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Symmetry Properties of Dual Tree-Graph N-Point Amplitudes (*). 

E. PLAttTE (**) 

C E R N  - Geneva 

(ricevuto il 9 Dicembre 1969) 

S u m m a r y .  - -  The duM tree-graph N-point functions are investigated 
from the point of view of symmetry properties. Using a cyclic symmetric- 
contour integral for B~, we deduce a set of simple relations between 
~Y--1 B~-functions and give rules for writing down more complicated 
relations. Secondly, we establish a new relationship between the cyclic 
symmetric integral and the conventional (~ multiperipheral ~) integral for B~. 
Finally, both approaches are used to investigate the signature prop- 
erties of B~. 

1 .  - I n t r o d u c t i o n .  

In  this paper we investigate certain mathemat ica l  properties of the dual 

tree-graph N-point  functions which are related to their symmet ry  properties. 
These B~-functions have been given by m a n y  authors (1), and several different 
representations are known. 

For  an investigation of the symmet ry  properties the cyclic symmetric- 

integral representation of Ko~A and NIELSEN (2.3) is p~rticularly suituble, and 

we work with this representat ion throughout .  We write it as a many-dimen- 

sional contour integTal, and by  integrat ing over closed loops and using the sym- 

me t ry  properties of the integral, we establish a l a ~ e  set of linear relations for 

(') To speed up publication, the author of this paper has agreed to not receive 
the proofs for correction. 

(*') Present address: Mathematics Department, Agricultural College of Norway, 
Vollebekk. 

(1) For a review and a list of references, see, e.g., CHAN HoNG-Mo: CERN preprint 
TH. 1057 or the P'roc. Roy.  Soc., to be published (1969). 

{~) Z. KOBA and H. B. NI]~LSE~: Niels Bohr Institute preprint (Feb., 1969). 
(3) Z. KOBA and H. B. NIELS~.~: Niels Bohr Institute preprint (July, 1969). 
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functions which are very  closely related to Bx-functions for different permu- 
ta t ions of the external  particles. 

To indicate the character  of these relations, let us briefly consider the (triv- 
ial) case N = 4. We extend  the  integrat ion contour for the  s tandard  integral  
for the fl-funetion to a semi-circle in the upper  half-plane. Using the Cauchy 
theorem and the changes of variable proposed by  FAIRLIE and JO~ES (4), this 

gives the relat ion 

(1.1) B ( - - a ,  - - a t ) - - e x p  [-- iza ]B(--a , - -a ,  ~- ~ ) -  

- -  e x p  [ /nat]  B ( - -  a t ,  - -  a ,  + d) = 0 ,  

where B ( - - a ~ , - - a t )  is the four-point  funct ion,  and 

(1.2) %-t- % +  % = - - 1  § d.  

Closing instead the  contour  in the  lower half-plane we get the same relation, 
bu t  with opposite signs in the  exponents.  One of the functions,  say, 

B(--  at, - -  % -~ ~) may  be eliminated,  giving 

s i n ~ ( a ~  + a t ) B ( - -  a~, - -  a .  + ~) + s i n z a t B ( - -  e , ,  - -  et) = 0 . 

This is of course a tr ivial  consequence of eq. (1.2) and the  well-known propert ies  
of the fl-function, and only the simplest example of the relations we are going 

to establish. 
~'or hr>~ 5, however,  we get nontr ivial  relat ions between the  h r - - 1  B T i u n c -  

tions having ~ - - 1  particles in a fixed ordering. Pu t t ing  a~=  a~2, at----a~3, 
~ = a~4 , eq. (1.1) can be seen to be also of this type.  In  obvious nota t ion  it is 

(1.3) f l ( 1234 ) -  exp [--iza12]fl(2134)- exp [i~a23]fl(1324 ) = 0 .  

I t  will be seen tha t  this is just  a par t icular  example of the general relat ion (3.3). 

The derivat ion of the  linear relations made it  necessary to look more care- 
fully into the analy t ic i ty  propert ies  of the cyclic symmetr ic  integral. We do 
this by  invest igat ing the conditions on the analyt ic  s t ructure  coming from the 
requi rement  of cyclic symmet ry  of Be. This determines the  singularities and 
tile branch cuts at all levels of integrat ion,  and based on this we establish simple 
rules for writ ing down a linear relat ion whenever  at least one integrat ion contour  

is closed. 
3~aking simple linear t ransformations of the  integrat ion variables, we also 

find a new relat ionship between the  cyclic symmetr ic-contour  integral  and the 

(4) D. ]3. FAIRLIE and K. JONES: University of Durham preprint (1969). 
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, mult iperipheral  )) Chan-type integral  (~). The integrat ion variables in the lat- 

ter  are usually given as cross-ratios of the  variables in the  former  (~.3). We 
show tha t  they  also may  be given as simple ratios instead of cross-ratios, when 
a certain l imit  is taken.  

As an application we consider the signature propert ies  of B~, and give two 
simple, different proofs. One uses a par t icular  linear relation, the other is a 
result  of the new method  of going f rom the cyclic symmetr ic  to the  (~ multi-  
peripheral  )) integral.  

In  Sect. 2 we define variables and functions used in the following Sections. 

The linear relations are established in Sect. 3, and in Sect. 4 we discuss some of 
thei r  more impor tan t  properties.  The a l ternat ive  in te rpre ta t ion  of the  cyclic 
symmetr ic  integral  is considered in Sect. 5. Finally,  in Sect. 6, the signature 

propert ies  of B~ are invest igated.  

2. - The cyc l ic  s y m m e t r i c - c o n t o u r  integra l  for B ~ .  

Our work is based upon the manifest ly  cyclic symmetr ic  integral  for B r  
given by  KoBA and NIELSEN (2,a). The external  particles are taken  to be scalar 
mesons and we assume for simplici ty tha t  all t rajectories are linear. We choose 
one (arbitrary) pe rmuta t ion  as the s tandard pe rmuta t ion  and label the mesons 
in this permuta t ion  from 1 to h r in the clockwise direction. The ampli tude cor- 
responding to the permuta t ion  k~, k2, ..., kr is denoted B(k~, kp, ..., kr) or 

s imply Br  if we need not  specify the ordering of the particles. We consider 
B as a funct ion of the �89 linearly independent  trajectories (*) ~2, 

e~23, ...7 ~23, c%a, ..., etc., defined by  

(2.1) 

l ~ i ~ N - - 2  , 

o + ~'(P~ + P~+I + "" § P~)~ ,  

i + I < ~ < N - - 1  for i > 1 ,  2 ~ < ~ < N - - 2  for i = 1 .  

All trajectories are assumed to have a common slope a'. 
the  quanti t ies  

(2.2) x~. ----- 

- -  ~ i ~  

- -  ~ikJ -~ ~i~ @ ~k~, 

- -  gi~...~,~ -[- ~t~...kr -~ ~,~...~r~ - -  ~1. . .~,  

j = ~ r §  . . . .  

(2.3) X i , i ~ - l . . . . j  = - -  O ~ i , i ~ _ l . . . . j  �9 

We fur ther  define 

j = i §  

j = k + l = i + 2 ,  

- = k l + r = i + r  + l ,  

(5) See, e.g., K. BARDAKgi and H. RUEGG: Berkeley preprint (1968). 
(*) As is customary in the discussions of B~, the nonlinear constraints are only 

implicitly taken into account. 
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The quan t i ty  x ,  corresponds, with a slight modification, to the quan t i ty  
g(A, B) defined by  Ko•A and E~ELSE~r (~). 

F rom the definitions (2.2), (2.3) there  follow a number  of useful relations 
among the x-variables. For  later  use we give the  more impor tan t  ones below. 
Others can be found by  relabelling of the particles: 

(2.4) x12...j=x12-]-xi3~-....2vxlj-~-x23...j--j.2f-2, 2<~j<~N--2. 

For  j = N - - 2  this implies 

. . . .  N - - 3  (2.5) Xl~ § x13 § § x lx  , 

o r  

(2.5')  x12 - -  1 § x~3 - -  1 § .. .  § x ~  - -  1 = - -  2 .  

l~epeated use of eq. (2.4) implies 

(2.6) x~2..,- = ~ xk~-  �89 ( j - -  1) ( j - -  2) ,  

o r  

(2.6') x~2...j-- 1 : ~ (xk, - -  1) § j - -  2 ,  

both valid for 2~<}~<N--2. Using eq. (2.5) N times, we finally get 

(2.~) ~: x ~ , =  i N ( N _ 3 ) ,  

or 

(2.7')  ~ ( x ~ , -  1) = - N .  
l ~ k < l ~ N  

I t  is convenient  to be able to extend the v~lidity of eqs. (2.6), (2.6') to 
} = N - - l  and j =-N.  This is possible if we define 

(2.8) XI~...~ = - - 1 ,  x12...~_ 1 = O. 

Equat ion  (2.6) may  be considered as the  solution of eq. (2.2), giving ~-va- 
riables in terms of x-variables. We finally define an x-variable for an a rb i t ra ry  
channel  of any adjacent  or nonadjacent  mesons }~j2 . . .  j r  by  

(2.9) xjV ' j,---- ~ x. --1- ( r - - 1 ) ( r - -  2) 

I t  is easily checked tha t  the x-variables defined by  eq. (2.9) satisfy eqs. (2.2) 
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for a rb i t ra ry  values of r, k~, k2, ..., k~. For  linear trajectories 

(2.1o) XJxJz...J r : - -  ~JlJ2...Jr ~ -  CJxJa...J r 5 

where ej,j,.....j, is a funct ion of the masses of the particles and the in tercepts  
of the trajectories involved. 

Later  we will need similar relations for the variables 

(2.11) Ej,~,...# = exp [iz(xj,j~...~ - -  1)].  

They  of course follow immedia te ly  from the x relations above: 

(2.12) 1-I E ~  = 1 ,  1 < r  <_~% 
k#r  

(2.13) Ej,j~...j, =: ( - -1)  ~-2 1-[ -E6,h, 
i ~ < l ~ < r  

(2.14) 1-[ ~ .  = ( -  1) ~ �9 
l<<.t<i<~.v 

With these definitions and relations, we are re~dy to write down the cyclic 
symmetr ic  eonto~lr integral  for Bzr I t  is 

f f (2.15) B(12 . . . ~V)  = .. da; ~ II  dz~ II  ( z , - z ~ ) ~ , , - ~ ,  

where zj = exp [iOj] are N ordered points on the uni t  circle in the complex 
z-plane such tha t  

(2.16) 01 < 02 < . , .  < Odg < 01 -~- 2J'~. 

The ordering of the points zk is the same as tile ordering of tile particles, and z~ 
m a y  be thought  of as representing particle k. The differentiM dG3 is defined by  

(2.17) dG 3 __ dz~ dz~ dz  t 

where z~, z~, zt are three arbi t rary,  bu t  fixed points such tha t  

O r <  Os <~ Ot < Or -f- 22"~ . 

The integrat ion in the remaining N - - 3  variables is over the parts  of the  
circle consistent with the constraint  {2.16). The <~ division ~> of differentials in 

eq. (2.15) has been given a rigorous mathemat ica l  meaning by  Ko~A and 
NIELSE~ (2.3). YVe emphasize tha t  eq. (2.15) is independent  of the choice of 
r, s and t and the values assigned to z~, z, and z t. 
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Expressions very similar to eq. (2.15) have already been given (3.6), but  
unfortunately the existing li terature is somewhat confusing on the relationship 
between the integral (2.15) and, e.g., the conventional (( multiperipheral ~) in- 
tegral. We will therefore demonstrate this relationship in some detail. 

This is done by  introducing the angles 0~ as new variables. We insert 

z j - - z , =  2i exp ~ (0, q- Oj) s m ~  (Oj--O~)= 2i exp (0~ q- Oj) a;~ 

into eq. (2.15). Using eqs. (2.5'), (2.7') 

/ r  

I I  (z~-  z~) ''j-1 -- (2i) - r  y [  exp [-- iOk] I I  a~-~ '-1. 

As dzk = iGdO~ and 

dG3 - -  
1 dG d0~ d0~ 1 
23 G ~ . ~ t ~  23 dF3 , 

we finally get the real integral 

(2.18) B(12...32) = 2 -s+ dF~ "1 d0k 17 rT~,,-~ . . . .  ~'i " 

Introducing the (( multiperipheral  ~) variables u~ in the s tandard way (2), one 
can finally show t h a t  

B(12 ... 32)=] 'dV `~-~, I-[ q ~ p - - 1  

J / ,  

where the right-hand side is the integral over the product of (~ parti t ions ~> as 
defined by C I ~  and Tso~ (7) with the invariant  measure dV ~-~. Apart  
from a constant  factor, eq. (2.18) is equal to the formula given by  KOBA and 
NIELSEn" (~). 

In  writing down eq. (2.15) we have chosen a. particular ordering of the par- 
ticles and also a particular one of the 2N permutat ions which, because of the 
cyclic symmet ry  and reflection symmet ry  of Br ,  are equivalent to this. The 
other 2 3 / -  1 permutat ions are obtained by  reversing the sign of some or 
all of the differences zj--z~. This introduces phase factors / ~ ,  and the 
branch cuts in the i n t e ~ a n d  must  be chosen such tha t  the phases cancel in this 

(s) D. B. FAIRLIE: University of Durham preprint (1969). 
(7) CHiN HONG-Mo and Tsou SHEUNG TSUN: Phys..Lett., 28B, 485 (1969). 
(8) Reference (2), eq. (3.11). 
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operation and really give the cyclic symmetry.  The same applies of course 
to eq. (2.18). 

To simplify the notat ion in the following, for an arbitrary, but  fixed ordering 
k~, k~, ..., ~ of the particles such tha t  

(2.19) 

we define the function 

(2.20) fi(kl,k2,...,k~)=2-~>@..fdIF~l t f l d 0 k  I-[ [a~]~o-~. 

Here dlF3 ! is obtained by taking the modulus of the (~, in dF3. The fl~v-func- 
tions are of course closely related to the B~-functions. Let us define 

B ( ~ I ,  ]~2, . . . ,  ] @ ; - - ~ )  -~  B ( k l ,  k2, . . . ,  k~r) .  

The relationship is t, hen (for the linear trajectories (2.1)), 

(2.21) ~ ( k ,  ~.~, . . . ,  ~ . ~ ) =  B(k~, k~, . . . ,  ~ :~ ; - -~  + c ) ,  

where the constants c are defined by eq. (2.10). In particular, since (~j~> O 
for Oi < Oj < O~ 4- 2~r, 

(2.22) (12 ... N )  = B(12  ... N ) .  

If  and only if the trajectory functions ~ satisfy the (~ canonical constraints ~) 

(2.23) XJxJ~"" ]r : - -  (XJt:/z'" ]r ? 

for all the 1 N ( N - - 3 )  channels defining Ba for a particular permutat ion kl, 
k~, ...., I,'~, one has 

fl(kl, ~ ,  . . . ,  ~:~) = B ( ~ , / ~ ,  . . . ,  k~) .  

I t  is trivially true tha t  the canonical constraints are sufficient. That  they  
are also necessary follows for example by the requirement tha t  the poles in fl 
and B should coincide and have identical polynomial residues. 

The at tract ive property of the fin-functions is their  close relationship to 
the B~-functions~ and tha t  they  are all defined by integrals differing only in 
the integration limits, such tha t  the ordering of the particles is given by the 
ordering of the points zi on the uni t  circle. Thus the integral (2.15) with the 
integration limits defined by the inequalities (2.19) is simply fl(kl, k2, ..., k~) 
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mult ipl ied b y  a certain phase  factor,  as some of the  differences z ~ -  z~ wilI 
appear  wi th  the  wrong sign. The de te rmina t ion  of this phase  factor  is not  

t r iv ia l  and will be considered in the  following Section. 

3. - Linear relations for B~. 

3"1. S i m p l e  l inear  relations.  - We are now prepared  to derive the l inear  

relations. To begin wi th  we only consider the s implest  type.  More compl ica ted 

relat ions are considered in Subsect.  3"2. 
Consider the  first in tegra t ion  to be per formed in the  in tegral  (2.15). Le t  i t  

be the  z~ integrat ion.  The integral  is 

(3.1) 
z~ 

f d Z l ( Z  - -  Z l ) X l , - 1  (z3 - -  Z l ) X t , - I  . . .  (Z~" - -  Zl)Xl~g--1 ~ 

Z~V 

The in tegrand  has b ranch  points  at  z2, z3, ..., z~. Assume tha t  this integral  

corresponds to the  p e r m u t a t i o n  B(123 ... 2V). The z 1 in tegral  for B(23 ... N 1) is 

then  

z2 

f d Z l ( Z  - -  Z2)X,z -1  (Z 1 - -  Z 3 ) x l t - 1  . . .  (Z 1 - -  ZN)Xl~  - 1  ' 

z~v 

with all the  subsequent  integrat ions unchanged.  The only difference between 

the  two integrals is the factors (-- 1) ~'r~. I f  the b ranch  cuts are chosen such t h a t  

these factors have  one and the  same meaning  for all points  on the  uni t  cirele~ 

it  follows f rom eq. (2.12) t ha t  the  phase  factors  all cancel, and the  two permu-  
ta t ions  are indeed equivalent .  To obtain this the  branch  cuts mus t  run  along 

the  t angen t  to the uni t  circle, all wi th  the  

same orientat ion,  e.g., as shown in Fig. 1. \ 

With  this choice we have  

(3.2) ( z j - -  z l ) ' l ' - l  : E l j ( Z l - -  Z~)  x ' j - 1  , 2 ~ < j < N ,  

which is valid also for all points  inside the  

uni t  circle. 
The in tegrand in (3.1) is then  analy t ic  in- 

side the  uni t  circle. We in tegra te  zl a round 

the  whole circle and app ly  the  Cauchy theo- 

rem.  Consider the integral  f rom zk to Zk+l. 

The ordering of the  points  is then  2, 3, ..., 

/ " -\ \\ 

Fig. 1. - Branch cuts in the in- 
tegrand of eq. (3.1). 
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k, 1, k + 1 ,..., N. F r o m  the above discussion and the  definition of the fl~-func- 

tions, it gives E~2EIa ...  E~kfl(2, 3, ..., k ,  1, k + 1, ..., N). Thus, assuming tha t  
the  integrals converge, the relat ion is 

(3.3) fl(12 ... 2V) + E12fl(213 ... N) -4- E12E~3fl(2314 ... _AT) + 

+ .. .  + E ~ E ~ 3  ...  E~m_~fl(23 ... ~V--1,  1, N) = 0 ,  

and  this is our nmin result  in this Section. Taking  the branch  cuts in the oppo- 

si te direction we get the (( complex conjugate  ~) relat ion 

(3.3') fl(123 ... N) + E~-~fl(213 ... N) + 

+ ... + Ea-2~E~ . . .  E~.~_1fl(23 ... N - -  1, 1, N) = 0 .  

By  analyt ic  cont inuat ion these relat ions are valid for all x. Later  we will refer 

to eq. (3.3) as 

(3.4) 2 + ( 1 ;  J2 ... N )  = 0 

and eq. (3.3') as 

~(3.5) s  12 ... N )  = 0 ,  

where the int ial  pe rmu ta t i on  is indicated which has coefficient 1 and the par- 
t icle tha t  is (( moved  around is shown ~>. 

Of course other relat ions of the same type  m a y  be obtained s imply by  rela- 

belling the particles.  Due to the  relat ion (2.12) we get, loosely speaking, E~j 
factors when part icle  k is moved  to the  right,  and E ~  factors when it is moved  
to the  left, or vice versa.  

3"2. N o n s i m p l e  l i n e a r  r e l a t i o n s .  - I t  was shown in Subsect.  3"1 how to choose 
the  branch  cuts in the  first integTation to ensure cyclic s y m m e t r y  of the to ta l  

integral .  We will now use the same condition to de te rmine  the singularities and 
the branch  cuts in the subsequent  integrat ions.  Knowing this we m a y  close all 
these contours and obtain  other,  more complicated linear relations. 

For  this purpose it is convenient  to write the  integral  (2.15) as 

where 

N--1 

17[ (z~- zk)~kfl~V-" (z), 
k= l  

2~--1 

~ ' [ - ' ( z )  = H ( z J - z k )  x~'-I �9 
J=k+ l  

I t  is implied by this tha t  the  integrat ions are per formed in the order zl, 
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z2, ..., z~_3. Assume tha t  the branch cuts in the z~-plane are chosen as before, 

eq. (3.2). From the general discussion of singularities of functions defined by  

integrals (o), it follows tha t  the only singulari ty of 

~2 

~(z~) = f d z l ( z ~  - -  z , ) ~ - ' ~ ;  ~-~) (z) 

in the z2-plane is an end-point singularity at  z 1 = z2. 

make the change of variables z l -+/ t l  def inedby 

This implies 

(3.6) 

z l  = z ~  §  - -  z~)  . 

Z.y - -Z l :  / ~ I ( Z ~ - -  Z2) , Z 2 - - Z l :  (/~1 - -  1 ) ( Z . ~ , - -  Z2) �9 

(3.9) 

we can show tha t  

zs 1 

--/dz2(z,v--Z2)x~'12--1~9[--1)(z)/d/~l/~Nl--l(~l--l)xlrl" 

z~v a 27-1 
�9 I I  [ ~ -  ~ -  ~ l ( ~ -  ~ ) ]  ~-~  , 

k-3  

where the tel integral is now an analytic funct ion of z~ (but not  of the other z~). 

As we have used, e.g., 

( z ~ , - -  z l )~ ,~  -~ = ~ T l ~ - l ( Z ,  - -  Z~) ~ ' - ~ ,  

the branch cuts in the z2-plane are implicitly determined by  this expression. 

Start ing with eq. (3.2), it follows tha t  we must  have 

( 3 . s )  ( - -  ~ l ) ~ l ~  -1 = E ~  -~  , (z~ - -  z ~ ) ~  -~ = E~(z~  - -  z~)~l~ -~, 

etc. If  the branch cuts in (~-l), , ~2 tz) are chosen such tha t  

(zk-- z~) ~ -~  = E:~(z~ - -  z~) ~ - ~ ,  

(3.7) 

B(12 ... N) ---- B(34 ... N12) .  

(9) See, e.g., R. J. EDEN, P. V. LANDStIOFP, D. I. OLIVE and J. C. POLKINGHORNE: 
The Analytic S-.Matrix (Cambridge, 1966), p. 39. 

3 < k ~ < N - - 1 ,  

To exhibit this we 

Using eq. (2.4) we can write the z2 integral as 
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We have already shown tha t  B(123 ... N) = B(23 ... N1), i.e. tha t  the integral  
(3.7) is invar iant  under  the reflections z j - - z ~ - + z i - - z j ,  2 < j < N .  To show th a t  
B(234 ... N1) =- B(34 ... N12), make the  reflections 

Z j - - Z  2 ~ z  2 - z j  , j =- 1, 2, 4, ..., N. 

F rom eq. (3.6) we see tha t  the tq integral  is invar iant  except for the change 

/~l lN -1  --~ (--/~I):CLu -1 ' 

and using eqs. (2.12), (2.13), (3.8), the change in the z2 integral  is 

E--I E-I E-i -i 
----~i~--2a--24 " ' "  E2.~-i Eii~ = 1 . 

The minus sign comes from the change in d/q. This proves our assertiovs and 

also shows tha t  the determinat ion of the branch cuts is consistent.  F rom the 

point  of view of obtaining linear relations it  is of course eq. (3.9), together with 
eq. (3.2) which are the impor tan t  results. 

At  this stage we are able to write down the relat ion obtained, e.g., by the  
integrat ion limits 

z~ 

 d+zl 
z~ 

with the remaining particles in fixed order. As an example, let us take N =  5. 
To write down the  relat ion tha t  follows, we proceed like this: the particles in 
in fixed order are 345. In tegra t ing  z~ around the closed loop gives the three 
orderings 2345, 3245, 3425. Finally,  in each of the three cases, z~ must  be in- 
tegra ted  from z5 to z~. Each final ordering gives the corresponding fl~-function 
multiplied by  a phase factor  which is determined by  eqs. (3.2), (3.9). We see 
the  importance of the directions of the branch cuts being correlated. The 
relat ion obta ined is 

fl(12345) + E2@(13245) -~ Ela~2afl(31245 ) -~ E2aE24fl(13425) -~ 

+ E13E23E~4fl(31425) + E,3EI,.E~3E24fl(34125) = O. 

In passing we note that as it can be written 

~+(2; 12345) - -  E~aE24E25 ~+(4; 43125) = 0 ,  

this relat ion is not  independent  of the silnple ones. 
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Return ing  now to the general discussion, we can determine the branch  cuts 
in the z3 integral  by  int roducing the  new variable/~2 defined b y  

z~ = z ~ + t ~ ( z ~ - - z ~ ) ,  

and proceed as above.  We then  get f rom eqs. (3.2), (3.9) the  conditions 

( z ~ - - z ~ ) ~ ' ~ - ~ = ~ ( z ~ - - z ~ )  ~,~-~ , 4 < k < i V ,  

which can be shown to ensure B(12345 ... iV) = B(45 ... iV123). In t roduc ing  

consecutively /~3,/~4, etc., b y  

z~ = z~ + ~(zk+~ - -  z~), l ~ k < N - - 3 ,  

we finally end up with  the set of conditions 

(3.10) (zk - -  zj) ~ -~ = Ejk(zj  - -  zk) ~ -~ , 1 < j < k <~ N ,  

which are necessary and sufficient to ensure the  cyclic s y m m e t r y  of B~ as given 
b y  eq. (2.15). 

This result  m a y  at  first sight seem tr ivial ,  and we wan~ to point  out t ha t  

i t  cannot  be obtained by  a s imple inspect ion of the  integral  (2.15) and using 

eq. (2.12). 
The conditions (3.10) correlate the  branch  cuts in all the  integrat ions,  and 

it  is no longer necessary, as in Subseet. 3"1, to keep all part icles except  one in 

fixed order. We m a y  now close the  contour  a t  any  level of in tegra t ion  and use 
the  Cauchy theorem.  Given the  l imits  of in tegra t ion  for all the AT--3 va- 
r iables in tegra ted  over, with at  least  one closed contour,  the  following rules 

de te rmine  the  corresponding linear relat ion:  

1) write down the  part icles t ha t  are kep t  in fixed order, say, kl, k2, ..., kj, 

and  define a posi t ive direction of ro ta t ion;  

2) consider the  last of the  remain ing  integrat ions,  say, ]dz~, and deter- 
mine  all pe rmuta t ions  of ]fi, k2, ..., kj, l consistent  wi th  its in tegra t ion  limits.  

Associate to each p e r m u t a t i o n  ~ a phase  factor  ~(~) defined b y  

(3.11) = I I  
i 

where the  produc t  is over the  set of part icles wi th  which l has been pe rmu ted  
in ~, and s -=  + 1 if the in tegra t ion  is in the  posi t ive direction and s = -  1 

if i t  is in the  negat ive  direction; 
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3) repeat  this for the remaining integrations,  s tar t ing with the last and 
ending with the  first, always counting the permuta t ions  from the  same, fixed 
permuta t ion  %; 

4) the  linear relat ion is symbolically 

(3.12) ~ H 2,(~)fl(~) -- o ,  
g 

where the sum is over all permutat ions  ~ consistent with the integrat ion limits 
and the product  is over all phase factors Xz(~) which have been associated to 
each final permuta t ion  by  2) and 3) above. 

As an ext reme case, consider the relation 

�9 .. d O ; ~ I I d z ~  I I  ( z ~ - - z , ) ~ , , - ~ = o .  
#:-1 1 ~ i < i ~ 2 1  

The left-hand side is the sum of all the  1 ( N - -  1) ! different fl~-functions, each 

multiplied by  factors E,-; corresponding to the permuta t ions  in tha t  part icular  
function.  On the other  hand 

S - -  f f  �9 " dlGa] - l l - I  d0,~ I I  I z , - z ~ ]  ~' ' - '  

is just  the sum of all the  fl~-functions wi thout  coefficients. With  the canonical 
constraints fulfilled, this is the result of •AIRI=IE (~). 

4. - Some properties of the linear relations. 

The nmst impor tan t  consequence of the linear relations is of course tha t  they  
provide information about  fl~-functions which are difficult to investigate by  
relat ing them to bet ter-known functions. In  this way the relations m ay  prove 
,~ useful tool for the invest igat ion of, e.g., the multi-l~egge l imit  of the full 
3r-point ampl i tude  (*). 

Consider the reduct ion propert ies of the simple relations (3.3), (3.3') at 
nonposi t ive integer  values of the x variables. We introduce the nota t ion 

(4.1) { r j  (12 ... JlJ + 1 ...  2r = R e s  [/7 (12 ... N ) ]  ...... , . _ j ,  

Rj(12... ]lJ + 1 . . .  N )  = R e s  [B(12 ... N ) ]  ...... ,=_j.  

(*) See ref. (lo) for such a treatment of the case _N= 5. 
(lo) W.J .  ZAKRZEWSKI: University of Cambridge preprints, DAMTP 69/6, DAMTP 

69/17 (1969). 

47 - I I  Nuovo Cimento A .  
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F o r  J = 0, 

r o ( 1 2 . . . j ] j + l . . . N ) = / 5 ( 1 2 . . . i , j + l ) / 5 ( j , j + l . . . N ) ,  3 < j < N - - 2 ,  

to(12 ... N - -  2 i N - -  1, N) = B(12 ... N - - l ) .  

Only the two first terms in eq. (3.3) have the  12-polc, so , ' fo r  x12 = - - J  i t  
follows tha t  

rj(12[3 ... N ) -  ( - - 1 ) J r j ( 2 1 1 3  ... N )  = 0 ,  

which shows the signature propert ies of the fix and B~ functions for two- 
part icle trajectories.  )~ext, consider x12 ..... j = 0 ,  3 < j < ~ Y - - 2 .  In  this case 

~•  12, ..., N) reduce to Z• 12, ..., j + 1), as the  pole only occurs in the 
first j terms. For  x12 ..... j = - - J ,  J r  one gets nontr ivial  relations between 

the  residues of the /ss-funetions, bu t  we have not  invest igated these. 
One /5-function may  be el iminated between eqs. (3.3), (3.3'), giving a real  

relat ion between N - -  2 /5~-functions. I t  seems likely tha t  there  arc just  1V-- 3 
l inearly independent  /5~-functions (this is the  ease for 2/----4 and N----5), 
bu t  we have not  proved this. Even  for N---- 6 the actual  solution of the re- 
lations in terms of three /56-functions seems unmanageable.  However,  there  
are more linear relations of the type  (3.3) t han  different /5~-functions. Thus 
they  are not  all independent  and presumably  also the nonsimple relations can 
be derived from the  simple ones. 

Excep t  for the t r ivial  four-particle case, the only simple case is ~Y = 5. 
The Bs-funetion is simply related to a generalized hypergeometi ' ic 3F2(1) 
funct ion (lO,11). The 3F2 functions obey a number  of two- term and three- term 
relations which can be found in s tandard  books on hypergeometr ic  functions (12). 
A detailed invest igat ion of the Bs-function f rom this point  of view has recent ly  
been made (13), and it  has been shown tha t  the  12 different hypergeometr ic  
series for given parameters  just  correspond to the 12 different /55-functions. 
I t  can easily be seen from this tha t  the present  simple relations for f15 are equi- 
valent  to the  well-known three- term relations for ~F2 functions and thus give 

more insight into the s t ructure  of the latter .  
As an example consider the relat ion obtained by  [BIALAS and POKORSKI (11). 

We can write it  down immedia te ly  by  eliminating/5(12453) f rom X+(3; 12345) = 0 

and X-(3;  12345) = 0, 

(4.2) B(12345) = sin z(x23 + x12-- x45)/5(12345) + sin ~(x34 + x,5 - -  x12)/5(12435). 
sin ~(x12 - -  x45) sin ~(x45 - -  x12) 

(11) A. BIA]!,AS and S. POKORSXI: .~ucl. Phys., 10B, 399 (1969). 
(12) See e.g., L. J. SLATnR: Generalized Hypergeometric .Functions (Cambridge, 1966), 

p. 114. 
(13) j .  F. L. HoP~:INs and E. Pr~AnTE: to be published. 
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The interpretation of this formula should be clear from its diagTammatic rep- 
resentation in Fig. 2 and the discussion in ref. (n). These authors also sug- 

gest to make eq. (4.2) the starting point for a phenomenological analysis of 

five-particle reactions. However, it now reveals an ugly feature, the existence 

of a spurious pole a t  integer  values of the  x12--x45 which vanishes only b y  a 

nontr ivial  cancellation of the two r ight -hand side t e rms  a t  the  pole. This is 
l ikely to m a k e  r a the r  difficult any  approx imat ions  to B 5 based on the above  
formula.  

5 - - - ~ - - ~ K ~ - -  4- 5 ~_ ~ 4 5 ~ 3 

1 2 1 ~ ' ~ 3  I ~ J ~ ' ~  2 

Fig. 2. - Diagram representing the relation of BIALAS and I~OKORSKI. The coefficients a~ 
and ae are defined by eq. (4.2). 

On the other  side, as B 5 can be calculated fair ly easily there  is m a y  be not  
much  point  in doing this. For  N > 6 ,  however,  this is not  so, and it  m a y  be 

t ha t  one m a y  find a corresponding formula  in these cases where the  spurious 
poles m a y  be avoided. 

Finally,  let us consider the  presence of satell i te terms.  In  the  integral  (2.15), 
satelli tes appear  as the  presence of a funct ion ](z; x) in the  integrand.  The 

funct ion ](z; x) must  be invar ian t  under  lineal' f ract ional  t rans format ions  
(M6bius t ransformat ions)  of the points  z,. This p rope r ty  of the  in tegrand in 

eq. (2.15) is essential  for the  in te rpre ta t ion  of the  in tegral  as a B f f u n c t i o n  (5). 

Also, only then  is i t  possible to express ](z; x) as a funct ion of the convent ional  

~ for By. 3 T - - 3  independent  in tegra t ion  variables  % 

I f  ](z; x) is analyt ic  such tha t  i t  can be expanded  in powers of ( z ; - - z , ) ,  

the  modified integral  can be wri t ten as a satellite series on and inside the  uni t  
circle. If ,  finally, ](z; x) has the necessary s y m m e t r y  propert ies ,  the  l inear re- 
lat ions are also valid in the presence of satellites. 

5. - Alternative interpretation of the cyclic symmetric integral for Bx. 

The s tandard  <~ mul t iper iphera l  ~> integral  represen ta t ion  for B~ corresponding 
to the  configuration in Fig. 3 m a y  be ob- 

ta ined f rom eq. (2.15) b y  expressing its 

in tegra t ion  var iables  u~ as cross-ratios 

of the  var iables  z~ (5,3). In  this Section, 

we will show tha t  the  same integral  re- 

presenta t ion  can also be obtained b y  ex- 
J pressing the  independent  u, as s imple 

J 1 J J 1 

Fig. 3 . -  The multiperipheral configu- 
ration. 
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ratios of the  differences z j -  z~ and going to u suitable l imit  after the  integra- 
t ion  has been carried out.  

We write eq. (2.15) as 

ZN--I Z t 

(5.1) B(12 . . . /v)= 
Zl z t 

$i 

�9 dz~ 1-I (z~--z~)~,~-l~o~(z),  
k=2 

where 

~V 

(5 .2 )  ~)k(Z) = E (ZJ - -Zk)Zk ' - - l !  
~-~+I 

and perform the successive subst i tut ions  z~-~#k defined by  

Zh. - -  Z 1 (5.3) ~ , 
Zk+ 1 - -  Z 1 

k :  2, 3, . . . ,  N ' - - 2  . 

After j - - 2  subst i tut ions ,  the  zj integral  is 

(5.4) 

where 

~$-i-i I I 

zl 0 0 
~--1 

H (1 - -  ~]..~/clal k+,--I H H [Zk--ZI--~i.J--I(ZJ--Zl)] ~l;j-1 

:Now assume tha t  all the integrations h~ve been performed, i .e. put  j ~- 2V-- 1 
in eq. (5.4). As x~.....~_~----0 (eq. (2.8)) we get 

(5.5) 

1 1 

ff 2 B(12 . . . . Y ) - ~  . . .  1-I d,u~#~ ,~' ' - i  IF] . (1 --r /~), , , ,+,  - L  
0 0 

" ( ~ -  ~ - l ) ~ - ~ ' ~ ( z ~  - z i )  ~ I-I  [z~ - z ~ -  ~,..~_~(~_~ - zi)y~.~-~ -1 , 

which, except for the curly bracket,  is the (( multiperipheraJ >) integral. How- 
ever, going to the l imit  

(5.6) z ~ _ i - - z l - >  0 , z ~ - - z ~ _ l ~ : O  , z~ , - - z l~-O , 
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and using eq. (24), the  curly bracke t  is s imply  1, giving the desired result .  

The necessi ty of the  l imit  (5.6) to obta in  the  s tandard  integral  fo rm m a y  be 

unders tood in the following way:  the  

t ransformat ions  (5.3) are mappings  of the  
uni t  circle described b y  z~r onto circles 
described b y  #k- The eentres of t he l a t -  

ter  are a t  the  points  1 [1 + i ctg (Ok~- 1 -- 

-- 01) ]. For  0 < 01:+1 -- 01 < ~'~ the  s i tuat ion 
is as indicated in Fig. 4. The integTation 

contour  for #~ is along the  lower pa r t  

of the  circle. In  the  l imit  (5.6), the  cen- 

tres of all the circles t end  to � 8 9  

~nd the  #~ in tegra t ion contours tend  to 

the  real axis f rom 0 to 1, reproducing 

the  s tandard  (( mul t iper iphera l  ~> integTal. 

'r Im #. 

\ 
:/ x 

I /' 
\ / 

Re#. 

Fig. 4. - The contour in the #~-plane. 

Next  we will briefly show how, b y  essential ly the same method,  one m a y  
obta in  an integral  representa t ion  for the configuration in Fig. 5. The point  is 

' 2 1 N 

/ 

.... I i ,  i \ 
J j §  N 1"  

Fig. 5. - The {~ twisted ~> multiperipheral configuration. 

to pe r fo rm the  first j - -  2 integrat ions  in opposite order. To be specific, we write 

(5.7) B(12 ... N) = (z~ - -  z2/_l) (z.%. - -  Z l ) ( Z ~ ' - -  1 - -  Zl)" 

Z~__~ ZJ+ 1 $:I gJ Z~ 

Zl ~1 zl g2 g~_~ 

As in the  previous case we introduce new variables  #k, bu t  now b y  eqs. (5.3) 
for k > j  and  b y  

(5.8) # k - -  z j - - z k  , 2 < k < j - - 1 ,  
Z j  - -  Zk - -  1 

for the  rest.  After  the  filst j - - 2  t ransformat ions ,  the  z~ integrM is now 

(5.9) 

zj+ 1 I I 

d z j ( z j - -  zl) ...... ' -19 j ( z  ... d # j t ? , '  ...... , -1 .  
t=2 

'sz 0 0 
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This expression, which will be used in the final Section to invest igate the 
signature,  should be compared to eq. (5.4). Performing the remaining substi- 
tu t ions  according to eqs. (5.8) and taking the l imit  (5.6), we finally get 

(5.10) 
j / ~--2 J--1 ~r--2 

B(12 ... x )  . . . .  I I  dml- [  ~ ......... '-~ I I  ~.'".~-~" 
i=2 /ffi2 k=i 

0 0 

1-[ (1 - -  ~/~k) ..... "-~ y [  (1 - -  ~,~,,) ...... -1 [1 - -  ~]j,,(1-- ~]2k)] ...... -~, 

which is the integral  representa t ion corresponding to the configuration in Fig. 4. 
This expression has also been given by  HOPKI~So~ ~ and CHA~ (1% The l imit  
(5.6) c~n be given a similar in terpre ta t ion  in this case. 

6. - Signature properties of B~r. 

We will invest igate the signature propert ies of B~ in two different ways;  
filst by  using a suitable nonsimple linear relation, secondly by  the formalism 

developed in Sect. 5. The problem has already been discussed in the litera- 
tu re  (14.16). In  part icular ,  Ko]~x and ~IELSEN have obtained the  same results 

as in the present  paper, bu~ by  using a different method.  
To invest igate the channel  12, ..., j, we need a linear relat ion where only 

the terms fl(12 ... N) and fl(j, j - - l ,  2, 1, j + 1, ..., N) have the 12, ..., j pole. 
Such a relat ion is the following: 

(6.1) 

SJ+t Z$+t ZJ+t 

e r r  r ... dG~- 1-[ dzk dzj dzs_l dzi-2.., dZl I I  (z,--zk)'*'-l= O, 
J J .~ffii+l d d d l ~ k < : / ~ '  

Z] " lSJ-I g2 

where it  is assumed tha t  tile particles j + 1, j + 2, ..., N are kept  in this 
fixed order. Using the  rules established in Sect. 3, we can immedia te ly  write 

down this relat ion in terms of fl~-functions. There is only one trick, in the t e rm 
which eventual ly  gives/5(12 ... N),  we in tegra te  zj_,, zs-3, ..., zl in the negative 
(anticlockwise) direction. Using eq. (2.13), the result ing relat ion is 

~(12 ... iv) + E~...jfl(j, j - - l ,  ..., 2, 1, j + 1, ..., iv) + 2 : =  o ,  

where X is the sum of all the  terms in eq. (6.1) not  having the 12, ..., j pole. 

(14) J. F. L. HOI'KINSON and CHAN Ho~G-Mo: CERN preprint TH. 1035 (1969). 
(15) Z. KOBA and H. B. NIELSEN: preliminary note (May, 1969k 
(10) Z. Ko~A a.nd H. B. NIELSEN: Niels Bohr Institutepreprint (September, 1969). 
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'This implies 

(6.2) re(i, i - - i ,  ..., 2, l l i  + 1, ..., N)  = (--  1 / r j ( 1 ,  2, ..., ~li + 1, ..., N ) .  

We emphasize  thu t  re is the residue of the  fl~-funetion. Equa t ion  (6.2) then  

implies the  decoupling of all the  odd daughter  t rajectories  in the  12, ..., i chan- 

nel for the  symmet r i c  combina t ion  /9(12 ... N ) +  fl(j, ~ - -1 ,  ..., 2, 1, j - - l ,  . . . ,N) .  
This is t rue  for the  same combina t ion  of B-funct ions if and only if 

Rj(i, i - - l ,  ..., 2, 1[i + 1, ..., N) = rj(i, i - - i ,  ..., 2, i l i +  i, ..., N). 

This happens  if and only if the  canonical  const ra in ts  (2.23) are satisfied for 

all the  channels in this B-funct ion which are dual  to the  12, . . . ,  j channel. The 

nondual  var iables  are of course the  

:same in the  two functions,  and as 

the residues are polynomials  of order 

J in the  dual  var iables  

R / l ,  2, ..., ilJ + ~, .-., N) + 

+ ( - - 1 / R / i ,  i - - i ,  ..., 2, ali + 

+ 1, , N )  : O txJ -h  
. . . .  ~, dualt , 

such tha t  in the  symmetr ic /an t i sy ln-  

metric combinat ion the  odd/even lead- 

ing t ra jec tory  decouples. This is the  
resul t  of HOPKINSON and CHAN (14). 
I n  Fig. 6 the poles present  in the  

different  cases are indicated.  

~J 
6~ 

4~ 

Fig. 6. - Poles in the 1, 2 .... , j channel for 
the symmetric combinations: 
oB(12 . . . i v ) + B ( i , i - - ~  . . . . .  2, L j +  1 ..... iV), 
= fl(12 ... iV) + fl(i, J - -  1 . . . . .  2, l ,  ~ +  1 . . . .  iV). 

For  the  second proof, which also gives a me thod  for ac tua l ly  calculat ing 
the  residues, let us tu rn  back  to the  expressions (5.4) and (5.9). Repea t ing  the  
de r iva t ion  of (5.9) for the  <~ t w i s t e d ,  p e r m u t a t i o n  j, i - - 1 ,  ..., 2, 1, j + l ,  ..., N 
gives ins tead the expression 

Z$+ I I I 

f f . . . .  

dZl(Zl -- Zj) . . . . . .  '--l(~)f](z) " ' "  d / ~ i l u i  "" H 

z~ 0 0 

where 

( I  - -  r / ~ ) , , , , + i - ~  �9 

J--1 N 

" H H [Zk--Z'~--~]i.Y--l(Z$--Zl)] " ' ' - I  
I=2 k = j + l  

~(z) = I I  ( ~ - ~ 1 )  "'~-1. 
k = j + i  
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Comparing this to (5.4), one sees t ha t  the  # -dependent  pa r t s  are exac t ly  identical,  
and in the  remain ing  pa r t  of the  in tegra l  z~ and z~ are interchanged.  Hence,  

the  only difference of the  two residues at  x~2 ..... ~ = - - J  is the  fac tor  ( - -1 )  +, 

which is the  above result .  This is so because in the  residue, z~---- z~. Strange-  
ly enough, the  result  is not  easily seen f rom the expression (5.10) wr i t t en  

for the  (< twis ted ~) pe rmuta t ion .  
For  the  results in this Section i t  is obviously a necessary condit ion t h a t  the  

t rajectories  arc l inear and t h a t  all t ra jectories  dual  to the  12, ..., j channel  

have  a common  slope. This implies nar row resonances (poles) b u t  wi th  the  

in te rpre ta t ion  of the  Bzcfunction us a Born t e r m  of the  physical  N-po in t  ampli-  

tude,  this is not  in d isagreement  wi th  exper imenta l  evidence. I t  has been  

shown t h a t  wi th  a l inear t r a jec to ry  as input  in the  B~-function, the  ou tpu t  

t ra jec tory  in the  i t e ra ted  ~mpl i tude  is no longer l inear  and  has resonances 

wi th  nonzero width  associated with  it  (a7,19). KO]~A and lqIELSE~ (~6.a,) have  

considered in some detail  the  question of the  existence of realistic solutions of 

the  canonical constraints  (2.10) for par t icu lar  reactions. 

I am grateful  to P. AUVIL, J .  F. L. HoP~z~so~,  Z. KOBA and I t .  B. 

~IELSEN for discussion, and to CHAN I=[0NG-~V[0 for comments  and  criticism. 

(aT) K. KIKKAWA, B. SAKIT-4. and M. A. Vn~xsoao: University of Wisconsin pre- 
print C00-224 (i~arh, 1969). 

(is) j .  C. I~OLKINGHORNE : University of California preprint UCRL 19209 (June, 1969). 
(19) Z. KOBA and H. B. Nr~LSEN: in preparation. 

R I A S S U N T 0  (*) 

Si studiano dal punto di vista delle propricts di simmctria lc funzioni duali a N 
punti con grafici ad albero. Usando per B~ un integrale ciclico con eontorno simmetrico, 
si deduce un insieme di relazioni semplici ffa N - - 1  funzioni Bz~ e si danno le 
regole per scrivere rclazioni pifi complicate. Inoltre si stabilisce una nuova relazione ffa 
l'integrale eiclico simmetrico e l'integrale <~multiperiferico ~> convenzionale per Bzr. 
Infine si usano entrambi i metodi per studiare le propriet~ di segno di B~. 

(*) Traduzione a cura della Redazione.  
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CBOfiCTBa CHMMeTpHH ~yaJIbHblX ,~peBOBH2[HblX N-TOqeqHblX aMH.rlHTy,~. 

Pe3mMe (*). - -  ~[yan1,able ~peBOBrI~Hl, Ie N-xo~e~HbIe qbyr I~rm Hccne~yrowcn c TO~rri 

3peHHn CBOHCTB CHMMeTpI~I. I/IcIIOJIb3y~I /<pyroBo~ CHMMeTpI4XlHBI/~ KOHTypHI, n~ m l x e r p a n  
~na  B~v, MI, I BBIBO~,IM CrlCTeMy IIpOCTblX COOTHOlnenrlR MeeKly N -  1 B N qbyHKIVelm~I 
H IIpI~o~a~M IlpaBH~a ~Ym HalIrlCaHrI~t 6o~Iee CnOmHblX COOTHOmeHHfi. 3aTeM IvmI yCTa- 
HaBnHBaeM HOBOe COOTHOrrreHHe Mex~Iy Kpyl-OBBIM CBMMeTpHqHBIM HaTerpaJIOM H o 6 m e -  
IIpHH$1TBIM <( MyHBTHIIepHqbepHHeCKHM >) HFITeFpaHoM ~IYlH B2~. B aarsno~eH~te, o6a iIO~XO~a 
HCrlOJIb3ytOTCa ~J/~ 1,13yHeHH~I CI, IFHaTypHBIX CBOHCTB B N. 

(') IIepeeec)eno peOaKque~. 


