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Summary. — The dual tree-graph N-point functions are investigated
from the point of view of symmetry properties. Using a cyclic symmetric-
contour integral for By, we deduce a set of simple relations between
N —1 Bpy-functions and give rules for writing down more complicated
relations. Secondly, we establish a new relationship between the cyclic
symmetrie integral and the conventional «multiperipheral» integral for By.
Finally, both approaches are used to investigate the signature prop-
erties of By.

1. — Introduction.

In this paper we investigate certain mathematical properties of the dual
tree-graph N-point functions which are related to their symmetry properties.
These B,-functions have been given by many authors (1), and several different
representations are known.

For an investigation of the symmetry properties the cyclic symmetric-
integral representation of KoBa and NIELSEN (2%) is particularly suitable, and
we work with this representation throughout. We write it as a many-dimen-
sional contour integral, and by integrating over closed loops and using the sym-
metry properties of the integral, we establish a large set of linear relations for

(*) To speed up publication, the author of this paper has agreed to not receive
the proofs for correction.

(**) Present address: Mathematics Department, Agricultural College of Norway,
Vollebekk.

(!) For a review and a list of references, see, e.g., CHaAN HonGg-Mo: CERN preprint
TH. 1057 or the Proc. Roy. Soc., to be published (1969).

(*) Z. KoBa and H. B. NieLsen: Niels Bohr Institute preprint (Feb., 1969).

(®) Z. Kopa and H. B. Nrersex: Niels Bohr Institute preprint (July, 1969).
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functions which are very closely related to B,-functions for different permu-
tations of the external particles.

To indicate the character of these relations, let us briefly consider the (triv-
ial) case N =4. We extend the integration contour for the standard integral
for the S-function to a semi-circle in the upper half-plane. Using the Cauchy
theorem and the changes of variable proposed by FAIRLIE and JONES (), this
gives the relation
(1.1) B(—oa,, —a,) —exp [— ina,] B(—«,, —a, + 0) —

87

— exp [imo,] B(— o, —a, 4 0) =0,
where B(—a,, —a,) is the four-point function, and
1.2) o, + o, 4o, =—1+90.

Closing instead the contour in the lower half-plane we get the same relation,
but with opposite signs in the exponents. One of the functions, say,
B(—a,, —a, + 0) may be eliminated, giving

sina(o, + o) B(— o, — o, + 0) + sinmee, B(— o,y — ) = 0 .

This is of course a trivial consequence of eq. (1.2) and the well-known properties
of the S-function, and only the simplest example of the relations we are going
to establish.

For N >b5, however, we get nontrivial relations between the N — 1 B ~fune-
tions having N —1 particles in a fixed ordering. Putting o, = o4, ;= 03,
a, = d,,, eq. (L.1) can be seen to be also of this type. In obvious notation it is

(1.3) B(1234) — exp [—imen,,]f(2134) — exp [in0,] f(1324) =0 .

It will be seen that this is just a particular example of the general relation (3.3).

The derivation of the linear relations made it necessary to look more care-
fully into the analyticity properties of the cyclic symmetric integral. We do
this by investigating the conditions on the analytic structure coming from the
requirement of eyclic symmetry of B,. This determines the singularities and
the branch cuts at all levels of integration, and based on this we establish simple
rules for writing down a linear relation whenever at least one integration contour
is closed.

Making simple linear transformations of the integration variables, we also
find a new relationship between the cyclic symmetric-contour integral and the

() D. B. Faruie and K. Jowes: University of Durham preprint (1969).
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« multiperipheral » Chan-type integral (°). The integration variables in the lat-
ter are usually given as cross-ratios of the variables in the former (>2). We
show that they also may be given as simple ratios instead of cross-ratios, when
a certain limit is taken.

As an application we consider the signature properties of B, and give two
simple, different proofs. One uses a particular linear relation, the other is a
result of the new method of going from the cyclic symmetric to the « multi-
peripheral » integral.

In Sect. 2 we define variables and functions used in the following Sections.
The linear relations are established in Sect. 8, and in Sect. 4 we discuss some of
their more important properties. The alternative interpretation of the cyelic
symmetric integral is considered in Sect. 5. Finally, in Sect. 6, the signature
properties of B, are investigated.

2. — The eyelic symmetric-contour integral for Bj.

Our work is based upon the manifestly eyclic symmetric integral for B,
given by KoBA and NIELSEN (2?). The external particles are taken to be scalar
mesons and we assume for simplicity that all trajectories are linear. We choose
one (arbitrary) permutation as the standard permutation and label the mesons
in this permutation from 1 to N in the clockwise direction. The amplitude cor-
responding to the permutation k,, k,, ..., k, is denoted B(k,, k,, ..., k) or
simply B, if we need not specify the ordering of the particles. We consider
B as a function of the {N(N—3) linearly independent trajectories (*) o«s,
Oy --eq Oogy Ooggy +-., 66C., defined by

(2.1) it 1,f — ag.i+1,...;l + o' (Pt Doy A 2y,
1<i<N—2, 1+ 1<j<N—1 fori>1, 2<j<N—2 fore=1.

All trajectories are assumed to have a common slope a'. We further define
the quantities

— yyy ? =i+1 ’
— Oy o j=k4-1=4¢1+2
(2.2) P k k 1) ] + +2,
— Lttt T e er T By g — Yyt ?
j=k+l=...=k+tr=it+r+1,
(2.3) Ly ity = — %y b,

(°) See, e.9., K. BARDAK(GE and H. RUEGG: Berkeley preprint (1968).
(") As is customary in the discussions of By, the nonlinear constraints are only
implicitly taken into account.



716 E. PLAHTE

The quantity ,;, corresponds, with a slight modification, to the quantity
9(4, B) defined by KoBa and NIELSEN (2).

From the definitions (2.2), (2.3) there follow a number of useful relations
among the w-variables. For later use we give the more important ones below.
Others can be found by relabelling of the particles:

(2.4) Bpg =@+ Xyg+ oo X+ o5 ;—7+ 2, 2<j<N—-2.

For j= N—2 this implies

(2.5) Ty + Tyg+ oo+ 2y =N—3,
or
(2.5") Cp—14+@—1+4 .. F2,—1=—2.

Repeated use of eq. (2.4) implies

(2.6) Tr2...5 = z Tu—3(—1)01—2),
1RSI
or
(2.6") Zyp, s— 1= Z (@ag—1)+j—2,
1<h<I<s

both valid for 2<j<N —2. Using eq. (2.5) N times, we finally get

(2.7 z Ty = NN —3),
1<E<ISN

or

(2.7) z (z;—1)=—N.
ISE<ISN

It is convenient to be able to extend the validity of egs. (2.6), (2.6") to
j=N—1 and j= N. This is possible if we define

(2.8) Xpw=—1, Tyg 1= 0.
Equation (2.6) may be considered as the solution of eq. (2.2), giving x-va-
riables in terms of @-variables. We finally define an x-variable for an arbitrary

channel of any adjacent or nonadjacent mesons j,j, ... . by

(2.9) ity = 2 Wiy —(r—1)r—2).

It is easily checked that the z-variables defined by eq. (2.9) satisfy egs. (2.2)
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for arbitrary values of r, k,, ks, ..., k.. For linear trajectories
(2.10) Ljggnd, = %55, T Ciga, s
where C,...s, 18 a function of the masses of the particles and the intercepts
of the trajectories involved.

Later we will need similar relations for the variables

(2.11) E,,

17geee

i, = €Xp [iﬂ(xiljz...jr‘* .

They of course follow immediately from the z relations above:

(2.12) I1[EB.=1, 1<r<®¥,
k#r
(2-13) -Ejliz.,.ir = (— 1)7_2 H Eiki, ’
1SE<Ir
(2.14) IT EB,=17”
1<i< <N

With these definitions and relations, we are ready to write down the cyclic
symmetric contour integral for B,. It is

(215) ,__f fdG_l H dzk H (zi _zi)mtj_l ,
k=1 <N

where #;= exp [if;] are N ordered points on the unit circle in the complex
z-plane such that

(2.16) b <b,<.<B,<8 + 27

The ordering of the points 2, is the same as the ordering of the particles, and 2,
may be thought of as representing particle k. The differential A6, is defined by

dz, dz,dz
(2.17) G — — e dZdz,
’ (ZS—Z,)(Zt——ZS)(Zt—~21) '

where z,, 2,, 2, are three arbitrary, but fixed points such that
0,<0,<0,<86,+2n.

The integration in the remaining N —3 variables is over the parts of the
circle consistent with the constraint (2.16). The « division » of differentials in
eq. (2.15) has been given a rigorous mathematical meaning by KoBa and
NIELSEN (*%). We emphasize that eq. (2.15) is independent of the choice of
7,8 and ¢ and the values assigned to z,, 2, and z,.
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Expressions very similar to eq. (2.15) have already been given (*¢), but
unfortunately the existing literature is somewhat confusing on the relationship
between the integral (2.15) and, e.g., the conventional « multiperipheral » in-
tegral. We will therefore demonstrate this relationship in some detail.

This is done by introducing the angles 0; as new variables. We insert

i

2;—2;= 21 exp [2_@ 6 + 0:‘)] Sin% (6;—0,)= 2t exp [2 0, + 04’)] G
into eq. (2.15). Using egs. (2.5}, (2.7)

I G—ey =@ [Texp[—i6] T[] oj™.

IU<ISN k=l 1SN
As dz, = 12,d0, and
dg,df,d6, 1

1
dG3 - 5 ?sr OO0t - Ei dF3 ’
we finally get the real integral
N
(2.18) B(12..N)= 2—N+3f...de;1 T1d6. T1 oz,
k=1 1IN

Introducing the « multiperipheral » variables %) in the standard way (), one
can finally show that -

B(12...N)= f ave=o TT uzr,
P

where the right-hand side is the integral over the product of « partitions» as
defined by OHAN and Tsou () with the invariant measure dV¥ . Apart
from a constant factor, eq. (2.18) is equal to the formula given by KoBA and
NIELSEN (8).

In writing down eq. (2.15) we have chosen a particular ordering of the par-
ticles and also a particular one of the 2N permutations which, because of the
cyclic symmetry and reflection symmetry of By, are equivalent to this. The
other 2N — 1 permutations are obtained by reversing the sign of some or
all of the differences z;—z,. This introduces phase factors Ef;l, and the
branch cuts in the integrand must be chosen such that the phases cancel in this

(¢) D. B. Farruie: University of Durham preprint (1969).
(") Cuan Howe-Mo and Tsou SEEUNG TsuN: Phys. Lett., 28 B, 485 (1969).
(8) Reference (%), eq. (3.11).
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operation and really give the cyclic symmetry. The same applies of course
to eq. (2.18).

To simplify the notation in the following, for an arbitrary, but fixed ordering
ki, kyy oovy ky, of the particles such that

(2.19) O, <, <...<B,< 0, + 27,

we define the funection

¥
(2.20) Bllyy gy oy ky) = 2—1"+3f..‘fd|F3|1 1140, 1T Josfze.

k=1 1<V
Here d|F,| is obtained by taking the modulus of the ¢, in dF;. The §, -fune-
tions are of course closely related to the B,-functions. Let us define

Blley, kg, ooy ky; — @) = B(ley, by, oo, Ky) -

The relationship is then (for the linear trajectories (2.1)),
(2.21) By, kay ooy k) = Blky, ks, ooy by —a + 0},

where the constants ¢ are defined by eq. (2.10). In particular, since ¢;,> 0
for 6,<<0;,<0,+ 2,

(2.22) p(12...N)=B(12 ... N).
If and only if the trajectory functions o« satisfy the « canonical constraints »

{2.23) Tidyendy = T Eiidy
for all the [ N(N —3) channels defining B, for a particular permutation %,
ky, ..., ky, one has

Bk, kyy ooy kiy) = Blky,y kyy .y ky)

It is trivially true that the canonical constraints are sufficient. That they
are also necessary follows for example by the requirement that the poles in A
and B should coincide and have identical polynomial residues.

The attractive property of the B,-functions is their close relationship to
the By-functions, and that they are all defined by integrals differing only in
the integration limits, such that the ordering of the particles is given by the
ordering of the points 2z, on the unit circle. Thus the integral (2.15) with the
integration limits defined by the inequalities (2.19) is simply ki, ks, ..., ky)
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multiplied by a certain phase factor, as some of the differences z;, — 2, will
appear with the wrong sign. The determination of this phase factor is not
trivial and will be considered in the following Section.

3. — Linear relations for Bj.

8'1. Simple linear relations. — We are now prepared to derive the linear
relations. To begin with we only consider the simplest type. More complicated
relations are considered in Subsect. 3'2.

Consider the first integration to be performed in the integral (2.15). Let it
be the 2, integration. The integral is

22

(3-1) fdzl(zz — zl)wu"l (23 . zl)mu—l s (zN _ zl)muv--l .
Zy
The integrand has branch points at 2,, 2, ..., 2,. Assume that this integral

corresponds to the permutation B(123 ... N). The 2, integral for B(23 ... N 1) is
then

Zg

fdzl(zl — )y — 2y )Tl L (g — 2y) W,

‘N

with all the subsequent integrations unchanged. The only difference between
the two integralsis the factors (— 1)~ If the branch cuts are chosen such that
these factors have one and the same meaning for all points on the unit circle,
it follows from eq. (2.12) that the phase factors all cancel, and the two permu-
tations are indeed equivalent. To obtain this the branch cuts must run along
the tangent to the unit circle, all with the
same orientation, e.g., as shown in Fig. 1.
With this choice we have

(3.2) (¢,— )t = By — z:‘)z”_l y 2<j< N,

which is valid also for all points inside the
unit circle.

The integrand in (3.1) is then analytic in-
side the unit circle. We integrate z, around
the whole circle and apply the Cauchy theo-
rem. Consider the integral from 2, 0 Zwu1. Fig. 1. — Branch cuts in the in-
The ordering of the points is then 2,3,..., tegrand of eq. (3.1).
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ky1,k41,.,N. From the above discussion and the definition of the f,-func-
tions, it gives E,Hy,... E,p(2,3,..., k1, k4 1,..., N). Thus, assuming that
the integrals converge, the relation is

(3.3)  PO2..N)+ B,p(213 ... N) + E,, E,,f(2314 ... N) +
4+ BBy, B, @3 N—1,1,N)=0,

and this is our main result in this Section. Taking the branch cuts in the oppo-
site direction we get the « complex conjugate » relation

(3.3")  p(123...N)+ E;B(213 ... N) +
+..+EJE;...E,_B23...N—1,1,N)=0.

By analytic continuation these relations are valid for all . Later we will refer
to eq. (3.3) as

(3.4) 271;12...N)=0
and eq. (3.3') as
(3.5) 271;12...N)=0,

where the intial permutation is indicated which has coefficient 1 and the par-
tiele that is « moved around is shown ».

Of course other relations of the same type may be obtained simply by rela-
belling the particles. Due to the relation (2.12) we get, loosely speaking, E,;
tactors when particle k is moved to the right, and E7} factors when it is moved
to the left, or vice versa.

3'2. Nonsimple linear relations. — It was shown in Subsect. 3'1 how to choose
the branch cuts in the first integration to ensure cyclic symmetry of the total
integral. We will now use the same condition to determine the singularities and
the branch cuts in the subsequeunt integrations. Knowing this we may close all
these contours and obtain other, more complicated linear relations.

For this purpose it is convenient to write the integral (2.15) as

N N—1
By :ffd—Ga—l :kr[ dz;, kl__[ (ey —2:)™ g TV (2)
=1 =1
where
N—-1
70 = TT (z—ay™ .
J=h+1

It is implied by this that the integrations are performed in the order z,
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Zay ey Zy—g. Assume that the branch cuts in the z-plane are chosen as before,
eq. (3.2). From the general discussion of singularities of functions defined by
integrals (%), it follows that the only singularity of

Palen) = f Be(ey — g0 (e)

in the z,-plane is an end-point singularity at 2, =2, To exhibit this we
make the change of variables z; — y, defined by

2y =2y + (2 —2y) .
This implies

(3.6) Zy— 2= @y —2), B—r = — 1) 2y —2) .
Using eq. (2.4) we can write the 2, integral as

1

(3.7) _szz(zﬂ —z,) M Ty (Z)fd/tl P (g — 1)

[
N-1

H {2, —ay— a2 — )Pt

k=3

where the g, integral is now an analytic function of 2, (but not of the other 2,).
As we have used, e.g.,

(ZN - 21)mw_l = /u:w—l(zzv - zz)”w - ’

the branch cuts in the z,-plane are implicitly determined by this expression.
Starting with eq. (3.2), it follows that we must have

(3.8) (— yl)“lN = Ew[u”w (#p— zg)”mz"l = F, (2, — 2,)"¥12 1
etc. If the branch cuts in ¢~(z) are chosen such that
(3.9) (23— )7 = By ey — 2,)™ 3<k<N—1,

we can show that

B(12...N) = B(34 ... N12).

() See, e.g., R. J. EpEN, P. V. LanpssaorF, D. 1. OLive and J. C. POLKINGHORNE:
The Analytic S-Matriz (Cambridge, 1966), p. 39.
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We have already shown that B(123 ... N) = B(23 ... N1), ¢.e. that the integral
(3.7) is invariant under the reflections #;,—z,—>2,—=2;, 2<j<XN. To show that
B(234 ... N1) = B(34 ... N12), make the reflections

B — >R — 25, j=1,2,4,..., N.
From eq. (3.6) we see that the y, integral is invariant except for the change

e T

and using eqs. (2.12), (2.13), (3.8), the change in the z, integral is

— B L Eq By .. B

m12 sty =1.
The minus sign comes from the change in dg,. This proves our assertions and
also shows that the determination of the branch cuts is consistent. From the
point of view of obtaining linear relations it is of course eq. (3.9), together with
eq. (3.2) which are the important results.

At this stage we are able to write down the relation obtained, e.g., by the

integration limits
?g dz, f dz,
N

with the remaining particles in fixed order. As an example, let us take N=25.
To write down the relation that follows, we proceed like this: the particles in
in fixed order are 345. Integrating z, around the closed loop gives the three
orderings 2345, 3245, 3425. Finally, in each of the three cases, 2, must be in-
tegrated from z; to z,. Each final ordering gives the corresponding f,-function
multiplied by a phase factor which is determined by eqs. (3.2), (3.9). We see
the importance of the directions of the branch cuts being correlated. The
relation obtained is

B(12345) + By,B(13245) 4 By, By, f(31245) + By, Fouf(13425) +
+ By By B,y (31425) + By By By B, f(34125) = 0,

In passing we note that as it can be written
2%(2512345) — By By Byy 21 (45 43125) = 0,

this relation is not independent of the simple ones.
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Returning now to the general discussion, we can determine the branch cuts
in the 2, integral by introducing the new variable u, defined by

2y =2y + (25— 2y)
and proceed as above. We then get from eqs. (3.2), (3.9) the conditions
(2 — )™ 7 = Eyyley — )™, 4<k<N,

which can be shown to ensure B(12345... N)= B(45... N123). Introducing
consecutively us, py, €te., by

=2y 1+ tel21—2y) 5 1<k<N-—-3,
we finally end up with the set of conditions
(3.10) (B — )" 7 = Eyle;— 2™ 1<j<k<X¥,

which are necessary and sufficient to ensure the cyclic symmetry of By as given
by eq. (2.15).

This result may at first sight seem trivial, and we want to point out that
it cannot be obtained by a simple inspection of the integral (2.15) and using
eq. (2.12).

The conditions (3.10) correlate the branch cuts in all the integrations, and
it is no longer necessary, as in Subsect. 3’1, to keep all particles except one in
fixed order. We may now close the contour at any level of integration and use
the Cauchy theorem. Given the limits of integration for all the N—3 va-
riables integrated over, with at least one closed contour, the following rules
determine the corresponding linear relation:

1) write down the particles that are kept in fixed order, say, k,, k., ..., k;,
and define a positive direction of rotation;

2) consider the last of the remaining integrations, say, f dz,, and deter-
mine all permutations of ky, ks, ..., k;, | consistent with its integration limits.
Associate to each permutation ¢ a phase factor 1,(p) defined by

(3.11) Mip)=c¢ ]_—_[Elz;i ’

where the product is over the set of particles with which I has been permuted
in @, and e =+ 1 if the integration is in the positive direction and &=-—1
if it is in the negative direction;



SYMMETRY PROPERTIES OF DUAL TREE-GRAPH N-POINT AMPLITUDES 725

3) repeat this for the remaining integrations, starting with the last and
ending with the first, always counting the permutations from the same, fixed
permutation ¢,;

4) the linear relation is symbolically
(3.12) 2 I 4@ Ble) =0,
¢ i

where the sum is over all permutations ¢ consistent with the integration limits
and the product is over all phase factors 4,(p) which have been associated to
each final permutation by 2) and 3) above.

As an extreme case, consider the relation

§ 3€dG_1 TTde, TI (i—z)eer=0.

1<V
The left-hand side is the sum of all the £ (N —1)! different 8,-functions, each
multiplied by factors E,; corresponding to the permutations in that particular
function. On the other hand

N
8= 3€ ...§d|G3|—1 ITas. TI |z —=lew—
k=1 1<U<jEN
is just the sum of all the § -functions without coefficients. With the canonical
constraints fulfilled, this is the result of FAIRLIE (°).

4. — Some properties of the linear relations.

The most important consequence of the linear relations is of course that they
provide information about f,-functions which arve diffcult to investigate by
relating them to better-known functions. In this way the relations may prove
a useful tool for the investigation of, e.g., the multi-Regge limit of the full
N-point amplitude ().

Consider the reduction properties of the simple relations (3.3), (3.3') at
nonpositive integer values of the x variables. We introduce the notation

(2. jli+ 1. N)=Res[B(12 ... N)], _,,

(4.1)
B12 ... jli+1... N)=Res [B(12 ... M), __,.

(*) See ref. (%) for such a treatment of the case N =5
(%) W.J. ZAkRzZEWSKI: University of Cambridge preprints, DAMTP 69/6, DAMTP
69/17 (1969).

47 — Il Nuovo Cimento A,
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For J =0,

P12 . jlf + 1. Ny =B(12...4,j - 1)BG,j+1..N), 3<j<N—2,
r(12 ... N—2|N—1,N)=B{12.. N—1).

Only the two first terms in eq. (3.3) have the 12-pole, so,'for Tp=—dJ it
follows that

(12|13 ... N) — (—1)’r,(213 ... N) =0,

which shows the signature properties of the f, and B, functions for two-
particle trajectories. Next, consider z, =0, 3<j<N—2. In this case
21512, ..., N) reduce to X*(1,12, ..., j + 1), as the pole only occurs in the
first § terms. For w), ;=—dJ, J5%0, one gets nontrivial relations between
the residues of the f,-functions, but we have not investigated these.

One f-function may be eliminated between egs. (3.3), (3.3'), giving a real
relation between N —2 g, -functions. It seems likely that there are just ¥ — 3
linearly independent pf,-functions (this is the case for N =4 and N =35),
but we have not proved this. Even for N = 6 the actual solution of the re-
lations in terms of three f,-functions seems unmanageable. However, there
are more linear relations of the type (3.3) than different f,-functions. Thus
they are not all independent and presumably also the nonsimple relations can
be derived from the simple ones.

Except for the trivial four-particle case, the only simple case is N = 5.
The B;-function is simply related to a generalized hypergeometric ;F,(1)
function (1%11). The ¥, functions obey a number of two-term and three-term
relations which can be found in standard books on hypergeometric functions (12).
A detailed investigation of the B;-function from this point of view has recently
been made (%), and it has been shown that the 12 different hypergeometric
series for given parameters just correspond to the 12 different f;-functions.
It can easily be seen from this that the present simple relations for S, are equi-
valent to the well-known three-term relations for ;F, funetions and thus give
more ingight into the structure of the latter.

As an example consider the relation obtained by BrAAs and POKORSKI ().
We can write it down immediately by eliminating f(12453) from 2(3; 12345) = 0
and X7(3; 12345) = 0,

SI0 725 - B2 — y5)
Sin 7w (s — %45)

sin 7w(ws, + Tg5 — Typ)

(4.2) B(12345) = Sin 7o(@ys — @15)

B(12345) + B(12435).

(1) A. Braras and 8. Poxorski: Nucl. Phys., 10 B, 399 (1969).

(12) See e.g., L. J. SLATER: Generalized Hypergeometric Functions (Cambridge, 1966),
p. 114,

(¥) J. ¥. L. Hopkins and E. PLAHTE: to be published.
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The interpretation of this formula shonld be clear from its diagrammatic rep-
resentation in Fig. 2 and the discussion in ref. (**). These authors also sug-
gest to make eq. (4.2) the starting point for a phenomenological analysis of
five-particle reactions. However, it now reveals an ugly feature, the existence
of a spurious pole at .nteger values of the x,, — x,; which vanishes only by a
nontrivial cancellation of the two right-hand side terms at the pole. This is
likely to make rather difficult any approximations to By based on the above

formula.
5 L 5~ b 5 3
| 3= a o 2 e Ny
1 2 =T 1= T

Fig. 2. — Diagram representing the relation of Brazas and PokoRskI. The coefficients o,
and o, are defined by eq. (4.2).

On the other side, as B, can be calenlated fairly easily there is may be not
much point in doing this. For N 6, however, this is not so, and it may be
that one may find a corresponding formula in these cases where the spurious
poles may be avoided.

Finally, let us consider the presence of satellite terms. In the integral (2.15),
satellites appear as the presence of a functicn f(z; #) in the integrand. The
funetion f{z; ) must be invariant under linear fractional transformations
(Mobius transformations) of the points z,. This property of the integrand in
eq. (2.15) is essential for the interpretation of the integral as a B,-function (2).
Also, only then is it possible to express f(z; ) as a function of the conventional
N — 3 independent integration variables «] for B,.

If f(=; ) is analytic such that it can be expanded in powers of (z; — 2,),
the modified integral can be written as a satellite series on and inside the unit
circle. If, finally, f(z; #) has the necessary symmetry properties, the linear re-
lations are also valid in the presence of satellites.

5. — Alternative interpretation of the cyelic symmetric integral for B,.

The standard « multiperipheral » integral representation for B, corresponding
to the configurationin Fig. 3 may be ob-

. o 1
tained from eq. (2.15) by expressing its N
integration variables u as cross-ratios T ]
of the variables 2 (*?). In this Section, \ T{TT ! l

. \ N1

we will show that the same integral re- =g
presentation can also be obtained by ex- Fig. 3. - The multiperipheral configu-
pressing the independent u/ as simple ration.
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ratios of the differences 2; — 2, and going to a suitable limit after the integra-
tion has been carried out.
We write eq. (2.15) as

AN—1 z4

(6.1)  BA2...N) = (zy —2y_1) (25 — 1) (25~ »—zl)fdzN_z ...J‘dzg-

N EN
Z3

'fdzz 1—_[ (B —21)™ g (2) ,

k=2
where '
N
(6.2) () = H (2 — 2™,
Jokt1

and perform the successive substitutions z,— u, defined by

(3.3) P - k=2,3,..,N—2.

= ’
Rpt1— R

After j— 2 substitutions, the z; integral is

%541 1 1
=1
(5.4) fdz;'(zj — % )‘”12;..5—1(pj(2)f.. . 1__[ d/h ‘u‘:u e U
#1 o 0 =
i—1 N
(@ —na)re T T [ —2—10males—2) 17
e~ ios k=il

where
Niw = Hilbita - P -

Now assume that all the integrations have been performed, i.e. putj =N —1
in eq. (5.4). As z, ., =0 (eq. (2.8)) we get

....

11
N—2
(5.5) B(lZ...N)zf...f TT dpgpzei=t JT (1 —mp)eeent
=2 AU ESIN—-2
[} 0

-2
{(ZN — =) 2y — &)W [ | [2w — 20— 1o y—a(w— — 21)]%'1‘7‘1—1} )
=2

which, except for the curly bracket, is the « multipefipheral » integral. How-
ever, going to the limit

(5.6) z

vy — %> 0, By— 270, 2,—%, 70,
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and using eq. (24), the curly bracket is simply 1, giving the desired result.
The necessity of the limit (5.6) to obtain the standard integral form may be
understood in the following way: the
transformations (5.3) are mappings of the Ay
unit circle described by 2, onto circles 7
described by u,. The centres of the lat- o \
ter are at the points }[1 4- 4 ¢tg (0,4, —
—0,)].For 0 < 6,.,— 0, < mthesituation
is a8 indicated in Fig. 4. The integration
contour for u, is along the lower part
of the circle. In the limit (5.6), the cen-
tres of all the circles tend to 1 -+ doo,
and the u, integration contours tend to
the real axis from 0 to 1, reproducing
the standard « multiperipheral » integral.
Next we will briefly show how, by essentially the same method, one may
obtain an integral representation for the configuration in Fig. 5. The point is

Fig. 4. — The contour in the p-plane.

- 5
J ‘

Fig. 5. — The « twisted » multiperipheral configuration.

to perform the first j — 2 integrations in opposite order. To be specific, we write

(5.7) B2 ...N)= (2y — 2y—1)(2x — 21)(y—1 — 2

N—1

1
fdzy— fdz J‘dzzfd% fdz] 1 H 2, — 1) Thp(2)
z,_

As in the previous case we introduce new variables u,, but now by eqs. (5.3)
for k>4 and by

(5.8) M= ———, 2<k<j—1,

for the rest. After the fitst j— 2 transformations, the z; integral is now

Zy+1

1 1
(5.9) J‘dz,( j Zl)z“ -4 1(p f :il:!: dlu [uxl RIS TN R 10
7 0 0

-1 &
(1 —nu)ze TT 1T [ —25 + nailes —2) e

2R i=2 kel
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This expression, which will be used in the final Section to investigate the
gignature, should be compared to eq. (5.4). Performing the remaining substi-
tutions according to egs. (5.8) and taking the limit (5.6), we finally get

1 1
N-2 i—1 N—-2
(5.10) B(12...N) = f f TT du TT pzesen=t T et -
=2 i=2 k=j
1} [

IT Q—ne TT (=) 7L — a1 — 1) P 2,

2R —1 j<m<n<CN~2

which is the integral representation corresponding to the configuration in Fig. 4.
This expression has also been given by HoPKINsON and CHAN ('4). The limit
(5.6) can be given a similar interpretation in this case.

6. — Signature properties of B,.

We will investigate the signature properiies oi B, in two different ways;
first by using a suitable nonsimple linear relation, secondly by the formalism
developed in Sect. 5. The problem has already been discussed in the litera-
ture (1+¢). In particular, KXoBA and NIELSEN have obtained the same results
as in the present paper, but by using a different method.

To investigate the channel 12, ..., j, we need a linear relation where only
the terms f(12... N) and fp(j,j—1,2,1,j-+1,..., N) have the 12,...,j pole.
Such a relation is the following:

k=j+1 ISE<ISN

Zj+3 2141 21+
~
(6.1) f...fdG;l 11 dzkﬁédz,-fdzj_lfdz,-,z... dz, JT (zi—z)™—1=0,
zy 2

7 7

where it is assumed that the particles j+ 1, j-+2,..., N are kept in this
fixed order. Using the rules established in Sect. 3, we can immediately write
down this relation in terms of §,-functions. There is only one trick, in the term
which eventually gives (12 ... N), we integrate 2,,, 2,5, ..., ¢ in the negative
(anticlockwise) direction. Using eq. (2.13), the resulting relation is

B2 ... N)+ Ey B, i—1,...,2,1,j+1,... N)+X=0,

where 2 is the sum of all the terms in eq. (6.1) not having the 12, ..., j pole.

(**) J. F. L. HopgiNsoN and CHAN Honxg-Mo: CERN preprint TH. 1035 (1969).
(**) Z. KoBa and H. B. NieLsEN: preliminary note (May, 1969).
(*%) Z. Kosa and H. B. NieLsen: Niels Bohr Institute preprint (September, 1969).
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This implies
(6.2) r{f,i—1,..,2,1j+1, ..., N)= (—1)7r,(1, 2, .., jli + 1, ..., N).

We emphasize that », is the residue of the f,-function. Equation (6.2) then

implies the decoupling of all the odd daughter trajectories in the 12,..., j chan-

nel for the symmetric combination p(12...N)+ B(j,j—1,...,2,1,7—1, ..., N).
This is true for the same combination of B-functions if and only if

RJ(j7 7'—17 R 27 1!? +1,.., N) :r.r(ja j'"la e/ 27 1|7 +1,.., N) :

This happens if and only if the canonical constraints (2.23) are satisfied for
all the channels in this B-function which are dual to the 12, ...,4 channel. The
nondual variables are of course the
same in the two functions, and as
the residues are polynomials of order
J in the dual variables

R(1,2, ., §li + 1, ..., N) -
+ (— I)JRJ(?'? j”—ly RS 27 1“ +

+1,.., N)=0@ld,

dual

such that in the symmetric/antisym-
metric combination the odd/even lead-  Fig. 6. — Poles in the 1,2, ..., channel for
ing trajectory decouples. This is the thesymmetric combinations:

result of HoPKINSON and CHAN (%4). oB(12... N)+B(j,j—1,...,2, 1’?'% L., N),
In Fig. 6 the poles present in the 2P M)+ B =L 2, LG4 L, ).
different cases are indicated.

For the second proof, which also gives a method for actually calculating
the residues, let us turn back to the expressions (5.4} and (5.9). Repeating the
derivation of (5.9) for the « twisted » permutation j,j—1,...,2,1,j+1,..., N
gives instead the expression

2341 1 .
—1
fdzl(zl — Zj)”u~~-!‘1(p;(z)f--- H A pzn-+1 1—[ (L — gppp)reat -
i=2 2<I<E< 1
z ° o
J—1 N
I1 TI [ee—2 4 masma(es— ),
i=2 k=jtl
‘where
N

(p:(z) = H (zk'_z1)zlrl'

E=j+1
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Comparing this to (5.4), one sees that the u-dependent parts are exactly identical,
and in the remaining part of the integral 2z, and z; are interchanged. Hence,
the only difference of the two residues at #,, ;= —¢J is the factor (— 1),
which is the above result. This is so because in the residue, z, = 2,. Strange-
ly enough, the result is not easily seen from the expression (5.10) written
for the « twisted » permutation.

For the results in this Section it is obviously a necessary condition that the
trajectories are linear and that all trajectories dual to the 12,...,j channel
have a common slope. This implies narrow resonances (poles) but with the
interpretation of the B,-function as a Born term of the physical ¥N-point ampli-
tude, this is not in disagreement with experimental evidence. It has been
shown that with a linear trajectory as input in the B,function, the output
trajectory in the iterated amplitude is no longer linear and has resonances
with nonzero width associated with it (**18). KoBA and NIELSEN (1%2%) have
considered in some detail the question of the existence of realistic solutions of
the canonical constraints (2.10) for particular reactions.

I am grateful to P. Avvir, J. ¥. L. HopxinsoN, Z. KoBa and H. B.
N1ELSEN for discussion, and to CHAN Hona-Mo for comments and criticism.

(") K. Kikkawa, B. Sakira and M. A. Virasoro: University of Wisconsin pre-
print C00-224 (Marh, 1969).

(8) J.C. PoLRINGHORNE: University of California preprint UCRL 19209 (June, 1969).

(19) Z. Kopa and H. B. NIELSEN: in preparation.

RIASSUNTO (Y

Si studiano dal punto di vista delle proprietd di simmetria le funzioni duali a N
punti con grafici ad albero. Usando per By un integrale ciclico con conforno simmetrico,
si deduce un insieme di relazioni semplici fra N —1 funzioni By e si danno le
regole per scrivere relazioni pilt complicate. Inoltre si stabilisece una nuova relazione fra
Pintegrale ciclico simmetrico e l'integrale « multiperiferico» convenzionale per By.
Infine si usano entrambi i metodi per studiare le proprietd di segno di By.

(*) Traduzione a cura della Redazione.
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CaoiicTBa CHMMETPHH [YAJIbHBIX APEBOBHIAHBIX N-TOMEUHLIX AMIUIMTYH.

Pestome (). — JlyanesHeie OpeBOBuOHBIE N-TOYeUHbIe GYHKIMW MCCIESAYEOTCS C TOYKH
3pEeHUA CBOMCTB cumMeTpun. VCnonb3ys Kpyrosoil CHMMETPHYHbIA KOHTYPHEIN MHTETpal
s By, MBI BRIBOMHM CHCTEMY NPOCTBIX COOTHOIIEHM Mexny N — 1 B, dbyrximsaMmu
¥ OpHBOAWM IPpaBWia Ui HamuCcaHWsl Ooyee CIOXKHBIX COOTHOMICHMH. 3aTeM MBI ycTa-
HaBJIMBAaeM HOBOE COOTHOIIEHWE MeXIy KPYrOBBIM CUMMETPUYHBEIM HHTErpajioM u obimie-
IIPUHATEIM « MyNbTUIIEpUGEPHYECKIM » HHTErpanoM st B,. B 3akmodenue, 06a moaxona
HCIIONIB3YIOTCS ISl W3YYCHHUST CATHATYPHBIX CBOWCTB By.

(*) IHepesedeno pedaxyueil.



