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Summary. — We find a parametrization for the most general == partial-
wave amplitudes consistent with crossing symmetry and isospin invariance.
This enables us to write all the constraints on the partial-wave amplitudes
which follow from, and which ensure, crossing symmetry. We then
discuss how these relations might be useful, and apply thewm in particular
to Brown and Goble’s model for nn scattering.

1. — Introduction.

In a previous paper (}), we solved the Balachandran-Nuyts (*) crossing
equations for w°x® scattering, which enabled us to write the most general partial-
wave expansion, convergent in the Mandelstam triangle (s>0, >0, ©>0),
consistent with crossing symmetry. In the course of the analysis we found all
the constraints on the partial-wave amplitudes in the region 0< s - 4m2 which
follow from and which ensure crossing symmetry.

In this paper we generalize that analysis to wmm scattering with isospin.
We again find the most general partial waves in the region 0 < s < 4m? consistent
with crossing and isospin invariance. The general form gives rise to constraints
on the partial-wave amplitudes, some of which have been reported elsewhere (*).
We find two constraints involving only s-waves, three more involving s and p
waves, and the number increases rapidly with the number of waves. As an

(*) Work supported in part by the U.S. Atomic Energy Commission under Con-
tract A'1'(30-1)-2726.
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468 R. ROSKIES

example, the s-wave constraints are (in units where 4m>=1)
1

[(1 — 8)(2f(s) — 51 (s))ds =0,

0

(1.1)

1

/(1_3) (f(O) +2f(2) ) s =20 ,

0

where f,”(s) denotes the s-wave with isospin I. These constraints are not only
necessary but sufficient. That means, given f” and f{* satisfying (1.1), that there
always exist amplitudes with the proper crossing properties, of which fo, 2
are the I =0, 2 s-waves respectively. Similarly, the five constraints on s and p
waves are sufficient to ensure the existence of amplitudes with the proper
crossing properties, of which the given waves are the s and p waves.

These relations always involve the amplitudes in an unphysical region.
But using dispersion relations, it is possible to transform them into constraints
on the imaginary parts of partial waves in the physical region. However, in
this form the constraints are not very useful because they involve an infinite
number of partial waves.

The chief use of the constraints will be to models for the low partial waves
of r scattering which do not have crossing built in. By adjusting some para-
meters in the model, one can try to ensure the validity of our relations, thus
guaranteeing that crossing is satisfied for the partial waves under consideration.
Or else, given models for the partial-wave amplitudes, one could insert them
in our relations to get a feeling for how badly crossing symmetry is violated
in the models.

The paper is organized as follows. In Sect. 2, we review some kinematic
aspects of wr scattering. In Sect. 3, we outline the Nuyts-Balanchandran ap-
proach to this problem and derive the form of the crossing equations, which
are solved in Sect. 4. In Sect. 5, we apply this solution to derive constraints
on the amplitudes. In Sect. 6, we discuss how these results could be applied
to various models of trr scattering, and in Sect. 7 we apply them to the Brown
and Goble model, in an attempt to use our crossing relations to determine the o
mass from the p mass. The attempt is unsuccessful and reasons for the failure
are discussed. Finally, the conclusions are presented in Sect. 8.

2. — Kinematics of =m scattering.

The amplitude for nn scattering in the s-channel can be written as (%)

(2.1)  Tup,5(8,t,u)= 0up0ys A(8y T, ) 4 0,055 B(s, 1, u) -+ 04505, C(8, L, %) 4

(%) G. F. Cugw and 8. ManpELsTAM: Phys. Rev., 119, 467 (1960).
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where «fi(yd) denote the isospin indices of the outgoing (incoming) pions (see
the Figure). By crossing symmetry,

2.2) Als, ¢, u) = A(s, u, 1),
(2.3) B(s, £, u) = A(t, s, ) ,
(2.4) Ofs, t, u) = A{u, 1, s) .

In the s-channel, the isospin amplitudes are given hy

(2.5)  TO(s, 1, u) = 3A(s, 1, u) + A(t, 5, w)+ A(u, 5, 1) ,
(2.6) TO(s, 8, u) = Aty s, u)— A(u, s, t),

2.1y Tw(s,t,u)= Alt, s, u)+ A, s, 1) .

The amplitudes T, TV and T® will be compatible
with crossing symmetry and isospin invariance if and
only if we can find a fonction Afs, ¢, %) subject to (2.2), . ,

. Fig. 1. - Schematic
such that (2.5)-(2.7) are valid. diagram of = seat-

As a function of three variables, 4 can be written tering, with isospin
as a linear combination of functions which transform indices «, B, v, o.
irreducibly under the permutation group operating on
the variables s, ¢ and u. It is shown in Appendix A that, in view of (2.2), the
most general 4 can be written as

(2.8)  A(s, t,u)=f(s,t, u) + (28—t —w)g(s, t, u) + (282 — 12— wd)h(s, t, u)

where f, g and & are totally symmetric in s, £, w. In terms of these new functions,
we ¢an write

(2.9)  T(s, 1, u) = Bf(s, t, u) + 2(2s —t —u)g(s, t, u)+ 2(2s* — 12 — ut)his, t, u),
(210) T(l)(sy b u) = 30— u)g(s, t, w) + 3(* — uz)h(s’: t,u),

(211)  T©(s, 8, u) = 2f(s, t, u) + (t + u—28)g(s, t, u) + (2 + u?— 282 h(s, t, u) .
The amplitudes 7", TV, T® will be consistent with crossing and isospin inva-
riance if and only if there exist three totally symmetric functions £, g, A such
that (2.9)-(2.11) hold. In the next Sections, we shall exploit the ideas of

BALACHANDRAN and NUVTS t6 examine the implications of {2.9)-(2.11} for the
partial-wave amplitudes.

30 — I7 Nuovo Cimento A.
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3. — The Balachandran-Nuyts approach.

The investigations of BALACHANDRAN and NUYTS (%) have indicated that
to simplify crosting symmetry, it is useful to expand the amplitudes in the
Mandelstam triangle (s>0, ¢>0, #>0), in terms of the functions

(3.1) 8 _(s, 1) = (1 — ) P& (2s —1) P (2,) ,

where P, is the Legendre polynomial, P74 is the Jacobi polynomial (), 2,
is the scattering angle in the s-chaunel

21

(3.2) Zp=14 ",
s—1]

o is an integer running from I to co, and we have taken units such that

(3.3) dmi=1.
We shall denote the Mandelstam triangle by 4.
We write

(3.4} T, 1, my =S T Blo 4 IN3L -+ 1M, 8; (s, 1)

1=0 g=1
where (a!”), are constants to be determined. Since S!_,(s,t) form a complete
orthogonal set In A, any #2-function can be expanded in terms of them.
(We assume that T%(s, ?, u) has no poles in 4, so that the expansion (3.4) is
possible.) The advantages of this particular complete set are twofold. First,
the partial-wave expansion is easily obtained, namely

©

(3.5) ’:-)<$) . 22(0_ + 1)(a;i))l<1 —5)1 P;ﬁi‘;lm)(zs__l) ,

a=l
where ' 1s 1he I-th partial wave of isospin 1. Secondly there exists a sell-adjont
operator (£) 0, symmetric under permutations of ¢, #, 4 of which all the functions
8'_,(s, 1) are eigenfunctions with eigenvalues o(c + 2), dependent only on o

and not on I. This simplifies the crossing relations enormously, as we now show.
The usual crossing relations can be formulated as

2
(3.6) T(i)(t7 8y u) = EAHT‘”(& &, u),

i=0

(%) Sec, fov exatnple, Higher Transcendental Kunclious, Rateman Manuscript Project,
odited by A. EmpELYI, voll 2 iNew Tork, 1953).



CROSSING RESTRICTIONS ON 7t PARTIAL WAVES 471

where 4,; is the crossing matrix. Substituting (3.4) gives

(3.7) E Z o'+ D)2V + 1)(ag), 8, _p(t, 8) =

Ve0 o=l
<« o 2
=23 220+ 1ERL+1) 3 A,(a)),8!_(s,1) .

=0 o=l j=0

Using the orthogonality relation (2)
1
(3'8) (Sc—ly S;n—m) = dsds S(lr—l(87 t) S:‘—m (87 i) =. YOS 5£m 50’1’ ’
2(0 + D)L 4 1)
we find
(3.9) al)y =3 D20+ 1)21 + 1) EA“ al)(Th_p, 8L,
I=0 o=1 J=0

where
(3.10) TV (s, 1) = SE_u(t, s) .

Since both Tfj’._,,, S!_, are eigenfunctions of O with eigenvalues ¢'(¢' + 2)
and o{o + 2) respectively, the scalar product on the right-hand side of {3.9)
vanishes unless ¢ - ¢’. Thus, the crossing relations, expressed as contraints
on the (a”),, take the form of finite-dimensional matrix equations involving only
those a’s with the same value of 6. They are

2 o
(3'11) (‘L) z EG” ” (:)

im0 =0
where
(3.12) Gon=2(c - 1)2L + 1) 4, (T" ., 8.

The explicit form of G can be worked out but is not necessary for what follows.

The problem of finding the most general amplitude consistent with cros-
sing symmetry is the problem of finding all the eigenvectors of G of eigenvalue 1.
We shall now do this by exploiting the result of Sect. 2.

4. — Solution of the crossing problem.
In this Section, we follow the techniques of I very closely. Briefly, the

idea is the following. The amplitudes T given by (2.9)-(2.11) will satisfy cros-
sing symmetry for any choice of symmetric functions f, g, b and will therefore



472 R. ROSKIES

have an expansion of the form (3.4) with (a{”), satisfying the crossing equation
(3.11). By choosing a complete set of functions for f, g, h we will generate a com-
plete basis for the solutions of (3.11). In particular, we shall take f, ¢, » to be

symmetric polynomials in s, ¢, 4, which are also polynomials in the variables

(4.1) x=st+su+4tu,
(4.2) Yy = stu,
(4.3) w=s+tt+u=1.

As an example, suppose

(4~4) f(37 2 u) = xmyq ) 9(87 12 u) = h(S, , u)=0.
Then

(4.5)  TO(s,t, u) = Bamyi— 3

=0 o

M s

20 + 1)(21 + 1) (a2 ), 8:_ (s, 1),

i

Il

8

8

(4.6) T, t, u) =0 = > 2(c + 1)(2L+ 1) (a0 ), 8L_i(5, 1),

1=0 o=1

@ [-+

(4.7) T(s, b, u) = 2amy?=> >2(c+ 1)21+ 1) (a;fq)la)lS(’,_l(s, ).

1=0 o=l

Since both sides of (4.5)-(4.7) are polynomials in s and ¢, the sums on the right
are finite sums; there is no question of convergence, and the equality holds
for all s and ¢.

Now consider the limit s — oo, 2z, fixed. In this limit

(4.8) ¢ Ng(z—l),
(4.9) u%—%(z—kl),
so that

(4.10) r A~ — s (zz j 3) ;
(4.11) Y~ — g (?zzl),

so that the left-hand side of (4.5) goes as

2 3 m z?.__l q
582m+3q(_1)m+q (?fi_) ( 47) .
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Each term on the right-hand side of (4.5) is a polynomial of degree ¢ in s,
so that, asymptotically, the terms with the highest value of ¢ will dominate, and
the largest o must be of the form

(4.12) o=2m+ 3¢q.
For this value of ¢, using the asymptotic result (%)

(20 + 1)!

g . ol pllriey ~ f__ 4 . -
(+.13) G Pl s =D~ =0 et 14 1)

89,

and equating the leading terms in s, we find

(B (21N
(414)  B(—1)w (7) ( L.ﬁ) _
S ¢ . » . (204 1)IPy2)
3 200+ 1021+ ity e (1) G

i

This relation is easily inverted to give

L v /a2 n .
($15) (@@ ) = (— 1yienra T DO 1A ”-"/(~ j:g) (2_2_4_1

o+l 2 ) picra:

with ¢ given by (4.12). Similarly we find, for this value of o,

(4.16) (@), =% (@),
(4.17) (@) ), = 0.

Equations {4.15)-(4.17} give one solution of the crossing eqnation (3.11) when ¢
is given by (4.12). For fixed g, there are as many solutions of this kind as there
are ditferent solutions of (4.12) for nonnegative integer m, q. As was shown
in I, these solutions can be put in one-to-one correspondence with the integers
in the closed interval [o/3, /2]

One can repeat the same kind of calculation by taking f=h=0 and
g=a"y" or f=¢g=0 and h=2"y"% In that way, we generate different solu-
tions of (3.11). The arguments of I show that these solutions are linearly
independent, and form a complete basis for the solutions of (3.11). After
doing the simple calculations, one finds that the most general solutions of (3.11)

() Ref. (®), vol. 2, p. 170, and vol. 1, p. 61.
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can be written as

{o/2} [{o—1)2] [(o—2)/2]
(4.18) (af,m); = z 50;(“2); + 2 Zd:(ﬂ;)z + Z 26;(72)1 y
p={o/3} p={(c—1)/8} p={(c—2)/3}

[(e—1)/2] [(g—2)/2]

(419)  @p= 3 @EOD+ 3 36D,

p={(c—1)/3} p={(c—2)/3}
fol21 [(o—1)/21 {o—2)/2)
(4.20) (@)= 2 26, — > &BN— X €00,
p={al3} p={tg—1)/3} p={(c—2)/3}

7 i 7 T et o
with ¢f, d7, ¢7 arbitrary constants and

(4.21) @), = (6—Dic+1+1) ![Pl(z)(zz + Byro(l — gt)o-2rde
(4.22) (B = (6—hYo+1+1) !/-Pl(z)(zﬁ + Bymoty(] — g2jo-w-1dp

1

R T

—1

(4.23) .= (e—Dla+ 1+ 1)

(420 (@Eh=—(e—Dlo+1+1)! f P(#)(e* + B)7oH(1 —r)e-mzds,

—1

(4.25) (), = (6—) o+ 1+1) ![Pl(z)(zg + 3)r-ata(] — g2)o-2r-2zdp |

-1

We have used the notation

{s]3} = (smallest nonnegative integer > 5/3) ,

[0/2] = (largest integer< ¢/2).

5. — Results.

We insert the solutions (4.18)-(4.20) into the expansion (3.5). This will
give us the most general expression for the partial-wave amplitudes in 4 which
have the proper crossing properties. The point of these solutions is that the
arbitrary constants ¢;, d;, e; do not depend on I, which gives rise to correlations
among the partial-wave amplitudes.



CROSSING RESTRICTIONS ON n% PARTIAL WAVES 475

Suppose, for example, that the s-waves for I=0,2 are known. By the
completeness and orthogonality of P”(2s—1) on the interval 0<s<1, this

fixes (al), and (a?), for each o, i.e. it fixes

[a/2] Ho—1)/2] f(g—2)/2]

(5.1) (@)= 2 Beleg)+ X 2dy),+ X 2¢(;),
p={c!3} p={(c—1)/3} p={(g—2)/3}

and
[o/2] [to—1)/2] [(o—2)/2]

(5.2) (@)= X 26)— ¥ df),— 3T €0,
p={a/3} p={(c—1)/3} p={(c—2)/3}

Suppose ¢=0. Then

(8.3) (@5”)o = 5¢5(%g)q »
(5.4) (@”)o = 2¢0(og), 5
i.e.

(3.5) (@)= § (@), .

But from (3.5) and the orthogonality of P%”(2s —1), we can write

1
(5.6) (") = f (1 — ) fi(s) ds
;
go that (5.5) becomes
1 1

(5.7) f(l —8) ) (s) ds = g[(l —8)f&(s)ds .

[} ]

This is one constraint on the s-waves of nn scattering. Now suppose o= 1.
Then

(5.8) (@)= 2d3(63), ,
(5.9) (@3")g = — dy(By)y »
so that

(5.10) (@) + 2(a), == 0.

Writing this as an integral relation, we have

1

(5.11) f(l —8)(Bs —1){(f(s) + 2/e7(s))ds = 0 .

0
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Since the =°x® amplitude is 1 (74 27), this result can also be written as

(5.12) /.(1-—8)(38—1)]’30(8)(18:0,

0

where f3°(s) is the n°n® s-wave. This equation was already derived in I.

One can see that there are no more restrictions on the s-waves from cros-
sing alone, because, for 0>2, at least two arbitrary constants enter into (a.”),
and (a ff’)o, so that no relation exists between them. If the p-wave is also con-

sidered, we find one more relation for ¢ =1, another for ¢ = 2 and another
for ¢ = 3. These are

(5.13) ( (0)) + 2( (])) _ 0’
(5.14) 2(&;0))0—5(0,(22))0: 6(‘1’;1))1 ’
(5-13) 2(57)o —B(a5")y = —15(45"); .

The integral form of these relations can be written as

16) [0 9Es—1iPw s ——2[u—s e,
B1T) [0 )05t DA — 515 9) s 6 (1 — s — 1) 20,

1

(5.18) f(] — §)(38% — 4552 + 155 — 1)(2f(s) — 5/P(s)) ds

Q
)3

=—1 f(] —8)2(218*—12¢ -+ 1) {V(s)ds.

o

For arbitrary o, the unknowns are ¢, d7 and e, for appropriate values of p.
The number of unknowns is [¢/2] + 1. The knowledge of all partial waves
t< L, for all isospins, determines [3L/2] 4- 2 conditions. Consequently, given
all partial waves for I< L for all isospins, the number of constraints for a given
o is (assuming o> 1)

(5.19) [%] — H +1,
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if this number is positive. Thus for L =1, we find two constraints for
o=1, one for 6 =2, and one for ¢ =3. Gong to the d-waves yields ten
more constraints, and higher waves lead to even more.

It should be stressed that the constraints we have derived are not only
necessary but sufficient. That is, given functions fi” and f* satisfying (5.7)
and (5.11), there exist crossing symmetric amplutudes 7°(s, ¢, u) of which £
and f¥ are the I=0 and I=2 s-waves, respectively. In this sense, (5.7)
and (5.11) express the full content of crossing symmetry when restricted to
s-waves. Similarly, the addition of (5.16)-(5.18) to these two relations ex-
presses the full content of crossing symmetry applied to s and p waves.

Using the Froissart-Gribov representation for the partial waves, the infe-
gral equalities can be rewritten as constraints on the absorptive parts. For
1>2, we have (")

=]

) 2 2 2¢
(5.20) = =02 s e (2 1),

1

where A%(s, t) is the absorptive part in the t-channel with isospin ¢ in the s-chan-
nel. Beecause of the possibility of subtractions, the representation may not be
valid for { =0 or l=1. But, following MARTIN (¥}, we show in Appendix B
that the s and p waves ean be determined in fterms of the absorptive parts
up to the arbitrariness

(5.21) o (8) > f(s) + ba +2b(3s —1),
(5.22) M(s) = f2(s) — b(1—3s),
(5.23) P8y —=>12(s) + 24— b@Bs—1),

where o and b are arbitrary constants.

Having expressed the partial waves in ferms of the absorptive parts, we
can rewrite all the constraints like (5.7), (5.11) in terms of integrals over the
absorptive parts Ay(s, t) or (d/ds)AY%(s, t), where the integration domain is
0<s<1, 1< t< co. Recalling that

© 9
(5.24) A0, 0= S+ D @ p (14 )

=0

() Y. 8. Jix and A. MaRTIN: Phys. Rec., 135, B 1375 (1964).
("} A. Magtin: Nuovoe Cimento, 47 A, 265 (1967).
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these constraints become integral constraints of the form

(5.25) fdtz > Im () B =0,

im0 1=0
1

where B;”(t) are known functions. These equations (for different n) are the
necessary and sufficient conditions on the absorptive parts in the physical
region to ensure crossing symmetry (provided f,(f) i3 such that the amplitude
has the requisite analyticity so that the usual dispersion relations are satisfied).
Moreover, from the derivation, it follows that the relations are independent
for different n.

For example, the relation (5.11) can be rewritten as

o 1
(5.26) fdtjds [AYYs, t) + 245, )]
1 0

P . ! 1 1 2 In- i
(=)@ —1) g + s |

1 ]
+ 25(1 —s) [mjiyzm(T—W]} =

In principle, expanding AY 4 24 in terms of partial waves in the ¢-channel,
as in (5.24), one could perform the integral over s to obtain a relation like (5.25),
but it is difficult to get a closed-form expression for B’ (t).

6. — Applicability.

The chief application of the results of Sect. 5 will be to models for the low
partial waves of nm scattering, which do not have crossing symmetry built
in. For example, in a model for s and p waves, one could try to choose some of
the parameters in the model so that (5.7), (5.11) and (5.16)-(5.18) were satisfied.
One would then have incorporated the full content of crossing symmetry into
these models. (We are implicitly assuming that the models can be continued
into the unphysical region 0<s<1.)

For example, WANDERS and his collaborators (*) construct models for the
s-waves of wr seattering with free parameters which they fit so that the ampli-
tudes are consistent with all the constraints which have been derived on the

(°) G. AusEkrsoN, 0. P1¢uer and G. WanDErs: Phys. Leil., 28 B, 41 (1968).
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basis of analyticity, unitarity and crossing. Although ATxINSON (*°) has shown
that there is a very large class of functions, labelled by a symmetric function
of two variables, consistent with these general principles, the work of MARTIN
and his co-workers (1) has shown that for low partial waves, at least, the ampli-
tudes are numerically constrained below threshold. The authors of ref. (%)
choose a particular parametrization of the s-wave amplitudes which automatic-
ally satisfies elastic unitarity, and which has free parameters. They find that
the constraints of ref. (1) severely restrict their parameters, and lead to phase
shifts in the physical region which are in rough agreement with experiment.

Our results represent further constraints. Since they are equalities, they
serve to eliminate some of the parameters, rather than to restrict their range,
as do the inequalities of ref. (). Furthermore, WANDERS (?) has pointed out
that since the aim of his work is to obtain results on the general shape of the
phase shifts, our constraints, involving integrals over the amplitudes, are perhaps
better suited to this purpose than those of MARTIN, which often take the form
of inequalities on the amplitudes at certain isolated values of s. It should be
pointed out, though, that MARTIN has really derived inequalities over a range
of s, but that they are sharpest at the isolated values which he tabulates.

Another application could be to the theory of Padé approximants applied
to the partial waves of mr scattering, derived in some Lagrangian frame-
work (**). By taking the Padé approximant of the partial-wave amplitudes,
one can satisfy unitarity, but one violates crossing. By comparing various terms
in our equations, one has a measure of how badly crossing symmetry is violated
in this way. This check has been carried out by BASDEVANT et al. () for the
Padé treatment of the Ag* theory, and indicates that crossing is very well
satisfied.

Still another application could be to models which attempt to unitarize
crossing symmetric amplitudes, e.g. Lovelace’s work (**) on nr scattering based
on the Veneziano model. LOVELACE inferprets the Veneziano amplitude as
the K-matrix. In thiz way, he automatically satisfies unitarity and violates
crossing. But since the left-hand cut in his model is largely arbitrary, one could

(1) D. ArriNsoN: Nuel. Phys.,, B7, 375 (1968); B 8, 377 (1968).

(1) A. MartIN: Nuovo Cimento, 4T A, 265 (1967); 58 A, 303 (1968); CERN pre-
print TH. 1008 (1969); A. K. Common: Nuovo Cimento, 53 A, 946 (1968); 56 A, 524
(1968); G. AUBERSON et al.: CERN preprint TH. 1032 (1969).

(1?) G. WANDERS: private communication.

(**) Bec, for example, D. Brssis and M. PustERLA: Nuovo Cimento, 54 A, 243 (1968);
J. L. Basprvanrt, D. Brssis and J. ZINN-JUSTIN: Nuovo Cimento, 60 A, 185 (1969);
J. L. Basprvant and B. W. Lre: Saclay preprint DPh-T/69-27 (1969).

(1) J. L. Baspuvaxr, G. Couex-Taxxounsi and A. Morun: CERN preprint
TH. 1063 (1969),

(**) C. LoverLace: CERN preprint TH. 1041, presented at the Adrgonne Conference
on wrx and Kx Interactions (May 1969).
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try to determine it in the low partial waves to be congistent with our crossing
relations. A similar problem will be investigated in more detail in the next
Section.

7. — The model of Brown and Goble.

Browx~ and GoOBLE () have given a particular prescription for unitarizing
the current algebra results on wn scattering. They write, for the s and p waves

" f(li)c.a.(s}
Y O TP )

where £,7%*(s) is the current algebra result (). From elastic unitarity, one has

. k
(7.2) ImA{(s) = — 5 4m2 < s < 16my,
where
(7.3) s = 4(k* 4 m2) .

In order not to build in a singularity at s= 0, they chose

(7.4) 12(s) =

ik 2%k (\/3 + 2k
_ ]n . .

——— I v (€3]
Vs T ays ™\ m )*k’ )

T

where k{’(s) must be a real analytic function without cuts in the range 0 <
< s< 16m?. Their initial choice was to take k" = 0 for the s-waves, and a
constant for the p-wave. The constant was chosen so that £i’(s) has a resonance
at the mass of the g. They then found that the ¢ width was well predicted
(~130 MeV). This success can perhaps be taken as evidence that their form
for the p-wave is reasonable from threshold up to the p mass.

However, recent data (**) have shown evidence for a resonance in the
I—=0 s-wave as well. This was not obtained in their initial formula, which
took k®(s)=0. In analogy with the p-wave, they then (%) took kD (s) to

(%) L. Brow~ and R. GoBLE: Phys. Rev. Lett., 20, 346 (1968).

(") 8. WEINBERG: Phys. Rev. Lett., 17, 616 (1966).

(1) W. D. WALKER, J. CARROLL, A. GARFINBEL and B. Y. Ou: Phys. Rev. Letl.,
18, 630 (1967); E. Mavamup and P. E. Scuruix: Phys. Rev. Lett., 19, 1056 (1967);
S. MARATECK, V. Hacorian, W. SELOVE, L. JacoBs, I'. OPPENHEIMER, W. ScHULTZ,
L. J. GurAy, D. H. MitLER, J. PrENTICE, E. WEsT and W. D. WALKER: Phys. Rev.
Lett., 21, 1613 (1968).

(3% L. Brow~ and R Gosre: University of Washington preprint (1969).
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be a constant, whose value was chosen to reproduce the ¢ mass. They have
shawn that for

(7.5) my > 700 MeV

their formula is consistent with the phase shifts of ref. ('®).

However, by unitarizing the amplitudes, they have destroyed the cros-
sing symmetry of the current algebra result. We have attempted to restore
the crossing symmetry by using the relations of Seet. 5. If one is interested
only in the I=0 s-wave and I=1 p-wuve, there is only one relation

1 1

(1.6) /(1 —$)(35—1) f(s) = —2](1 — 5)f(s) ds

0 [

in units where 4m2 —=1. (Since we shall discuss only the I=0 s-wave and
I=1 p-waves, we can drop the isospin superscript.) If one takes Brown and
Goble’s form for f;, and parametrizes f, as in (7.1), (7.4), with k, an arbitrary
constant, one can try to solve for %, by imposing (7.6). One would then have
a prediction ou the o mass based on the p-wave and erossing.

The integrals cannot be done analytically, but we have compared both
sides of (7.6) numerically for different values of m,. The result is that it is
not possible to satisfy that relation for any value of the ¢ mass above threshold.
This means that the parametrization of BRow~ and GOBLE is not satisfactory
in the region 0<s<1.

One can explain the failure of the parametrization as follows. The unitari-
zation has given the amplitudes the right analytic structure above s=1,
but their parametrization has no left-hand cut at all. But we know from cros-
sing and unitarity (2¢) that f’(s) must have a cut beginning at s=0, and
with a discontinuity behaving hke

(7.7) Im £ (s) ( () + —lfm l) (— )3,
(78) lm]c(l) ( If(O) I + “(2) |) —8)§,

for s< 0, |s| small. Because of the factors (1 —s), (1 —s)? (7.6) is more sen-
sitive to the amplitudes near s = 0 than to their values near ¢s=1, and

{*°} See, for example, G. WanNDErs awad O, PiGUET: Nuavo Cimento, 58 A. 417 (1968),
Appendix,
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since the amplitudes have the wrong analytic form near s =0, it is not sar-
prising that (7.6) is violated.

One can try to choose ki(s) to have a branch point at s=0 with the
proper discontinuity. The results will depend on how one parametrizes the
function. We chose two different parametrizations of k,(s), which were motiv-
ated by the following considerations. k;(s) must have a discontinuity behaving
like s* near s= 0. Moreover, we want k,(s) to tend to a constant at large s,
so that the singularity at s =0 does not affect the form of the amplitude
near the o- or p-meson. Finally, we want the current algebra result to be ap-
proximately valid in the region 0 < s<1, which is the smoothness assumption
of PCAC. From (7.1) this will be true if

(7.9) h(s)fo™(s) < 1, 0-s<l.

Numerically, f;*(s) is small, so that (7.9) will be satisfied if A,(s) does not
have a pole in the region 0 <s<1 or if the pole of k,(s) coincides with the zero
of fi*.

The first choice of k;(s) was

Xy

(7.10) kis) = e+ ey

where ¢,, a; are constants to be determined, and s, is the location of the zero
of the current algebra amplitude f*. The parameters «, were fitted to sat-
isfy (7.7), (7.8) where f{”(1) was taken to be the current algebra value. This
choice of f’(1) was reasonable in view of (7.9). ¢, was then fitted to repro-
duce the p-resonance and ¢, was determined from (7.6). The result was again
that no value of m_, above threshold was consistent with (7.6).

The second parametrization was

st
(7.11) (o) = i
where a,, b, are constants to be determined. o, was again determined by (7.7)
and (7.8), and b, chosen to produce the g pole. a, and b, then have the same sign
80 that k,(s) is not singular in the region 0 <s<1. However, if b, is to give rise
to a o resonance, we find that a, and b, must have opposite signs and that k,(s)
must have a pole in the region 0 <s< 1. The location of this pole does not coin-
cide with the current algebra zero, so that condition (7.9) is violated. This
solution for b, would give rise to two zeros of f”(s) in the region 0 < s< 1,
whereas current algebra predicts only one. This would violate the spirit of
PCAC.
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In summary, we have not found a parametrization of the I=0 s-wave
which is consistent with unitarity, the validity of the current algebra and PCAC,
the crossing relations (7.6)-(7.8), and the existence of a p and s resonance.

One can interpret this in two possible ways. First, perbaps none of the
parametrizations we gave was really adequate. Since (7.6) is sensitive to the
amplitudes near s =0, one should perhaps have taken greater care in de-
termining Imf,(s) on the left-hand cut. In fact, given an assumed form for
the s and p waves near threshold, the arguments leading to (7.7) and (7.8)
can also fix the coefficients of (—s)%, (—s)F and (—)? in Imf”(s). The in-
clusion of these higher terms will define the left-hand cut much more precisely,
and it is possible that a parametrization which satisfies these constraints would
be consistent with all the principles outlined above.

It may also be that no simple parametrization of the amplitudes will have
the features of the p and o resonances, the current algebra, unitarity and cros-
sing symmetry. This view has some support from the investigations of ref. (°)
into wm amplitudes consistent with Martin’s results (1) and satisfying elastic
unitarity. In their parametrization they cannot reproduce Weinberg’s scat-
tering-length predictions. There is no doubt that there exist functions con-
sistent with all the properties listed above. For example, Iliopoulos’ (31) so-
lutien a} is consistent with crossing, current algebra, the constraints of Martin,
and unitarity to a given order in (1 -—s). Although this model cannot in-
corporate resonances, one could extrapolate it to higher s in many ways, so
as to yield a ¢ and a p. But the hope of Bkowr and GoBLE was more ambitious.
They wanted a simple parametrization (however badly defined that may be)
valid from threshold up to the p mass at least, satistying elastic unitarity exactly,
congistent with current algebra and predicting the resonances. The constraints
of crossing may mean that their functions have to be quite complicated.

One point should be emphasized in these considerations. Since the ampli-
tudes should be well approximated by the current algebra results, one might
argue that changes in k,(s) conld hardly affect the validity of (7.6). However,
since the current algebra results are built to be consistent with crossing, they
automatically statisfy (7.6), so that one should really interpret that equation
as a relation on the deviations from the current algebra predictions. Then
changes in k,(s) play a significant role.

8. — Conelusions.

We have found the necessary and sufficient conditions on the nw partial-
wave amplitudes in the region 0 < s<4m’ which follow from, and ensure, cros-

(21) J. ILtorouros: Nuove Cimento, 53 A, 552 (1968). Sec also G. AUBERSON et al.:
CERN preprint TH. 1032 (1969).
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sing symmetry. Moreover, we have found the most general parametrization
of the mw amplitudes in the Mandelstam triangle which is consistent with cros-
sing symmetry.

It follows from this parametrization that if, for example, we are given s
and p waves consistent with the relations (5.9), (5.11), (5.16)-(5.18), then it
is possible to construct many different amplitudes with the proper crossing
properties of which the given waves are the s and p waves. It will usunally be
the case, however, that none of these amplitudes will have other desirable
properties like unitarity or analyticity. That is to say, these other principles
restrict the s and p waves further than our relations do. Examples of such re-
strictions are given in ref. (11).

In this respect our work is complementary to that of YNDURAIN (22), who
has found the necessary and sufficient conditions on, for example, the n°r® par-
tial-wave amplitudes below threshold which follow from and ensure the proper
analyticity and the positivity of the absorptive part. Combining his constraints
with our general parametrization will give the necessary and sufficient condi-
tions to ensure crossing, analyticity and the positivity of the absortive part.
So far, however, it has been very difficult to extract any significant conse-
quences from the combination of the two approaches.

One of the limitations of our results is that the constraints are formulated
in the region 0 <s<4m2. Using dispersion relations, we have shown how these
constraints can be rewritten as constraints on the imaginary parts of the partial-
wave amplitudes in the physical region. But the equations do not seem very
useful in this form, since each involves an infinite number of partial waves.

We have suggested that these constraints would be most useful in models
for the partial-wave amplitudes which do not have crossing built in, for it might
be possible to adjust certain parameters to guarantee that crossing is not
violated in the low partial waves. In these models, we could also test how badly
crossing symmetry is violated, by comparing various terms in our equations.

We have applied our ideas to the model for nr scattering due to BROWN
and GoBLE. We have tried to use the freedom of their model to satisfy the
one relation between the I= 0 s-wave and the I=1 p-wave in an attempt
to determine the ¢ mass from the p mass. But we have not found a simple par-
ametrization for which this rather naive «bootstrap»is successful, and consistent
with current algebra and PCAC. We have suggested that the failure can be
traced to an improper treatment of the left-hand cut, or else that our attempt
to find simple parametrizations for the s and p waves, consistent with unitarity,
current algebra, the existence of the p and o and crossing, is over-ambitious.
We hope to pursue this matter further in a later work.

(*2) F. J. YNDURAIN: CERN preprint TH. 1045 (1969).
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The next problem that arises is the generalization of these techniques to
processes with unequal mass, or with spin. The general framework for the
unequal-mass case, or the case of w.N> scattering, has been developed by Bara-
CHANDRAN et al. (**). However, since the application of these techniques will
probably be to models for the low partial-wave amplitudes, it may not be
necessary to find the general solution to the crossing equations. It is important
to find all the constraints on the low partial waves, and to write them out
explicitly, so that they can be readily applied. The technique for this has
heen given in ref. ('4), for any elastic-scattering processes.

It is also possible to derive results on arbitrary processes relating the low
partial waves of AB - (D to those of AC -> BD. This depends on the exist-
ence of a region IR in the (s, f)-plane with the following property: for fixed
8, 2, varies from —1 to 1; for fixed ¢, z, varies from —1 to 1, and similarly
for fixed . Such a region always exists (24) if the scattering particles are stable,
and not massless. We continue the full amplitudes of AB— CD or AC — BD
into this region, where the crossing condition implies that they are equal. We
then multiply the two amplitudes by the same polynomial in s and ¢, and integrate
over 2. The results must still be equal. Since for fixed s, ¢ is linear in z,, and
for fixed ¢, sis linear in z,, we then get integral relations between a finite number
of partial waves In the two channels. Crossing symmetry in R is equivalent to
satisfying these constraints, for arbitrary polynomials in s and ¢, because a
function orthogonal to all polynomials in R necessarily vanishes.

% ok ok

It is a pleasure to acknowledge fruitful discussions with S. CoLEMAN, R. L.
GoBLE, H. HARARI, M. KUGLER, A. MARTIN, O. PIGUET and G. WANDERS.
I am indebted to Y. Zarmr for carrying out the computer caleulations mentioned
in Sect. 7. Finally, T am gratefnl for the generous hospitality of the Department
of Nuclear Physics at the Weizmann Institute, and of the Theoretical Study
Division at CERN.

APPENDIX A

We wish to show that if F(s, , u) is an analytic function in a domain D
where D is invariant under all permutations on s, t, u, then on D we can

{(**) A. P. BALACHANDRAN el al.: Syracuse University preprint NY0-3399-192
SU-1206-192 (1969).

(*}) T au deeply grateful to 8. Corenman for pointing this out to me, and for o discus-
sion of the points that follow.

31 - Il Nuovo Cimento A.
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uniquely write F'(s, t, 4) as

(A.1) Flsyty u) =1(s, 8, w) + (28 —t—u) ga(s, ¢, w) + (E—u) guls, 1, u) +
+ (28— ) b5y by ) + (12— w?) hy(sy 8y u) + (s — ) (¢ — w)(u—8) (s, 8, u) ,
where f, g1, ¢», M, hy, j are symmetric functions which are analyiic in D.
This decomposition of F is the decomposition into irreducible representa-
tions under the group S, of permutations of s, ¢, # where f and j correspond
to the symmetric and antisymmetric terms, respectively, while the terms

with ¢, and ¢, or h, and h, form bases for the mixed representation in which
the (f, ) permutation is taken to be of the form

10
(A.2) (tu) = ( ) .
0 —1

To prove the decomposition, we first project out those pieces of F' trans-
forming according to a given row of a given representation. So we define
(A3)  S(s,t,u) =w[F(s, t,u)+ F(t, u, s) + Pluy s, 1) +

- B8, uy t) + F(t, 8, u) -+ Flu, t, s)],
(A)  A(s,t,u) =s[F(s,t, u)+ F(t,u,s) + Flu, 8, 1) —
— P(s, u, t) — I(t, 8, u) — F(u, t, s)],
(A.5) M (s, 1, u) = §[2F(s, t, u) — F(t, u, 8) — F(u, s, 1) +
+ 2F(s, u, t) — F(t, 8, u) — Fu, t, 8)],
(A.6) My(s, t,u) = §[2F(s, t, u) — F(t, u, 8) — F(u, s, 1) —
— 2F (s, u, t) + F(t, 8, u) + F(u, t, 8)],
so that

(A.T) F=8S+A+ M+ M,.
We now identify

(A.8) f(s, t, u) = S(s, t, u),

(A.9) (s — 1)t —u)(u—8Yj(s, t, u) = A(s, &y u)

(A.10) (28—t —u) gu(s, 1, w) + (282 —t2—u®) by(s, t, u) = My(s, t, u),

(A.11) (t— ) ga(s, £, w) + (82— u?) hy(s, t, w) = My(s, {, %) .

Tt is clear that f(s,t, u) is totally symmetric and analytic in D. Similmly,
j(s, t, u), being the quotlent of two totally antlsymme’rue functions, is sym-

metric. Moreover, it is andlytl( because A is an(ulytlo and @ntlsymmetrle,
so that A/(s—)(f—u)(w—s) i3 also analytie. It remains to show that M,
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M, have the representations (A.10) and (A.11). We write

Mi(sy 1, u)(s® + w? —20%] — My(t 8, w)[¢* + u®—2s?]
2 : = A
(A.12) g1(8, 1, ) 3(,_8)(84@‘)(“_0 ’

Mi(s, 1, w)[2t —s —u]— My(ty s, u)[2s — T — o]
(A.13) hi(s, t, u) = B(— 8)(5 — ) (00— 1) ,

(A1) Fel$y tyu) = — (t— $ (Q_u)(u_ t) ’

- . M o8y 4y w)(u —s) — My(t, s, u)(u —¥)
(AI5)  hy(s, t, u) = (905 — W) —1) .

It is easy to show that this ansatz satisfies (A.10) and (A.11), and using (A.5)
and (A.6), it also follows that g,, g,, hy, by are symmetric and analytic in D.

To prove the uniqueness of the decomposition, it is sufficient to prove the
linear independence of the terms on the right-hand side of (A.1), i.e. that if
F(s, t, ) vanishes identically, so do f, ¢, §», M, ks, j. Using the result that
terms corresponding to different representations, or differenf rows of the same
representation, are independent, it remains to show that if

{A.16) (28 —t—u)gyls, 1, w) 4 (28— 2 —u) hy(s, 1, u) = 0
and
(A.17) (E—u) ga(s, By w) 4 (82— u®) hy(s, t, u) =0,

then ¢y, hy, g, hy all vanish. Suppose for example that ¢, 0. Then

Qe —F—
(A.18) o 8 tz uzz_lzl(s, tu)
—tr g1(8, &, u)

The right-hand side of this equation is totally symmetric; the left-hand side
is not, which is a contradiction. Thus g, must vanish and similarly, ¢,, Ay, kb
also vanish.

It is also clear that if F(s,t, %) is symmetric in ¢ and «, then Gsy hyy 7 oall
vanish.

2

ArpPENDIX B

Given the Froissart-Gribov representation for partial waves for I >2,

@

(B.1) i) = =iy 2 ]A“’<s 90 ; ‘”q—l)dz,

1
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we wish to solve for the partial waves fi”, f°, fi" in terms of the absorptive
parts AY(s, ).

For i =0, 2, we write

(B.2) TV ) = 3 @1 D) Pie) =
(B.3) O £ S (L D) Py

1evenzz2

Inserting (B.1) into (B.3), and using the Darboux-Christoffel formula

2 lw—z " w +z

levenz>2 ~

e 3 erenp@em—g Lt e on (B )],

we find

(B.5)  T9(s, 1) = fo'(s) +
1 . 1 1 ] t
e /A[il s i - . _ .
T a ‘(Q’t)[t’—t+t'+t+s—1 l*slnt'Jrs——]]

1

Similarly, we can write for i =1

2 1
(B.6)  TY(s, t) = 3f{"(s) (1 + ;._t f) + ;Jdt/Ai”(s, t')-
1
' 1 —s—28) [2¢+8—1 !
[t 1 +<>(1 $ ‘t) t+s In-. t4_2”'
t'—t '+t s—1 (1 —s)? 1—s '+ s—1

In the t-channel, we have T©(t, s) and T*¥(t, s) symmetric under inter-
change of s and u, while 7V(, ) is antisymmetric. This implies

(B.7) Tty 8)]4eu= 0,

=0.

8=u

d' K0) _i (2),
(B.8) ST s) = - Tt o)

But since s +t4u =1, treating s and ¢ as independent we find that

(B.9) t=1—2s
assures that

(B.10) s=u.

Using the eqs. (B.7) and (B.8), the crossing relations

2
(B.11) Tty s) = 3 A, T9s, 1)
j=0
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where
1/3 1 5/3
(B.12) A,=11/3 12 —5/6 |,

13 —12 16

i

and the representations (13.5) and (B.6), we find equations for
2 (1 2{ —2)
@ e e (T T,

1df9(s) 5 drd(s df (s 1 —2 L (1—=2
o L R[S (1 ) g o

ds 3 ds ds

Ldf(s) 1 afds) 3 [dfd(s) 2(1—2s5) a1 —28)
55— += —_ = ! —9 -
(0) 3 ds ‘ 6 ds 2 ds (l - (‘) [}

in terms of the absorptive parts. These determine /3, /7 and f{’ up to solutions

of the homogeneous equations

(B.13) (@) = (b) = (¢) = 0.

The solution of (B.13) can be obtained by adding (b)-+2(¢) to obtain
(B.14) o (8) + 2/ (x) = const,

solving for ji from (a), inserting this solution into (b) and using (B.14) to
¢hminate /¥ to get an clementary equation for /. The vesult is that the
amplitudes f”, /¢7, fi' are determined by the absorptive parts up to the

ambiguity

{13.15} SO () > fO(sh + S 2b(3s — 1),
(B.16) Ps) > () — (1 — %),
(B.17) () = 1P(8) + 2a—b(3s — 1),

where @, b are arbitrary constants.

It is easy to see from our expressions (4.18)-(4.20) that the ambiguity in
1oy £, 1 is given by (B.15)-(B. 1() Since the absorptive part fixes all partial
waves for {2, all the (*oeﬂi(icnis ¢y, Ay ¢p arve fixed for o2, The coefficients
for 6==0 and o¢=1 a'e ¢; and d} respe: tlvelv They enter only into the s
abd p waves, and are ftherefore not determined by the absorptive part. Leaving
them arbitrary, and using (3.5), (4.19)- (4£.22) and (4.24}) gives the result

(B.15)-(B.17).
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RIASSUNTO (%)

Si trova una parametrizzazione per le pit generali ampiezze d’onda parziale di nx,
coerenti con la simmetria incrociata e ’invarianza di isespin. Cid permette di serivere
tutti i vineoli sulle ampiezze d’onda parziale che derivano dalla simmetria ineroeiata
¢ lassicurano. 8i discute come queste relazioni possano essere utili ¢ si applicano in
particolare al modello di Brown e Goble per lo scattering mr.

(") Traduzione a cura della Redazione.

Kpoccnnr-orpannqelmn HA TT-HAPIHAJIbHbIE BOJIHbI.

Pesrome (*). — Mol ITosy4aeM napaMeTpU3aLuio 1js Hanbosiee OOMINX o7 NMapIraibHbIX
aMIUIMTYI, COTJIACYIOIIMECH ¢ KPOCCHHT-CUMMETPUE ¥ M3OCTIMHOBON MHBAPUAHTHOCTLIO.
JTO MO3BOJISIET HAM 3aIMCATb BCE OTPAHMYEHHUS HA MAPLUAINbHBIE AMILIUTYABI, KOTOPLIE
CNEnyIOT U3, U KOTOpble OBECrevnBaroT KPOCCHHI-CHMMETPHIO. 3aTeM Mbl oOCykaaeM,
KaK 3TH COOTHOLIEHHS MOTYT ObITh MCHOJB30BaHbI, U TPUMEHSIEM HX, B YaCTHOCTH, K
monenu bpayna u I'obna nmns nn paccesHus.

(*) IIepesedeno peoaryueii.



