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Summary. The properties of the tensor components of the transition
operator with respect to an arbitrary compact group are investigated.
The principal result is that as a consequence of unitarity the transition
operator always has an invariant component whose imaginary part is
nonnegative. The connection of this result with the consistency of pheno-
menological calculations in broken-symmetry models is discussed.

The consequences of higher (broken) symmetry schemes in scattering
processes have been the subject of numerous investigations (*). However, the
subject has always been plagued with serious conceptual difficulties particu-
larly in connection with the phenomenological perturbation-theoretic ap-
proach which was so sucecessful in obtaining mass formulae. We have no pro-
posals in mind for a more well-founded treatment of broken symmetries in
such problems. Nevertheless, the transition operator 7 is virtually unique
among physically interesting operators in that a general analysis of its tensor
decomposition with respect to any compact group is possible without further
assumptions. From this fact we will be able to demonstrate at least some meas-
ure of consistency within the present rather ill-defined framework.

The tensor decomposition of 7' will be defined in terms of the following

(") This work was supported in part by the U.S. Atomic Energy Commission.

(*) See H. HarARL: High-Energy Physics and Elementary Particles (I.A.E.A., Vienna,
1965), p. 353, for a review of the topic in the case of SU,. Some recent work on the com-
pletely symmetric limit of SU, has been carried out by 8. MEsukov and G. B. Yopu:
Phys. Rev. Lett., 19, 603 (1967).
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particular characterization of the broken-symmetry problem (2). Let 5# denote

the physical (hadronic) space of states upon which is defined a representation

of a compact group G by unitary operators, U(g), where g€ G (3). Since T

is a bounded operator on J# it possesses a decomposition into a sum of (tensor)

operators which transform irreducibly with respect to @ (see Appendix).
Now T is related to the unitary scattering operator § by

S§=1+414T,
go that
2Im[T)={T"—T)=TT'=T'T .

Therefore, by the Lemma of the Appendix the invariant part, Im[7T®], of
Im[T] is not identically zero and is, moreover, nonnegative irrespective of
the (compact) group G involved or, equivalently, irrespective of the magni-
tude of the symmetry breaking. Since '

Im[T®]#0,

it necessarily follows that 7' is not identically zero as well (*). As a conse-
quence of this, some aspect of respectability can be assigned to the approxi-
mation

T ~ 7O

nainely, the amplitudes in question exist and, secondly, they satisfy those
positivity requirements necessary for meaningful statements concerning total
cross-sections and dominance theorems (*) within this approximation. Except
under additional very strong assumptions no analogous theorems obtain for

(2) This characterization appears to be implicitly assumed in most phenomenological
investigations of symmetry breaking.

(3) The U(g) could be introduced, for example, by defining their transformations
on the «in» or «out» states. Of course, all the U(g) do not commute with all the
generators of the Poincaré group, in general, and this in turn implies that all the U{g)
do not commute with 7 and therein lie the basic conceptual problems of this entire
approach.

(4) One can imagine this scalar part occurring even if the Hamiltonian had no
scalar part. For example, if H = H ® in the unitary-symmetry model we would still
get a scalar part of T through the reduction of the various products of H ® which would
appear if we thought of § as being formally generated by something like the Dyson
prescription. Thus, the existence of a scalar part really provides no insight in the
structure of the interaction as we might expect from the very generality of the result.

(®) L. L. Forpy and R. F. Pe1erLs: Phys. Rev., 130, 1585 (1963); D. Amartr,
L. L. FoLpy, A. STANGHELLINI and L. Vax HovEe: Nuove Cimento, 32, 1685 (1964).
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the nonnegative but unbounded Hamiltonian (H) or mass (M) operators;
we shall comment upon this in more detail below.

It is always tempting to think of T® ag the sum of a « symmetric limit »
transition operator plus a scalar perturbation. Therefore, we seek any other
similarities between 7'® and 7T other than those just proven. One finds by
direct computation that (°)

au
2Im|[T®] — rmt i + z d(lu)—-l z Tﬁj"(@)fTﬁc’”(i) —
n#0 ik o
— o ot + z d(,u}—l ZTQDM') T‘,j“('i)* ,
nFEO ik

which explicitly demonstrates our previous statements, since Im[7] is ob-
viously equal to a sum of nonnegative operators, and also shows that

SO =1 4 470

will not be a unitary operator except in the limit of complete symmetry.
So, except under the latter circumstance, there will always be a scalar « per-
turbation » present in § or 7' (4). Finally, we observe that 7 will not even
be a normal operator, in general.

Equations for Im[T*], u+ 0, similar to the preceding reveal very little
concerning the structure of the higher tensor components of T. However,
from the Lemma in the Appendix we see that neither Im [7%] for any u 0
nor

Im[7— 1] =3 Im[1T"]

[540]

can be nonnegative operators. Also, it is clear that the assumption that the
decomposition of 7' consists of a finite sum over u will be, in general, in conflict
with unitarity unless I'= T® or if @ is a finite group.

Obviously, a similar analysis applies to any unitary operator on #, such
a8 the Poincaré transformations U(a, A), although nothing very useful ap-
pears to result. For example, the U®(a, A) do not satisfy any group properties
nor can the fact that U®(a, A) is not equal to the identity for all @ and 4 be used
used to infer that any of the generators of the Poinearé group necessarily have
invariant parts with respect to G or even tensor decompositions with respect
to G.

In connection with this last observation we would like to discuss very
briefly the question of tensor decompositions for unbounded operators like H

(¢) For this calenlation we take the matrices D¥(g) introduced in the Appendix
to be unitary.
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or M. Clearly, without prior knowledge concerning the common domains and
ranges of the U(g) and those of the operator in question, say H, nothing
can be said concerning tensor decompositions, and the use of such an expansion
for H in broken-symmetry models constitutes a physical assumption eoncern-
ing the structure of both H and the groups on # (?). Thus, the customary
usage of these expansions already implies an extremely intimate interconnec-
tion between the group and the observables in question. In a certain (some-
what vague) sense such an assumption is roughly equivalent to the intuitive
physical expectation that the « symmetry » is not arbitrarily broken.

We point out, finally, that within the context of the usual implicit and
explicit assumptions introduced in conjuction with the derivation of mass
formulae, it is easy to convinee oneself that the conclusions of the Lemma in
the Appendix obtain for H and M.

* %k %

We would like to thank Profs. L. L. Forpy and P. KANTOR for several
very stimulating conversations. I am especially indebted to the latter for
pointing out the difficulties in the case of unbounded operators.

APPENDIX

We outline here those aspects of tensor decompositions which are employed
in the body of the paper. Let 3% (g) denote the character of g € @ with respect
to the irreducible representation (IR) x4 of G (*). The characters corresponding
to the entire set of inequivalent, irreducible representations of @, form a com-
plete orthonormal set on the space of class functions defined on the group
manifold .#. If F(g) is any bounded continuous class function on .# then

F(g)y=3 y*(9)F*

and in particular
F(e)= 3 d(u) F®,

B

() It is interesting to compare these questions of domains, ete., with those encoun-
tered in the specification of the Poincaré transformation properties of fields. See R. F.
STREATER and A. 8. Wicarman: PCT, Spin and Statistics, and All That (New York,
1964), p. 98, 99.

(8) As a matter of convention we let u= 0 correspond to the identity reprcsen-
tation of G.
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where ¢ is the identity element of (7, d(u) is the dimensionality of the IR u,
o =3 79 I(g)
g

and the summation over g represents the (normalized) invariant integration
over 4.

Next, let A be a bounded operator on #. Then for any [, |y) €5,
| Ug)AU(g)!ly> is a bounded continuous funection on .#. If we construct
the class funection

Algh) = 2 | U@AUG 1y,

g

where g—=gy'g~! we see that A(g’) is bounded and continuous on .# and
Ale) = (x| ]y .

Using the results of the preceding paragraph we infer the tensor decomposition

A= 4w,

G

where

AW =d(u) 3 2*(g)* Ug)4U(g)".

4

Given some choice of matrix realizations, D*)(g), of the IR u, we find that
A =3 AP(i) .
The various tensor components are defined by
A6 = dlu) ;D%’(gﬂ) UlgyAU(g)
and transform according to

U(g) A1) Ug) = 3 D¥Ag) AT(0)

]

so that 4{°(i) belongs to the tensorial set [A\”(i); k=1, ..., d(x)]. The oper-
ators A¢”(i) and A}”(j) are linearly independent if u s4» or if k s=1.
In the case that 4 is both bounded and nonnegative, namely,

(e Alay >0, for all |z},
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we see that <z| U(g)4 U(g)"|#)> for any |#) is a bounded, continuous, nonnegative
function on #. Thus,

Lemma: If A is a bounded, nonnegative operator, then 4@ 0 and A°
is also nonnegative.

As a matter of terminology we point out that A® is called the scalar or
invariant component of 4. We also mention the fact that the preceding results
can also be derived using the completeness of the components D{(g) of the
inequivalent IR representation matrices by considering the bounded, con-
tinuous function (x| U(g)AU(g)'|y> directly. Questions concerning the conse-
quences of the possible Hermiticity of A or the existence of symmetries of A
with respect to subgroups of ¢ can be answered in a straightforward manner
using the preceding formalism.

RIASSUNTO (%

8i studiano le proprietd delle componenti tensoriali dell’operatore di transizione
rispetto ad un arbitrario gruppo compatto. Il risultato principale & che, in conse-
guenza dell'unitarietd, I’operatore di transizione ha sempre una componente invariante
la cui parte immaginaria & non negativa. Si discute come questo risultato sia connesso
con la consistenza dei calcoli fenomenologici nei modelli di simmetria infranta.

(") Traduzione a cura della Redazione.

Ten3zopuoe pa3jiomeHHe ONCPATOPA HMEPEXOAA.

Pestome (*). — HUccnenyrores cBoiicTBa TEH30PHBIX KOMIIOHEHT OrepaTopa mepexoaa
MO0 OTHOIUEHWIO K IIPOM3BOJIBHON KOMIAKTHOM rpymme. Kak CleAcTBHE YHHTapHOCTH,
OCHOBHOM p23y/IbTAT NMPEACTABIAET, YTO ONEPATOP Nepexoa BeerAa HMEeT HHBAPHAHTHYIO
KOMIIOHEHTY, Ybsi MHHMas 49acTh He SBAAETCA OTpHuaTenpoll. OOCyxaaeTCs CBA3L ITOTO
pe3ynsTATA ¢ IMOCIENOBATENBHOCTLIO (EHOMEHOIOTHYECKMX BBIMUCICHHH B MOJENAX C
HapyIoIeHHeM CHMMETPHH.

(*) Iepesedeno pedaxyueil.



