  i nc roc ia t a  e l ' i n v a r i a n z a  di isospin. Ci6 p e r m e t t e  di scr ivere  
t u t t i  i v incol i  sulle ampiezze  d ' o n d a  parz ia le  che d e r i v a n o  da l la  s i m m e t r b t  i nc roc ia t a  
e ] ' ass icurano.  Si d iscute  come ques te  re laz ioni  possano  esserc ut i l i  c si app l icano  in 
pa r t i co la re  al model lo di B r o w n  e Goble  pe r  lo s ca t t e r ing  rw:. 

(*) T r a d u z i o n e  a ctera d e l l a  R e d a z i o n e .  

]~poccHHF-oFpaHHqeHHH Ha ~7~-llapHHa.~bltble BO~HbL 

Pe3IoMe (*). - -  Mbt rtonyqaeM rtapaMeTpI43ai/nIO ~tng nau6o~ee  o6 tunx  n n  IlapI/nanbHbIX 
aMn~riTy~, co raacy romneca  c KpoccI~HF-CHMMeTpHefi H H3OClIHHOBOH MHBapI4aHTHOCTbtO. 
~)TO rlO3BOJlgeT HaM 3aiInCaTb Bce orpaHwteHHn Ha rtap~ria~ibHble aMrln~ITy~lbI, KOTOpbIe 
caeayloT n3, n KOTOpbm o6ecrle~uaaIOT KpoccHHr-CI4MMeTpHto. 3aTeM MbI o6cyg]IaeM, 
KaK 3T14 COOTHOIJIeHIdfl MOFyT 6blTb klCHOYlb3OBaHbI, 14 itprlMertfleM rlx, B qaCTHOCTH, K 

Mo/lenH I3payHa n F o 6 a a  ~tnn r~r~ paccesHHS. 

(') IIepeaeOeuo paOaKquefi. 


