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Admissible approximations for essential boundary conditions 
in the reproducing kernel particle method 
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Abstract In the reproducing kernel particle method 
(RKPM), and meshless methods in general, enforcement of 
essential boundary conditions is awkward as the approx- 
imations do not satisfy the Kronecker delta condition and 
are not admissible in the Galerkin formulation as they fail 
to vanish at essential boundaries. Typically, Lagrange 
multipliers, modified variational principles, or a coupling 
procedure with finite elements have been used to cir- 
cumvent these shortcomings. 

Two methods of generating admissible meshless ap- 
proximations, are presented; one in which the RKPM 
correction function equals zero at the boundary, and an- 
other in which the domain of the window function is se- 
lected such that the approximate vanishes at the boundary. 
An extension of the RKPM dilation parameter is also in- 
troduced, providing the capability to generate approx- 
imations with arbitrarily shaped supports. This feature is 
particularly useful for generating approximations near 
boundaries that conform to the geometry of the boundary. 
Additional issues such as degeneration of shape functions 
from 2D to 1D and moment matrix conditioning are also 
addressed. 

1 
Introduction 
In applying the Galerkin method to meshless methods 
such as the reproducing kernel particle method (RKPM) 
(Liu, Chen, Jun, Chen, Belytschko, Pan, Uras, and Chang, 
1996; Liu, Chen, Chang, and Belytschko, 1996; Liu and 
Chen, 1995; Liu, ]un, Li, Adee, and Belytschko, 1995; Liu, 
Jun, and Zhang, 1995), difficulties arise because the ap- 
proximates or shape functions generally do not satisfy the 
Kronecker delta condition. Furthermore, the approximates 
are not guaranteed to vanish at boundaries where essential 
boundary conditions are prescribed. 

Many solutions to this problem have been proposed for 
the various meshless methods. For example the element 
free Galerkin method (EFG) has incorporated Lagrange 
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multipliers (Belytschko, Lu, and Gu, 1994), modified var- 
iational principles (Lu, Belytschko, and Gu, 1994), and a 
coupling procedure with the finite element method 
(Krongauz and Belytschko, 1996). The h-p cloud method 
has implemented Lagrange multipliers and has also re- 
ported that a method which incorporates singular weight- 
ing functions in Galerkin method format shows promise 
(Duarte and Oden, 1995). The finite point method (FPM) 
advocates point-wise enforcement of essential boundaries 
(Ofiate, Idelsohn, Zienkiewicz, Taylor, and Sacco, 1996). 
Other proposed methods include penalty methods, collo- 
cation, and perturbed Lagrangian. 

While these methods provide a means of overcoming the 
inherent difficulties of meshless methods, none has yet 
provided an inclusive method of conveniently handling 
boundaries with essential conditions. Furthermore, each 
method has limitations and drawbacks. For example, La- 
grange multipliers pose difficulties in that the resulting 
stiffness matrix is no longer positive definite or banded, 
and the size of the problem is increased. While modified 
variational principles enable the stiffness matrix to remain 
positive definite and banded, they are reported to be less 
accurate and are rather inconvenient. Coupling with finite 
elements negates some of the advantages of meshless ap- 
proximates and can result in discontinuities in the deri- 
vatives of the approximates. 

In the finite element method, essential boundary condi- 
tions are efficiently enforced because the shape functions of 
nodes not lying on the essential boundary automatically 
vanish at the boundary. Furthermore, the FEM approx- 
imations possess the Kronecker delta property. As a result 
a zero displacement boundary condition, for example, can 
be easily satisfied by setting the nodal values of nodes lying 
on the boundary to zero. A positive definite stiffness ma- 
trix results and the size of the problem is actually reduced. 
This method of enforcing essential boundary conditions 
has proved very convenient and intuitive. 

At this point it is not realistic to think that the classical 
method of handling essential boundaries in the finite 
element method can be fully extended to meshless meth- 
ods, however, there is evidence that a similar approach 
can be used successfully on a number of important 
boundaries (Liu, Li, and Belytschko, 1996). Specifically, by 
utilizing the flexibility of the meshless shape functions, the 
shape functions can be enforced to vanish at essential 
boundaries. In RKPM it can be seen by the definition of 
the shape function 

= c ( x ; x -  x )AVj 



that if either the correction function, C(x; x - xj), or the 
window function, qbaj (x - xj), equals zero at the boundary, 
the shape function itself will equal zero. By utilizing this 
concept and by introducing an extension of the dilation 
parameter termed a dilation function, aj(x), shape func- 
tions in the vicinity of an essential boundary condition can 
be made to conform to the boundary and vanish at the 
boundary. 

The organization of the paper is as follows. Section 2 
provides a brief review of the reproducing kernel particle 
method while Section 3 incorporates the new concept of a 
dilation function. The (Bubnov-) Galerkin Method is de- 
scribed in the context of meshless methods in Section 4. 
Section 5 is a study of admissible approximations near 
essential boundaries and is followed by numerical ex- 
amples in Section 6. Conclusions are given in Section 7. 

2 
Review of the reproducing kernel particle method (RKPM) 
The purpose of this section is to review the main features 
of the reproducing kernel particle method and present it in 
a format that can be readily implemented. A body fl in ~2 
will be considered with independent variables x, where 

Ix,, 
The mathematical foundation of the method is a con- 

tinuous convolution defined to be the reproducing equa- 
tion 

/.,/Ra(x) = s  u(y)q~a(y)(X-- y) dfly . (2.1) 

Here u R~ (x) is a reproduced function of the original 
function, u(y), operated on a projector or window, 
~b~(y) (x - y). In solving partial differential equations, the 
reproducing kernel particle method solves a weak form of 
the problem incorporating the Galerkin method. In order 
to more accurately solve problems of finite domains, Liu 
(Liu, Jun, and Zhang, 1995) introduced a correction 
function which modifies the window to maintain com- 
pleteness near boundaries. 

2.1 
Reproducing conditions 
The underlying motivation of RKPM is to represent a gi- 
ven function exactly up to a specified polynomial order 
over the entire domain. For linear reproducing conditions 
u(y) of the continuous convolution is approximated with a 
first order accurate Taylor series expansion about x. 

u(y) ~ U(X) --[(Xl --yl)U,x, (X) 
(2.2) 

+(x2 - r2)U,x2 (x)] 

The expansion is then substituted into Eq. (2.1) yielding 

uRn(x) ~- u(x) s  ~ba(r)(x - y)d•y 

- -  U , X  1 (X) Of~v(Xl - - y l ) ~ a ( y ) ( X  -- y ) d n  r 

--Ux2(X ) f(X2--y2)G(r)(X--y)df]y . (2.3) 
an~ 

The integrals in Eq. (2.3) can be used to define moments of 
the window function. 

f 
moo(a,x) = L qSa(Y) ( x -  y )d~y  (2.4a) 

y 

ml0(a,x) = s  -ya)qSa(y)(x-  y)df~y (2.4b) 

m01(a,x) = s  --y2)q~a(y)(X -- y )dny (2.4c) 

In general the moments are defined as, 

mq(a,x)  = L ~ ( x l  - ya) i (x2  - y2Y 

x 4a(y)(x - y)d~y . (2.5) 

Rewriting Eq. (2.3) using the moment  definitions (2.4) 
gives 

U R~ (X) ~ u(x)moo(a, x) -- U,x, (x)mlo(a, x) 

- U,x2 (x)m0, Ca, x) . (2.6) 

In order for the approximated function to be reproduced 
exactly, the following reproducing conditons need to be 
satisfied. 

m00(a, x) = 1 (2.7a) 

ml0(a, x) = 0 (2.7b) 

tool Ca, x) = 0 (2.7c) 

or mij(a, x) = (~oi(~oj  . (2.8) 

An arbitrarily chosen window function does not necessa- 
rily satisfy these reproducing conditions. Therefore a 
corrected window function is obtained by modifying the 
original window with a polynomial correction function, 
C(x; x - y), such that the reproducing conditions are sa- 
tisfied. The definition used in this approach is 

(~a(y) (X -- y )  = C(X; X -- y)(ba(y ) (x -- y) 

= [b00(a, x) + bl0(a, x)(xl - y a )  

+ b01 Ca, x)(x2 - y2)]qSa(y)(X - y) 

= Pr(x  - y)b(a, x)q~a(y ) (x - y) , (2.9) 

with [1] 
P ( x - y )  = (Xl - Y l )  and 

(x2 - y2) J 

b ( a , x )  = b ,0 (a ,x )  
b01(a,x) 

To calculate the correction coefficients, b(a, x), the re- 
producing conditions are applied to the corrected window 
function. By definition (2.9), the moments of the corrected 
window function are: 
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/ *  

fft/j(a, x) = J~,, (X 1 - -  y ,  ) i ( x  2 - -  y 2 )  j 
/ .  

• ~a(y)(x - y)day (2.10) 

From the above definitions, a moment matrix can be de- 
fined as 

M(a, x) = s  P(x - y) pr(x - y) 

• q~a(y)(X -- y)df~y . (2.11) 

By expanding the moment matrix, it is easily seen that the 
correction coefficients are obtained via the following linear 
algebraic system of equations satisfying the reproducing 
conditions 

I #too(a, x)] [ moo(a,x) mlo(a,x) 

~,0(a, x) = m2o(a, x) 
toOl (a, x) [ symmetric 

blo(a, x) = or 

_ b01 (a, x) 

mol(a,x) ] 

mn(a,x) 

mo2(a, x) 

(2.12) 

ria(a, x) = M(a, x)b(a, x) = P(O) , 

where p T ( 0 )  = [1 0 0]. The correction coefficients are thus 
defined by the following relation 

b(a, x) = M(a, x)-lp(o) . (2.13) 

2.2 
First derivative reproducing conditions 
The first derivative of the reproducing equation, Eq. (2.1), 
with corrected window is defined by 

L, d duRa(x)  = u(Y)~x ((Oa(y)(x- y))dDy . (2.14) 

Expanding u(y) in a first order accurate Taylor series, as 
was done for the reproduced function, and representing 
the integral expressions with moments of the derivatives of 
the corrected window function, fnij,x, Eq. (2.14) can be 
represented as 

d bl Ra ( x )  ~ u ( x ) / ~ / 0 0 , x ( a  , x )  - -  U , X  1 (X)fftl0,x(a, x) 

- -  U , x  2 (X)Y?/0,1,x(a , X) , ( 2 . 1 5 )  

where 

f x fftOO,x(a, x) = Jt~, dxx ( a(y)( - y))df~y (2.16a) 

ff /10,x(a,  x )  = s --yl) 

• ~ (~a(y) (X -- y))df~y (2.16b) 

f 
m01,x(a, x) = Jo.(X2 -- y2) 

) ,  

. dx (a(y) (x - y))df~y (2.16c) 

In order to approximate u~l (x) and U,Rx"2 (x), definitions 
(2.16) must be constrained such that the following re- 
producing conditions are satisfied 

~Hij,xl = --(~li(~oj for U~ (X) , (2.17) 

and 

f f l i j ,x2 = --(~Oi~)2j for U,Rx2 (x) . (2.18) 

In general, 2D reproducing conditions for the yth deriva- 
tive are 

fnij,7172 = (--1)i+Ji!j!f#,(Sj~,2 , (2.19) 

where 71 represents the order of the partial derivative with 
respect to xl, and Y2 represents the order of the partial 
derivative with respect to x2. 

Expressing the moments of the corrected window deri- 
vatives, ff~ij,x, in terms of moment derivatives of the un- 
corrected window, mij,x, correction coefficients and their 
derivatives yields a system of equations which can be used 
to derive the correction coefficient derivatives. For ex- 
ample the following relation is obtained for the the deri- 
vative with respect to Xl subject to the above derivative 
reproducing conditions 

moo,x 1 mlo,x 1 mol,x 1 moo mlo m o l ]  

J mlo,x 1 --moo m20,x 1 - -mlo  ml l ,x  I - -mol  mlo m20 m l l  

mol,x 1 mll,x 1 mo2,x I toOl mll m02 

boo 

bxo [o]~ b01 
= a (2.20) 

b00,x 1 

blo x 1 

. b o l  x 1 

By incorporating the reproducing conditions of Eqs. (2.7) 
into Eq. 2.20, the following simplification results 

[ _  _ _ moo m o moll 
mlo,x 1 m20,x I ml l ,x  1 mlo m20 m l l  

mol,x I ml l ,x  1 mo2,x I m01 m l l  m02 

boo 

b o [:jo 
bo~ 

bo0,x 1 

bl0 x 1 

bol x 1 

This result is equivalent to the derivative of Eq. (2.12) 

M(a, x)b(a, x) = P(0) , 

which is 

M,x (a, x)b(a, x) + M(a, x)b,x (a, x) = 0 . 

(2.21) 



Thus the derivatives of the correction coefficients can be 
expressed as 

b,x (a, x) = - M  - 1  (a, x)M,x (a, x)b(a, x) . 

This formulation has been termed the fast derivative 
computation (Belytschko, Krongauz, Fleming, Organ, and 
Liu, 1996). 

2.3 
Discretization 
For problems in computational mechanics the convolution 
equation (2.1) is discretized with trapezoidal rules and 
represented as 

NP 
u Rh (x) = Z u(xj )gpa, (x - xj)AVj , (2.22) 

j=l 

where NP is the number of particles and the subscript h is 
associated with a discretized domain. 

While the reproducing conditions have been presented 
in a continuous case, in implementation the equations are 
also discretized. To ensure that the sum of the shape 
functions, Nj(x), equal one over the entire domain, the 
same integration rule used to discretize the reproducing 
equation must be used for the moments and their deri- 
vatives. The discrete moments using trapezoidal integra- 
tion are thus defined as 

thij(a, x) = Z ( x  - Xk)iCy -- yk )  j 
k (2.23) 

x G (x - xk)AVk . 

Note that the discrete moment matrix/Vl(a, x) is non-sin- 
gular provided there is an admissible particle distribution. 
For conditions governing an admissible particle distribu- 
tion refer to (Liu, Li, and Belytschko, 1996). 
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Fig. 1. Kronecker delta condition of quadratic basis shape functions 

the nodal values, the coefficients must be transformed 
using the RKPM shape functions. 

An interesting property of one dimensional RKPM 
shape functions, and meshless interpolants in general, 
occurs when the shape function covers a number of nodes 
equal to the number of monomials in it basis. For example 
if a shape function with a quadratic basis (three mono- 
mials: 1, x, x 2) covers three nodes, Kronecker delta shape 
functions will result as in Fig. 1. Beissel and Belytschko 
(1996) report that this feature can be extended to higher 
dimensions with non-concentric weighting functions. In 
one dimensional boundary value problems, this feature is 
very advantageous for handling essential boundary con- 
ditions. 

Derivatives of the shape funcitons are obtained by 
straight forward differentiation with respect to x. For ex- 
ample the first partial derivatives of linear two dimen- 
sional shape functions are 
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2.4 
Shape funaions 
The reproducing equations, Eq. (2.22), can be expressed in 
terms of global shape functions in the usual manner as 

NP 
uRh(x) = Z N j ( x ) u ( x j )  , (2.24) 

j=l 

where the global shape functions are defined to be 

N~(x) = G , ( x  - x;)AVj 
(2.25) 

= C(x;x  - x s ) G , ( x  - x ; ) a v j .  

Note that a convenient particle weight definition is to use a 
product rule such as, AV = AxjAx2. If AVj = 1, the dis- 
crete reproducing equation can be interpreted as a mod- 
ified Moving Least Square approximation (Liu, Li, and 
Belytschko, 1996). 

In general, uR~(xj) # U(Xj) because Ni(x j )  # 3ij where 6ij 
is the Kronecker delta equaling one when i = j and zero 
otherwise. While the RKPM shape functions cannot be 
strictly interpreted as an interpolant, for practical pur- 
poses it can be viewed as such (Lancaster and Salkauskas, 
1981). In order for the nodal coefficients to correspond to 

[ N~, 1 (x) ] [ {G, (*;*-*j)% (~-*j)+C(x;x-xj)%x, (x-.j) }aVj ] 

J [ {cx2(x;x-xj)%(x-*J)+e(x,x-"J)%,#x-x;)}avJ J ' 
L NJ'*~(x) (2.26) 

where the derivative of C(x; x - xj) is obtained as follows 

C,x(X;X-  xj)b( , x) 

+ Pr(x  - xj)b x(a, x) . (2.27) 

3 
Incorporation of dilation function 
As seen in the previous Section, the standard RKPM for- 
mulation allows only for a constant dilation at each node. 
Thus each node may have an associated window function 
with an oval or rectangular support in two dimensions; a 
square and circular support being special cases. In order to 
form window functions and thus shape functions with 
arbitrary supports, the reproducing kernel particle method 
can be extended to naturally include this feature. In the 
standard definition of the reproducing equation 

u R" (x) = f u(y)~a(y)(x - y)d~~y , (3.1) 
aay 
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the dilation, a(y) is viewed only as a function o fy  in the 
continuous sense. Thus when the reproducing equation is 
discretized, the dilation becomes a nodal parameter, aj. 

However, if the continuous reproducing equation is in- 
terpreted as follows 

u R~ (x) = ~ ,  u(Y)0a(x,y)(x - y)df~), , (3.2) 

with the dilation defined as a(x, y), the dilation becomes 
aj(x) when discretized. The end result is a versatile dilation 
function. With the incorporation of the dilation function, 
the reproducing conditions of RKPM remain the same as 
derived in Section 2, and only the window function is 
modified. 

The motivation for a dilation with spatial dependence, is 
to incorporate the ability to generate conforming shape 
functions in the context of meshless methods. The term 
conforming shape function is used here to imply shape 
functions generated with compactly supported window 
functions over arbitrary domains. Thus shape functions 
can be generated over supports other than ovals or rec- 
tangles. This property is especially desirable for shape 
functions near essential boundary conditions. 

3.1 
Dilation function definitions 
The form of the dilation function is similar to that of the 
standard dilation parameter (Liu, Iun, and Zhang, 1995) 
and is explicitly defined as the following dot product 

aj(x) = rj(x)Axj = Z N~(x)raAxj no sum on j . 
d=l 

(3.3) 

Here, rj(x) is a non-dimensional refinement vector asso- 
ciated with a particle and kxj is a vector pertaining to the 
particle weight. Components of the vectors correspond to 
the space dimensions. The interpolants, NJ(x), are used to 
generate sufficiently smooth dilation functions given a set 
of t/dilation values. Obvious candidates for these inter- 
polants are Lagrange or spline interpolants. 

Figure 2 demonstrates the implementation of the above 
concepts. By using boundary and nodal information, re- 
finement values, rd, can be selected such that a portion of 

(x4,y4) (x3,Y3) 
) 

(rx4,ry4) (r• 

Node 

S u p p o r t  of  shape  
func t ion  

(rx l , ryO . , 
% .  . . , (rx2,ry2, 

 x.,y.i 

(x5,Ys) EsX'sential boundary 

Fig. 2. Conforming shape function diagram near an essential 
boundary condition 

the shape function's perimeter can represent a boundary 
modeled by a polynomial curve. The number of points 
interpolated along the boundary will determine the order 
of polynomial that can be represented. 

3.2 
Window function 
The window function, referred to as a weighting function 
in other meshless methods, is usually a compactly sup- 
ported function and has the ability to be translated and 
dilated. It is defined by 

(x  - xj~ (3.4) 
= E(aj)  \ aj(x) / ' 

where E(aj) is a normalization factor that ensures the area 
of the window is equal to one. 

While the choice of the optimal window remains an 
open issue, the cubic spline has been a popular choice due 
to its compact support, explicit form, and smoothness. The 
one dimensional cubic spline window is defined as 

( 1 ( Z + 2 )  3 

[2_Z2(1+~) 
Oaj(x) = E(aj){ 2 z2(1 _~)  

[o (Z-2)3 

~ r - 2 < z < - I  
~ r - l < z < O  
~ r O < z < l  

~ r l < z < 2  
~ r  Iz[ > 2 

where the following transformation is used 
x -  xj 

Z - -  - -  

as(x) 
With the addition of the dilation 
the cubic spline window is 

�9 1 (z + 2)2dz for 

- z ( J z  + 2)dz for 

e~(x)=e(aj)~ z ( J z -  2)dz for 

- � 8 9  2)2dz for 

0 for 

where 

(3.5) 

function, the derivative of 

- 2 < z < - 1  

- l < z < 0  

0 < z < l  

1 < z < 2  

[z] > 2 (3.6) 

1 ! X - - X j  

dz - aj(x) aj(x) a ~  ' 

and a~(x) is obtained from differentiating Eq. (3.3) and j \  ] 
multiplying by the particle weight. Figure 3 shows a 
symmetric window generated with a constant dilation and 
a skewed window obtained with a linear dilation function. 

It is reiterated that the normalization factor E(aj) is a 
constant used to normalize the window. With the dilation 
function, the normalization factor in the continuous sense 
is defined as 

1 , x - x j ]  
 Io, l = j U . I,.71 

While the introduction of spatial dependence on the di- 
lation complicates the normalization, it is not necessary to 
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Fig. 3. a,b. Symmetric window with constant dilation and skewed 
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differentiate it when taking the derivative of the window 
function since its only purpose is to normalize the win- 
dow. Moreover, the normalization factor is not a strict 
requirement and in the discrete case could be approxi- 
mated or even neglected as in other meshless methods. 

4 
The (Bubnov-) Galerkin method 

4.1 
Overview 
While variations of the Galerkin method have been widely 
applied to meshless methods, a strict application of the 
(Bubnov-) Galerkin method has not. Following the ap- 
proach of Hughes (1987), the (Bubnov-) Galerkin method, 
commonly referred to as simply the Galerkin method, uses 
two sets of functions to formulate a variational form of the 
strong form. One set consists of trial functions and the 
other consists of test functions. 

,_q = {U[U E H 1, U ----gonFg} (trial functions) (4.1a) 

v ={wlw e n ' , w  = 0 on Fg} 

(test functions) (4.1b) 

The boundary of the domain is defined by the following 

F e U Fh = F (boundary) (4.2a) 

F'g fq ]7h = ~1 (empty set) , (4.2b) 

where Fg is an essential boundary, F h is a natural 
boundary and g is the prescribed essential boundary 
condition. 

The discretized test functions in meshless methods ty- 
pically do not satisfy the condition that they vanish on the 
essential boundary. However, by selectively choosing the 
dilation, window and particle distribution, RKPM shape 
functions can be devised such that the following finite 
dimensional approximations of S and ?,  denoted S h and 
~)h respectively, satisfy the following 

S h = {uhtu  h 6 H ' ,  u h = gh on F'g} (4.3a) 

V h = {whl wh E H ' , w  h = 0 on Fg} , (4.3b) 

where S h and F h are subsets of S and V. While it is re- 
quired that u h and w h E H 1 for 2nd order problems, 
RKPM shape functions can be H m, or continuous to any 
degree for higher order problems. 

In the classical Galerkin approach, the trial functions are 
defined to consist of the following approximations 

u h = v  h + g h  , (4.4) 

where v h are usually taken identical to w h, the test function 
approximations, and gh are arbitrary approximations used 
to represent the prescribed essential boundary condition. 
It is important to note that unlike current meshless 
method test functions, all members of v h vanish on Fg in 
this formulation. 

The approximations of v h, gh, and w h consist of the 
following interpolation expressions 

vh(x)=  ~ Nj(x)v(xj) (4.5)  

jCNP-tlg 

d(x)  =  j(x)g(xj) (4.6) 
jE~g 

wh(x)---- Z Nj(x)w(xj) , (4.7) 
jffNP-tlg 

where Nj(x) are standard RKPM shape functions and/~/j(x) 
are constructed from reproducing conditions such that 
completeness is maintained throughout the domain (Liu, 
Chen, and Uras, 1995). The variable ~/g denotes the set of 
nodes that reside on the essential boundary. 

To clarify the above formulation, the discretization of a 
one dimensional domain with NP nodes is presented in 
Fig. 4. For illustrative purposes, the boundary points are 
comprised of an essential boundary condition Fg on the 
left and a natural boundary condition Fg on the right. The 
nodes not associated with the essential boundary are 
numbered from 1 thru neq where neq represents the 
number of global equations to be solved. The node be- 
longing to the essential boundary is labeled neq+l.  Thus, 
neq + 1 E t/~ and t, ..., neq E NP - rig. The approxima- 
tions, v h ana  w h, can then be comprised of identical shape 
functions associated with the particles belonging to the set, 
NP - t/g, while the essential boundary condition on Fg is 
represented with N,  eq+l (Fg). The trial and test collections 
are comprised of the following shape functions, 

S h = {N1, N2, ..., Nneq, Nneq+l } (4.8) 
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FQ Fh 

neq+l 1 2 3 . . .  neq 

Fig. 4. Nodal numbering for one dimensional Galerkin description 

~flh = {N1, N2 , . . . ,  N n e q }  �9 (4.9) 

Unlike the finite element method in which the shape 
satisfy the Kronecker delta condition, RKPM shape func- 
tions in general do not. Therefore nodal displacements 
must be imposed indirectly on the global system of 
equations. For example, to represent gh (X) on Fg over the 
nodes belonging to tlg with the approximation of Eq. (4.6), 
the nodal displacements, g(XA), are obtained by solving a 
linear system of equations. For {1, ..., n} E t/g the follow- 
ing system would result. 

NI(X1) N2 (Xl) . . .  Nn (Xl )1  g ( x l )  

gl!x2). N2 (x2) . . . . .  ". Sn !x2)1. g(x2). 

LN,(x.) N2(xn)... N.ixn) J g(x.) 

P gh(xl) l 

__ 7 (x=)I (4.10) 

Lgh(x.) J 
Having evaluated the nodal values on the essential 

boundary, the global matrix equation can be manipulated 
in the usual FEM manner to enforce the essential boundary 
condition. The global system is thereby reduced to the 
number of degrees of freedom for the particles belonging 
to N P -  tlg. The stiffness matrix also remains positive 
definite, banded, and symmetric for the case when v h is 
identical to w h. 

4.2 
Elastostatic formulation 
Linear elastostatics can be posed in the following manner, 

V . a + f = 0  in f~ (4.11a) 

u = g on Fg (4.11b) 

n . t r = h  on Fh , (4.11c) 

where a is the Cauchy stress tensor, fis a body force, g is the 
prescribed displacement on the essential boundary Fg and 
h is the prescribed traction on the natural boundary Fh. 

The constitutive relation is 

&ij = Cijklekl , (4.12) 

where the strain-displacement equation is 

1 
6.kl • ~ (Uk, 1 At- Ul,k) . (4.13) 

The strong form is multiplied by the test function and 
integrated over the domain to obtain the weak form 

a(w, u) ---- (w, f) + (w, h)r  . (4.14) 

where a(-, .) and (., .) are symmetric bilinear operators 
defined by 

a(w, u) -= / W(i,j)CijklV(k,l)d~ , (4.15a) 

(w, f) = / wifid~ , (4.15b) 

f] 

nsd 

( w ' h ) F  = Z ( i wihid[') . (4.15C) 
i=1 Fh~ 

Substituting the shape function approximations, the 
matrix form is obtained from the following Galerkin form 

a(wL 4') =(wL f) 
+ (wh, h)r  - a(wh, g h) . (4.16) 

5 
Implementation of admissible approximations 
This Section provides conditions for generating admissible 
shape functions in the proximity of essential boundaries 
by forcing either the correction function or window 
function equal to zero at the boundary. For one dimen- 
sional problems both methods are fairly straightforward 
and shed light on the main concepts of constructing ad- 
missible approximations. In two dimensions matters are 
more complicated in that boundaries can take on many 
different shapes. Curved as well as straight boundaries will 
be addressed. 

5.1 
Forcing the correction function to equal zero 

5.1.1 
One dimension 
In the one dimensional case, for all V h to vanish at the 
boundary, the Kronecker delta condition must exist at that 
boundary. Consequently, the essential boundary condition 
can be enforced simply by setting the nodal coefficient 
equal to the prescribed value in the global matrix equation, 
avoiding the procedure of transforming the nodal coeffi- 
cients as described in Section 4. 

In order for the shape functions near the essential 
boundary condition to satisfy the above conditions 
through the correction function, the associated dilations 
must be chosen in accordance to the Kronecker delta 
conditions of Section 2. Consequently for a linear basis, 
the shape function at the boundary must cover two nodes 
and likewise, for a quadratic basis, the shape function 
must cover three nodes. 

To verify the Kronecker delta condition at the essential 
boundary condition for a linear basis, it can be shown 
using the notation of Fig. 5 that 

N 1 (x)  = C(x; x - -  X l ) r  I ( X  - -  Xl)AX 1 =- 1 

at x =  Xl , 
(5.1) 

where C(x; x -  xx) = bo(a, x) + bl (a, x ) ( x -  xl). Evaluat- 
ing the shape function at x = Xl simplifies Eq. (5.1) 
yielding 



r~ 

X l  X 2 X3 �9 �9 �9 Xn  

Fig. 5. One dimensional particle distribution notation near an 
essential boundary condition 

1.2 

1.0 

0.8 

0.6 

NI(X1) = bo(a, xl)~)al(O)Axl �9 (5.2) 0.4 

The correction coefficients, bo(a, xl) and bl(a, xl),  are 0.2 
obtained from one dimensional linear reproducing con- 
ditions as described in Section 2. 0: 

[ ] mo(a ,x)  rhl (a, x) [bo(a, xl)  (5.3) a 0 
/~/1 (a, x) ~12 (a, X) [bl (a ,  xl)  ---- ' 1.2 

where s thl (a ,x)  and rh2(a,x) are the discrete 1.0 
moments of the moment matrix. 

Representing bo(a, Xl) in terms of discrete moments and 0.8 
substituting into Eq. (5.2) yields 

0.8 
NI(X1) = m2(a,x]) (~al(0)AXl . (5.4) 

/ n 0  ( a , x l )  rh2  ( a , x l )  - r n l  ( a , x l ) 2  0.4 
Evaluating the moments for the case in which the dila- 

tion parameters are selected such that only two nodes o.a 
contribute at the boundary yields 0 

__rip CaJ (x xj)Axj  ~bax(0)Ax I b -~ = - = o 

j = l  

np 
17111 = E (X -- Xj)r (X -- xj)Axj 

j=l  ( 5 .5 )  

= (Xl - X2)dPa2 (Xl~a2 X~ ) Ax2 

np 
a2 = xj )24oj(x-  x:)ax: 

j=l 

X 2 = ( X l -  2) C a 2 ( ~ 2 x 2 ) A x 2  �9 

By representing rh2 is terms of rhl 

/~/2 z (X 1 -- X2)Yp/1 , (5.6) 

a factor of Y~/1 c a n  be canceled out of Eq. (5.4) giving, 

(Xl - 
NI(x l )  = (X 1 __ X 2 ) / , ~ / O  __  / ~ 1  q~a'(0)Ax' " (5.7) 

Noting from Eq. (5.5) that 

(X 1 -- X2)Yt/0 = (X 1 -- X2)r ' (0)Ax, -~- /~1 , (5.8) 

a final form is obtained that is clearly equal to 1. 

NI(X1) = (Xl-X2)r  = 1 . (5.9) 
(X 1 -- X2)r ' (0)AXl 

By showing that the shape function associated with the 
node at the boundary is equal to 1, it can be concluded that 
all interior shape functions must vanish at the boundary to 
satisfy consistency. 

i i i L i i i 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.'1 0]2 0.'3 014 0'.5 0'.8 0'.7 0'.8 0'.9 1.0 

Fig. 6. a,b. Kronecker delta property of shape functions at boundary 
achieved by choosing dilations such that the correction function 
of the node adjacent to the boundary equals zero at the boundary. 
(a) Linear basis. (b) Quadratic basis 

The above condition holds for any compactly supported 
window function. The dilation criteria near the essential 
boundary to generate admissible linear and quadratic ba- 
sis shape functions for the Galerkin method is given by the 
following equations. 

X3 - - X  1 

< al ~ Zbnd Zbnd 
linear basis : x2-~1 < a2 < x3 x, Zbn d Zbnd 

an < x,-xl n = 3 , . . .  , N P  
Zbnd 

I X4 --X 1 x3-x_! < al ~ Zbnd Zbn d 
x3-x~ < a2 < x4-x~ quadratic basis : zb,a zb, a 

x,-x~ n =  3 , . . . , N P  an < Zbnd 

where it is assumed the window function has been defined 
to be nonzero over the range [--Zbnd, Zbnd]. For example, 
Zbnd = 2 for the cubic spline window function given in 
Section 3. The above equations are valid for nonuniform as 
well as uniform particle distributions. Examples of one 
dimensional admissible shape functions for linear and 
quadratic bases are depicted in Fig. 6. 

5.1.2 
Two dimensions 
In two dimensions, the requirement of the shape functions 
in the proximity of an essential boundary equal to zero at 
the boundary as a result of the correction function 
equaling zero is much more involved than in the one di- 
mensional case. An example for which this occurs follows 
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for a uniform discretization, of grid size hx by hy, along the 
boundary as depicted in Fig. 7. Constant dilations of 
ax = hx and ay = h e along with a linear basis are assumed. 
By evaluating the correction function at an arbitrary point 
along the boundary (2, - h y )  for a particle I located at 
(0,0), it will be shown that with the proper choice of 
window function, shape functions adjacent to an essential 
boundary can vanish at every point along the boundary 
making them admissible. 

From the definition of the RKPM shape function 

N~(x) = C(x; x - x~)~,, (x - x~)AV~ , (5.10) 

we see that if the correction function C(x; x - x/) equals 
zero, then the shape function will also equal zero. The 
correction function for a linear basis is defined as 

C(x;  x - x])  = b00(a,  J~) AV bx0(a , x ) ( x  - x])  

+ bol (a, x)(v - yj)  . (5.11) 

In solving for the correction coefficients, the discrete 
moment matrix is inverted and multiplied by P(O) yielding 

b(a, x) = ~I(a, x ) - l p ( o )  . (5.12) 

By setting C(x; x - Xl) equals to zero and factoring out 
the determinant of the moment matrix, the following is 
obtained. 

A , ,  - A , 2 ( x -  1i)  + A13(Y-)1I) = 0 , (5.13) 

where Aat, and Atz,  and A~3 are the cofactors of ~ l ( a , x )  
defined by 

- 2  
A l l  = ffl20ttl02 - -  m l l  

A n  = Fn~o~ho2 - r n ~ m o l  

Al3 = m10fft11 -- rn2orno~ . 

(5.14a) 

(5.14b) 

(5.14C) 

Evaluating the discrete moments at (2 , -h r )  yields the 
following 

np 

j=l 

= + x 3 G  

+x,e~ x~ G(~ 2 

np 

j=l 

np 

rol l  = Z (  X -  X j ) (~ - -  y j ) r  Xj)/~V] 
]=1 

' ~ - X 3 r 1 6 2 1 6 2  

np 

j=l 

= xl  ~x + 

{(19 + x~x ~ + x ~  

+ X3r x -~ X4r x X4 

np 
2 ,~o~ = }-](y-yj)  r ~j)AVj 

j=l 

( s . l s )  

where np, the number of particles that contribute to the 
moment calculations, equals 8 for the example depicted in 
Fig. 7 and 

xl = 1 5  = Y c - b h x  

X2 ~ X 6 ~ 

X 3 ~ X 7 ~ X -- h x 

x4 = xs  = Y c -  2hx . 

Substituting the cofactor expressions into Eq. (5.13) and 
evaluating at particle ] located at (0,0) as in Fig. 7, gives 

('n2o'no~ - m ~ )  - ( 'n ,omo2  - m . m o , ) ( ~ )  

+ ( ,~1o~,  - ~ # n o , ) ( h y )  = 0 .  (5.16) 

From the moment calculations, the following relations 
from Eq. 5.15 can be used to simplify Eq. (5.16). 

\ 

3 -(G,; 
Fig. 7. Particle distribution along a straight essential boundary that 
enables the correction function to vanish at boundary 



*( : i 
z=-2 z=-I  z=O z=l  z=2 

Fig. 8. Window moment symmetry condition of cubic spline window, 
mw = z,r + z2~(z2) + z3qS(z3) + z4~b(z4) ~-- O, where 
Zl = Zz + l =O z3+ 2 = z4 + 3 

fflot = -hymo2  (5.17) 

hx ,{ (x) (19 
/ ' ~ /10=@(0)  T XX~)x hx -}-X2r hx 

(x 0 (x,) 
+x3gPx -~x + X 4 0 x  hxx } - r  h,1 (5.18) 

For ease of presentation, the following definition is used 

mw = XlOx(X-~x)q-x2(~ 

q-x3Cfix(X-~xx) q-x4~)x(X~xx), 

h / - d W h x ' ~  (2)hx (5.19) 

- hx 

+ ( 2 -  2hxlCx( 1 

z 2 h s ~  

hx ] "  
Equation (5.16) can now be expressed as 

-(rhl0rh02 - m11m01)X + mwfn11 = 0 . (5.20) 

Further simplification using Eq. (5.18) yields 

-mwrh02~ + mwtnll  = 0 , (5.21a) 

mw(ff / l l  --  t~/02x) = 0 (5.21b) 

The most obvious way for Eq. (5.21b) to equal zero is for 
mw to equal zero. This expression is only dependent upon 

JO �9 �9 

a rg 
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0.5 t 
0.4 
0.3 
0.2 
0.1 

Fig. 10. a,b. Linear basis shape function (corresponding to particle/3 
near the edge of an essential boundary condition. (a) Particle dis- 
tribution near edge of essential boundary. (b) Particle J shape func- 
tion 

the type of window function and particle distribution. By 
direct substitution, it can be verified that the cubic spline 
window given in Section 2 satisfies this condition which 
can be thought of as a momen t  s ymmet ry  condition of the 
window function (see Fig. 8). A shape function for particle 
] is plotted in Fig. 9. Note that while the above proof was 
given for a boundary coincident with the coordinate axes, 
orthogonality is not necessary for this condition to hold. 

In the presence of an edge or other deviation from the 
straight boundary, the above conditions do not hold. 
Measures can be taken however to avoid these difficulties. 
An example is an essential boundary condition prescribed 
along one side of a rectangular geometry. By using the 
particle distribution in Fig. 10(a), shape functions can be 
generated near the boundary that will vanish at the es- 
sential boundary provided the proper choice of window, 
dilation, and particle weights are used. An admissible 
shape function near the edge of the essential boundary is 
shown in Fig. 10(b). 
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0.6 0.4 ~ 4  0.6 -'- 
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Fig. 9. Linear basis shape function near straight boundary in which 
correction function equals zero along the entire boundary 

5.2 
Forcing the window function to equal zero 

5.2.1 
One dimension 
As mentioned earlier, admissible shape functions may also 
be generated by forcing the window function to vanish at 
essential boundaries. However, in the one dimensional 
case this results in an undefined shape function (belonging 
to r/g) at the boundary point. Assuming that the only 
contributing node at the boundary is the boundary node 
itself, evaluating the moments from Eq. (5.5) yields 



1.2 

trio = ~a, (0)AXl 

?hi = 0  (5.22) 

In 2 = 0 . 

From the shape function definition of Eq. (5.2) the fol- 
lowing results 

0 ~a, (0)axl . (5.23) N1 (Xx) z 

In the limit, however, Nt (Xl) can be taken equal to 1. This 
can be seen by evaluating NI in the limit at a point near the 
boundary, Xl + e as e goes to zero. While an arbitrary 
number of nodes can contribute Xl + e, for illustrative 
purposes, only two nodes will considered. Thus the 1D 
discrete moments, evaluated at e (taking xl = 0), are 

/?/0(g) = Cai (e)AXl + t~a 2 ( e -  xl)ax2 

ml(~) = ~ ( ~ a  1 (e)aXl + (e -- X2)q~a2 (g -- x2)Ax2 

/~/2(~) • g 2 ( ~ a ,  (e)axl + ( e -  xz)Eq~a2(e- x2)Ax2.  (5.24) 

Evaluating Nl(e) yields 

Nl(e) = C(e; e -- xi)~ba, (e)Axl 

_ { rn2 

rh0 -7- - 2 tn i 

rF/1 } 
ffnoffn2-- -2  (e) dpa,(e)AXl . (5.25) 

ml 
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0.8 
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Fig. 11. a,b. Linear shape functions with window forced to zero at 
boundary. (a) Constant dilation. (b) Linear dilation function 

Dropping the second term of the correction function that 
is multiplied by e and substituting the expressions for the 
moments, gives the following after simplification 

NI(~) ~- { 82 q~a' (~) AX1 x2--~al (~-) ~-~2 + (~-~ X2)2gba2 (8 - 2  ~ ~x2 X2)AX2 ~J 

X q~al (E) AX1 (5.26) 

---- X2dpa2(e - x2)Ax2 +x~(~al(~)AxI J 

X r �9 

Finally, taking the limit of Eq. 5.26 gives the desired 
result 

N1 (xa) = lim N1 (Xl + e) 
~----~0 

-- x2 (5.27) 
X2dpa, (e)aXl 

x q~a, (e)A& = 1, where X 1 = 0 . 

Figure 11 shows two methods of forcing the window 
function to equal zero at the boundary. The first 
(Fig. 11(a)) uses a constant dilation for each node defined 
by the distance the particle is from the essential boundary. 
For instance, the particle nearest the boundary has a di- 
lation that covers three nodes and likewise, the adjacent 
particle has a dilation that covers five nodes. The irregular 
shape functions produced by this procedure can be alle- 
viated by incorporating a linear dilation functions in the 
shape function near the boundary. The linear dilation 
function used in Fig. 11(b) enables the shape functions 
near the boundary to die down quickly near the boundary 
while extend further into the domain opposite the 
boundary. 

5.2.2 
Two dimensions 
To avoid the restrictions of the particle distribution, di- 
lation, and window function near a straight essential 
boundary in two dimensions, the dilation can be selected 
such that the window function will equal zero at the 
boundary as in the one dimensional case above. 

In doing this however, shape functions associated with 
the essential boundary cannot be evaluated along the 
boundary with the standard two dimensional RKPM shape 
function calculation. As will be shown, the 2D calculation 
degenerates into a 1D calculation along the boundary. 
Thus for boundary shape functions along a straight es- 
sential boundary, a 2D shape function calculation can be 
used in the interior of the domain and a 1D calcuation can 
be superimposed along the boundary. 

Degeneration in two dimensions occurs when a group of 
particles fails to define a plane, or in other words, the 
particles fall on a straight line. Thus even though a given 
particle distribution may be sufficient, the dilations of 
distribution may be such that the moment matrix becomes 
singular. Referring back to Fig. 7, at the boundary (y - yj) 
equals zero for approximations at the boundary. Moments 



1.0 

Fig. 12. Linear basis shape function near straight boundary in which 
window function is forced to zero at boundary 
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Fig. 13. a,b. Derivatives of linear shape basis function near boundary, 
(a) Derivative with respect to x. (b) Derivative with respect to y 

associated with the y-direction therefore provide no con- 
tribution 

np 

?'F/0I = ~(y--Yj)~ai (x- xj)AVj = 0 
j = l  

np 

THll = Z(X-- xj)( y- yj)r Xj)AWj ~-- 0 

j = l  

np 

/~02 = Z(y--yj)2~aj( x- x j ) A ' V j  = 0 . 

j = l  

As in the one dimensional case, the approximations 
associated with Fg can be defined in a limiting sense. 
Conditions for which a 1D RKPM shape function calcu- 
lation can be used along a boundary are derived for the 
particle distribution shown in Fig. 14. While the following 
example of degeneration is for three particles, the princi- 
ples can be easily extended for other particle distributions. 

/ 1 ' ~  2 " N  

Fig. 14. Particle distribution demonstrating degeneration along a 
straight essential boundary 

The shape function associated with particle 1 in Fig. 14 is 
evaluated in (~,y), where y is a distance e from the 
boundary and ~ is arbitrary. As e approaches zero, it will 
be shown the 2D shape function calculation degenerates 
into a 1D calculation along the boundary. 

As seen from the 2D RKPM shape function definition for 
particle 1 at 

NI(X. ) = C(X; X. -- X l ) r  ' (X. -- x 1 ) A V I  

= {boo(a,x) + blo(a,x)(x - xl)  

+ b o l ( a , R ) ( ~ - y l ) } ~ b a l ( ~ -  Xl)AV1 , (5.28) 

the correction coefficients can be expressed in terms of the 
discrete moments, 

boo = (5.29a) 
. . . . . . . .  2 ~ ~ 2  - - 2  

m o o m 2 0 m o 2 - b 2 m l o m o l m n  - - m o o m  n - - m 2 0 m o l  - - m o 2 m l o  

- ,~. r~Ol +r~,or~o~ (5.29b) blo - _ . . . . . . .  2 - - 2  ~ - 2  
Ff/00 m 2 0  m 0 2  ~ - 2  FH 10/T/01 F/'/11 - - m o o m l l  - - D 1 2 o  m o l  - - / ' / ' / o 2 / ' / l l o  

~ / 1 0 / ' ~ / 1 1 - - m 2 0 m 0 1  (5.29c) bol = . . . . . . . .  2 - - 2  - ~ 2  " mOO m20 too2 +2 m 10 toOl m I 1 - -  mOO n'/11 -- m20 m 01 -- too2 m 10 

Evaluating the discrete moments for the particle dis- 
tribution of Fig. 14 gives 

rF/00 = Cx(X'  - -  X l ) % ( , s ) Z ~ X l A y  1 -]- ~ x ( X  - -  x 2 )  

x (Oy(,g)Ax2Ay2 q- 4)x(X - x3)gAx3Ay3 

, ~ o  = ( ~ -  x , ) r  - x,)%(~)AXlZXy~ 

-}- (X - -  X 2 ) r  - -  x2)t~y(,g)Ax2Ay2 

+ (~ - x,)Ox(~ - x,)~ax~Ay~ 

Tr/01 = g C x ( X  - -  X l ) ~ y ( ~ ) m x l A y  1 

+ ~4,x(~ - x ~ ) g ( ~ ) A x ~ A y ~  

~- S C x ( X  - -  x 3 ) , g A x 3 A y  3 

/~11 = (X - -  Xl)g(/~x( ~" - -  x1)r 

"q- (X - -  X i ) , ~ r  - -  x 2 ) r  2 

+ (~ - x~)eCx(~ - x~)~Ax~Ay~ 

Tr/20 = ( X - -  X l ) 2 r  X l ) ~ ( g ) A X l A y x  

+ (2 - xE)E@x(2 - x2)(oy(e)Ax2ay2 
+ (~ - x 3 ) 2 r  x3)~Ax3ay3 

~o2 = ~2qSx(~-  x l )~y (~ )Ax lAy ,  

-'I- S 2 r  - -  x 2 ) r  

-'}- , g2 r  - -  x3)eax3Ay3 

(5.30) 
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where ( y - y ~ )  and ( Y - y 2 )  - s, and q ~ r ( y -  y3) ~ a by 
definition. 

In the limit as e goes to zero, the b 0 x ( y - y l )  term in 
Eq. (5.28) will drop out leaving boo and bl0(x - xl). Taking 
the limit of the above moments (Eq. 5.30) yields the fol- 
lowing nonzero moments 

= - x )ax  + G ( 5  - x )ax } 

= - x )G(5 - x )Ax, 

+ ( 5  - x )G(5 - x )hx } 

= 

Essential boundary 
Modeling error 

Fig. 16. Modeling error caused by using circular window supports 
near essential boundaries. By using conforming shape functions, 
the error can be avoided 

rF/20 ~- C y ( S ) ~ y { ( 5  -- X1)2r -- X1)Z~X 1 

= qSy(e)Ayfft2 , (5.31) 

where it has been assumed that Ayx = Ay2 = Ay, and 
r~o, r~,  and rh2 are one dimensional moment calculations 
for particles 1 and 2. 

By inspection, the second term in the numerators of Eqs. 
(5.29b) and (5.29c) will vanish as e goes to zero, leaving 

blo -~- 

boo 
r~zo 

moornn - 2 rnlorn~z 
moore20 _ rno2 r~02 -- mlo -- rno2 

(5.32a) 

-- ?'/710 

/~/00/~20 _1_ 2rn,orho, rn,,tno2 rhoorh~,rno2 __ /.HI 0 ~  2 rhlom~2rno2 

(5.32b) 

where both the numerator and denominator have been 
divided through by rh02. 

The following expressions result from taking the limits 
of Eqs. 5.32b, 

rn2o 
bOO ~--- ~ 2 ~- 

m o o m 2 o  - -  mlo 
bo 

 ,(o)Ay 

tr/2 

(rnofft2 - r~)r  (5.33a) 
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Fig. 15. Kronecker delta RKPM shape function along straight essential 
boundary 

-s - m l  
hi0 ~--- ~2 

rn00m20 - m,0 (r~0r~2 - r ~ ) r  (5.335) 
bl 

 (0)ar ' 

in which bo and bl are 1D correction coefficients. 
By substituting Eqs. (5.33) into Eq. (5.28), N1(i) is 

defined in the limit as 

NI(~) = lim{b00 + b10(5 - x~) 
e----+0 

+box (e)}r - x,)r Ayl 

= / bo + bl (5 - x 1 )  } 
k 

• - x ) y(o)ax ay  ( 5 . 3 4 )  

= {b0 + bl(X - x l ) } r  - Xl)AX1 �9 

This is clearly a one dimensional calculation. 
An interesting choice of linear basis shape functions for 

a straight essential boundary would be to use a dilation 
parallel to the boundary that corresponded FEM hat 
functions (Liu, Chen, Uras, and Chang, 1996). This shape 
function would satisfy the Kronecker delta condition at the 
boundary allowing the nodal values to be simply pre- 
scribed on the global equations. Such a shape function is 
depicted in Fig. 15. 

In the case of curved boundaries, the typical approach is 
to approximate the boundary with piecewise polynomials. 
Given an admissible particle distribution, circular or oval 
shape functions can be generated with constant dilations 
that ensure that the interior shape functions vanish at the 
essential boundary. However, one should be aware that 
this procedure could introduce modeling error near the 
boundary. As seen in Fig. 16 a collection of admissible 
shape functions can fail to accurately represent a parti- 
cular boundary. The shaded regions in the figure represent 
areas within the domain where there are no free inter- 
polants associated with v h. 

By incorporating the dilation function, shape functions 
can be made to conform to the boundary thus removing 
areas of poor interpolation. Note that the dilation function 
is only necessary for shape functions in the proximity of 
the essential boundary. Following this method, an ad- 
missible particle distribution can be generated and dila- 



6 
Numerical examples 

6.1 
Helmholtz equation 
To compare the accuracy of the various one dimensional 
techniques described in Section 5, the following Helmholtz 
equation is studied 

U,xx(X) + u(x) = 0 , 0 < x < 10 (6.1a) 

u(O) ---- 0 (6.1b) 

u(lO) = 1 (6.1c) 

where the exact solution is given by 

u ( x ) -  sin(x) 
sin(10) (6.2) 

A cubic spline window and four point Gaussian quad- 
rature was used with uniform particle distributions of 11, 
22, 44, and 88 particles. Four methods of enforcing the 
essential boundary conditions were considered: 

1. Lagrange multipliers (constant dilation of 1.lTAx) 

10 0 
o Lagrange multipliers (s= 1.97) 
+ Correction fnct = 0 (s=2.27) / /  
x Window = O, constant dilation (s= 1.88) J J  

Window = O, linear dilation (s=0.77) 10-1 

0 10. 2 

10-3 

10-4 

tion coefficents for the dilation function can be defined 
using the geometry of the boundary. 

10 -1 10 0 
a h 

10 0 

o 

-7 

lO-t 

10-2 

10-3 

o Lagrange multipliers (s = 1.36) 

+ C,~ (s=1.09) 
�9 Window = O, linear dilation (s =0.44) / /  

10-1 10 0 
b h 

Fig. 17. a,b. L2 and H1 convergence of essential boundary techniques 
of one dimensional Helmholtz equation normalized by the norms 
of the exact solution. (a) L2 norm. (b) H1 norm 

2. C(x;x - x j )  = 0 (interior dilation of a = 1.17Ax and 
dilation of Ax near the boundaries) 

3. qS(x - x)) = 0 (interior dilation of 1.17Ax and reduced 
constant dilations near boundaries) 

4. (o(x - xj) = 0 (interior dilation of 1.17Ax and reduced 
linear dilation functions near boundaries) 

The L2 and H1 error norms defined by 

t2=ll (u h uexact) ]l= { f (uh uexact)2df2} 1/2 
- - ( 6 . 3 )  

H1 ~,, (uh x exactx ( f~  )1/2 - U x )[I = (Uhx -- u~Xact)2dD (6.4) 

were used to measure the accuracy of the various methods. 
Figure 17 shows that the Lagrange multiplier technique 
gave the lowest error by the method of forcing the cor- 
rection function to zero gives comparable accuracy with a 
higher convergence rate. In avoiding the inconveniences of 
Lagrange multipliers, the method in which the correction 
function equals zero at the boundary seems very attractive. 
The methods in which the window function was forced to 
zero suffered in accuracy, but for fine meshes the error was 
of the same order of magnitude for all the methods. It is 
evident that the error near the boundary dominates the 
convergence. 

In comparing the constant and linear dilation methods 
used in forcing the window function to zero at the 
boundaries, it is apparent that the linear dilation yields a 
better solution for coarse grids, but does not perform as 
well for fine grids. The improved accuracy for coarse grids 
using the linear dilation function is a result of smoother 
shape functions as shown in Section 5. The shift in accu- 
racy between the two methods for fine grids cannot be 
explained at this time. 

6.2 
Cantilever beam 
The displacement given by Timoshenko and Goodier 
(Timoshenko and Goodier, 1970) for a unit width canti- 
lever beam loaded at the end for plane stress (Fig. 18) are 

Ux -- 6EI (6L - 3x)x  + (2 + v)( y2 -- ) (6.5a) 

( ) P 3 f(L - x) + (4 + + (3L - x)x 

(6.5b) 

Y7 

T 
�9 X D 

. L 

Fig. 18. Cantilever beam 
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o Displacement error norm (s =1.31) 
+ Energy error nor 
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Fig. 19. Cantilever beam displacement error norm and energy error 
norm 

The stresses are then 

P(L - x)y  
tT xx  - -  

I 

axr = 0 (6.6c) 

Oyy = 

where I is the moment  of inertia of the rectangular cross- 
section. 

To reproduce the above solution, the essential boundary 
condition at x = 0, was imposed using Eqs. (6.5a) and the 
traction boundary condition at x = L was distributed with 
a parabolicly according to Eq. (6.6c). The following ma- 
terial properties were used: E --- 1000, v ---- 0.3, L = 8 and 
D = 1 with a unit load, P (Krongauz and Belytschko, 
1996). A linear basis and a cubic spline window were used 
for the approximates and 4 • 4 Gauss quadrature was used 
for the integration. 

To quantify the numerical accuracy of the methods, a L2 
displacement error norm and an energy error norm were 
used. 

IIEII2 = ( u  h - -  ueXact)T ( uh -- u e x a c t )  d n  

IIE[I  = *  _ _  ( e x a c t ) T ( t y h  __ aexact)dn 

(6.7) 

(6.8) 
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Fig. 20. Cantilever beam particle distribution with speci~ distribu- 
tion near essential bounda~  

Solutions were obtained for 18, 51, 100, and 165 nodes 
by forcing the window functions of nodes near the 
boundary to equal zero on the boundary. A dilation of 
1.SAx was used in both the x- and y-directions except for 
nodes near the boundary. The two rows of nodes closest to 
the boundary had dilations of 0.SAx and Ax in the y-di- 
rection respectively. The convergence rates of the dis- 
placement norm and energy norm were 1.31 and 0.52 
(Fig. 19). 

The problem was also solved by forcing the correction 
function to equal zero on the boundary. A uniform grid of 
nodes was used except near the edges of the essential 
boundary. Near the edge, a distribution was used as shown 
in Fig. 20. Nine particles were used in the y-direction and 
36 in the x-direction. With the two nodes removed near 
each edge, a total of 320 nodes were used. 

Because a special node distribution was required near 
the essential boundary condition, the problem parameters 
were adjusted to allow for uniform grid spacings with a 
reasonable number of nodes. The following parameters 
were changed: E = 3e7, L ---- 48 and D = 12, P = 40000. A 
constant dilation of Ax was used. 

The maximum analytic tip displacement under the 
above conditions is 0.356. The numerical solution yielded 
0.353 giving an error of 0.843 percent. 

7 
Conclusions 
A method of satisfying essential boundary conditions with 
meshless, admissible approximations has been introduced. 
The motivation for this development is to alleviate the 
burden of using Lagrange multipliers, modified variational 
principles, or other techniques for imposing essential 
boundary conditions that are not intuitive or result in 
undesirable global matrix configurations. 

A dilation function, an extension of the RKPM dilation 
parameter, was also introduced. The advandage of a dila- 
tion function over a simpler definition, is its ability to 
allow shape functions near a boundary to conform to the 
geometry of the boundary thus reducing interpolation 
error. It was also shown that the dilation function can be 
used as a transition between shape functions with different 
dilations. In the case of the Helmholtz problem, it was 
evident that the incorporation of the dilation function 
reduced error for coarse grids when the window function 
was forced to zero on the boundary. 

The admissible approximation technique, which satisfies 
the classical definition of the Galerkin method, can be 
achieved in two distinct ways; by forcing the correction 
function or the window function to equal zero at the 
boundary. In two dimensions, it was shown that near the 
boundary restrictions on the particle distribution, window 
and dilation were required to force the correction function 
to equal zero. In forcing the window function to zero, 
special care was needed to define approximations asso- 
ciated with the boundary to account for degeneration in 
certain geometries. 

The Helmholtz equation studied in one dimension de- 
monstrated that both techniques of generating admissible 
shape functions can achieve sufficient accuracy for two- 
point boundary value problems. The method of forcing the 



cor rec t ion  funct ion to zero was par t icu la r ly  p romis ing .  
The canti lever beam p r o b l e m  however,  showed that  much 
is yet  not  fully u n d e r s t o o d  in this technique.  The con- 
vergence rates for forcing the window funct ion  to zero 
were not  acceptable  and  p r o m p t  the quest ion of  what  led 
to the error .  At this  t ime,  it is bel ieved that  the m o m e n t  
ma t r ix  condi t ion ing  degrades  near  the essential  b o u n d a r y  
condi t ion  as a resul t  of  the degenera t ion  of  the shape 
funct ion calculations.  

Future  areas of  research  should  be concen t ra ted  in 
character iz ing the behav io r  of  the i r regular  shape func- 
t ions p roduced  by  forc ing the window funct ion to zero 
near  boundar ies .  Ano the r  area  that  needs deve lopmen t  is 
ex tending  the me thod  o f  forcing the cor rec t ion  funct ion to 
zero at boundar ies  of  var ious  geometr ies  
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