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Tensor Decomposition of the Transition Operator (*). 
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Department o] Physics, Case Western Reserve University - Cleveland, O. 

(rieevuto il 20 Febbraio 1968) 

S u m m a r y .  - -  The properties of the tensor components of the transition 
operator with respect to an arbitrary compact group are investigated. 
The principal result is that as a consequence of unitarity the transition 
operator always has an invariant eomponen~ whose imaginary part is 
nonnegative. The connection of this result with the consistency of pheno- 
menologieal calculations in broken-symmetry models is discussed. 

The consequences of higher (broken) symmetry  schemes in scattering 

processes have been the subject of numerous investigations (1). However, the 

subject has always been plagued with serious conceptual difficulties particu- 

larly in connection with the phenomenologieal perturbation-theoret ic ap- 

proach which was so successful in obt,~ining mass formulae. We have no pro- 

posals in mind for a more well-founded t rea tment  of broken symmetries in 

such problems. ~ever the less  the transition operator T is virtually unique 

among physically interesting oper~tors in tha t  a general analysis of its tensor 

decomposition with respect to any compact  group is possible without  further  

assumptions. From this fact  we will be able to demonstrate at  least some meas- 

ure of consistency within the present r~ther ill-defined framework. 

The tensor decomposition of T will be defined in terms of the following 

(*) This work was supported in part by the U.S. Atomic Energy Commission. 
(1) See H. HARARt : High-Energy Physics and Elementary Particles (I.A.E.A., Vienna, 

1965), p. 353, for a review of the topic in the case of SU 3. Some recent work on the com- 
pletely symmetric limit of SU 3 has been carried out by S. MESHKOV and G. B. YODH: 
Phys. Rev. Lett., t9, 603 (1967). 
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par t icular  character izat ion of the b roken - s ymmet ry  problem (2). Le t  J~  denote  

the  physical  (hadronie) space of s ta tes  upon which is defined a representa t ion  

of a compac t  group G b y  un i t a ry  operators,  U(g), where g ~ G (~). Since T 

is a bounded  opera tor  on ~ it  possesses a decomposi t ion into a sum of (tensor) 

operators  which t ransform irreducibly with respect  to a (see Appendix) .  
~ o w  T is re la ted  to the un i t a ry  scat ter ing opera tor  S b y  

so t h a t  

S = I + i T ~  

2 I m [ T ]  ~ i ( T # - - T )  = T T t =  T+ T . 

Therefore,  b y  the L e m m a  of the Appendix  the  invar ian t  par t ,  Im[T(~ of 

I m [ T ]  is not  identically zero and is, moreover ,  nonnegat ive  i r respect ive of 

the  (compact)  group G involved or, equivalently,  i r respect ive of the  magni-  
tude  of the s y m m e t r y  breaking.  Since 

I m  [T  ~~ ~ 0 , 

i t  necessarily follows t h a t  T c~ is not  identically zero as well (~). As a conse- 

quence of this, some aspect  of respectabi l i ty  can be assigned to the  approxi-  

ma t ion  

T ~ T(~ 

namely,  the  ampli tudes  in question exist and, secondly, they  satisfy those 
posi t iv i ty  requirements  necessary for meaningful  s ta tements  concerning to ta l  
cross-sections and  dominance theorems (5) within this approximat ion .  E x c e p t  
under  addi t ional  very  strong assumptions  no analogous theorems obta in  for 

(2) This characterization appears to be implicitly assumed in most phenomenological 
investigations of symmetry breaking. 

(3) The U(g) could be introduced, for example, by defining their transformations 
on the (( in )) or (( out ,) states. Of course, all the U(g) do not commute with all the 
generators of the Poinear6 group, in general, and this in turn implies that all the U(g) 
do not commute with T and therein lie the basic conceptual problems of this entire 
approach. 

(a) One can imagine this scalar part occurring even if the Hamiltonian had no 
scalar part. For example, if H = H (s) in the unitary-symmetry model we would still 
get a scalar part of T through the reduction of the various products of H (s) which would 
appear if we thought of S as being formally generated by something like the Dyson 
prescription. Thus, the existence of a scalar part really provides no insight in the 
structure of the interaction as we might expect from the very generality of the result. 

(5) L. L. FOLDr and R. F. PEIERLS: Phys. Rev., 130, 1585 (1963); D. A~ATI, 
L. L. FOLDY, A. STANGttELLINI and L. VA~ HOVE: Nuovo Cimento, 32, 1685 (1964). 
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the nonnegat ive  bu t  unbounded Hami l ton ian  (H) or mass (M) operators ;  
we shall comment  upon this in more  detail  below. 

I t  is always t empt ing  to th ink  of T (~ as the sum of a <( symmetr ic  l imit  }) 
t ransi t ion opera tor  plus a scalar per turbat ion .  Therefore, we seek any  other  

similarities be tween T (~ and T other than  those jus t  proven.  One finds by  
direct computa t ion  t ha t  ('9 

d(/~) 

2 I m  I T  ~~ 7,~o,* i,(o, + ~ d(#)-~ ~ ~v(.,~t ~v(,.,.;~ 
# # 0 i.7~ 

dCtt) 

- T~o~ T (o,~ + ~ d(#;-~ ~T 'd ' ( i )  T'#' (,i)', 
#:#0 i.~ 

which explicitly demonst ra tes  our previous s ta tements ,  since I m [ T  (~ is ob- 

viously equal to a sum of nonnegat ive  operators,  and also shows tha t  

S ~~ - -  1 q- i T  (~ 

will not  be a un i t a ry  opera tor  except  in the  l imit  of complete  symmet ry .  

So, except  under  the  la t te r  circumstance,  there  will always be a scalar <( per- 
tu rba t ion  }> present  in S or I '  (4). Finally,  we observe t ha t  T (~ will not  even 
be a normal  operator ,  in general. 

Equat ions  for I m  [T~'~I1 , /.t ~ O, similar to the preceding reveal  very  li t t le 
concerning the s t ructure  of the higher tensor components  of T. However ,  

f rom the L e m m a  in the Appendix  we see t ha t  nei ther  I m  [T  (~)] for any  /~ r 0 
nor 

~m I T - -  T(~ = ~ Im [~""~] 

can be nonnegat ive  operators.  Also, i t  is clear tha t  the assumpt ion  t ha t  the 
decomposi t ion of T consists of a finite sum over  # will be, in general, in conflict 
with un i ta r i ty  unless T -  T (~ or if G is a finite group. 

Obviously,  a similar analysis applies to any  un i ta ry  operator  on dr ,  such 
as the Poinear6 t ransformat ions  U(a,  A), a]though nothing very  useful ap- 

pears to result. For  example,  the U(0)(a, A) do not  satisfy any  group propert ies  

nor can the fact  tha t  U(~ A) is not  equal to the ident i ty  for all a a n d A  be used 

used to infer t ha t  any  of the generators  of the Poinear6 group necessarily have  

invar iant  par ts  with respect  to G or even tensor decomposit ions wi th  respect  
to G. 

In  connection with this last  observat ion we would like to discuss very 
briefly the question of tensor  decomposit ions for unbounded  operators  like / /  

(6) For this calculation we take tile matrices D~l~)(g) introduced in the Appendix 
to be unitary. 
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or M. Clearly, wi thout  prior  knowledge concerning the c o m m o n  domains  and  

ranges of the  U(g) and those of the  opera tor  in question, say H,  nothing 
can be said concerning tensor decompositions, and the use of such an expansion 
for H in b roken - s ym m et ry  models const i tutes  a physical assumption concern- 

ing the s t ruc ture  of bo th  H and the  groups on Yf (~). Thus,  the cus tomary  

usage of these expansions a l ready implies an ext remely  in t imate  interconnec- 
t ion be tween the  group and the observables in question. I n  a certain (some- 

w h a t  vague)  sense such an assumpt ion  is roughly equivalent  to the  in tui t ive  

physical  expecta t ion  t ha t  the (~ s y m m e t r y  ~> is not  arbi t rar i ly  broken.  

We  point  out, finally, t ha t  within the context  of the usual  implici t  and 

explicit  assumpt ions  in t roduced in conjuction with the der ivat ion of mass  
formulae,  i t  is e~sy to convince oneself t ha t  the conclusions of the L e m m a  in 
the Appendix  obta in  for H and M. 

We would like to t hank  Profs. L. L. 170LDY and P. KANT01~ for several  

ve ry  s t imula t ing  conversations.  I am especially indebted  to the  la t ter  for 

point ing out  the difficulties in the  ease of unbounded  operators.  

APPENDIX 

We outline here those aspects of tensor decomposit ions which are employed  
in the  body  of the paper .  Le t  Z(')(g) denote the character  of g e G with  respect  
to the  irreducible representa t ion  (IR) # of G (8). The  characters  corresponding 
to the entire set  of inequivalent ,  irreducible representat ions of G, fo rm a com- 
plete or thonormal  set on the space of class funct ions defined on the  group 
manifold  ~#. I f  F(g) is any  bounded  continuous class funct ion on ~ then  

and  in par t icu lar  

F(g) = ~ Z(')(g)F(" 

(7) I t  is interesting to compare ~hese questions of domains, etc., with ~hose encoun- 
tered in the specification of the Poincard transformation properties of fields. See R. F. 
STnEATER and A. S. WmRTMAN: PCT, Spin and Statistics, and All That (New York, 
1964), p. 98, 99. 

(s) As a matter of convention we let # =  0 correspond to the identity reprcsen- 
tati0n of G. 
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where c is the  iden t i ty  element  of (;, d(/~) is the dimensional i ty of the I R  if, 

1"(#> ~ X'"(g)* F(g) , 
g 

and the summat ion  over  g represents  the (normalized) invar ian t  integrat ion 
over  ~#. 

Next ,  let A be a bounded  opera tor  on .;/~. Then for any  ix>, lY} c~ 
<x I U(g)AlT(g)*ly> is a bounded continuous funct ion on ~ .  ] f  we construct  
the class funct ion 

A (9') = Z <xi U@A U@~ly>, 
g 

where ~ ~.lg'g-: we see t ha t  A(g') is bounded  and continuous on ~# and 

A(e) = <xIA[y>. 

Using the results of the preceding pa rag raph  we infer the tensor  decomposit ion 

where 

A = ~ A  (~), 

A("'---- d(#) ~ Z'"'(g)* U(g)A U(g)*. 
g 

Given some choice of m a t r i x  realizations, D(")(g), of the  I R  if, we find t h a t  

A("---- ~A~a'(i). 
i 

The various tensor components  are defined by  

(I*) " A~ (~1 ~ d(#) ~Df~>(g-')  U(g)A U(g)* 
g 

and t rans form according to 

(/z) { ) - U(g)A~)(i) U(g)*= ~ D,~ (g)d'f 0) , 
t 

so tha t  A~')(i) belongs to the tensorial  set L k ~ /; k 1, ..., d(/~)]. The oper- 
ators (a) �9 A~ 0) and AI~)(}) are l inearly independent  if  /~ =/-~ or if k ~ l .  

I n  the case tha t  A is bo th  bounded and nonnegat ive,  namely,  

<x]A]x>>~O, for all Ix>, 
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we see t h a t  (x[ U(g)A U(g)~lx) for  a n y  Ix)  is a b o u n d e d ,  con t inuous ,  n o n n e g a t i v e  
f u n c t i o n  on  ~ / .  Thus ,  

Lemma: I f  A is a b o u n d e d ,  n o n n e g a t i v e  o p e r a t o r ,  t h e n  A (~ ~ 0 a n d  A ~ 
is also n o n n e g a t i v e .  

As  a m a t t e r  of t e r m i n o l o g y  we p o i n t  ou t  t h a t  A (~ is ca l led  t h e  sca l a r  or  
i n v a r i a n t  c o m p o n e n t  of A .  W e  also m e n t i o n  t h e  f ac t  t h a t  t h e  p r e c e d i n g  re su l t s  
can  also be  d e r i v e d  us ing  t h e  comple t enes s  of t h e  c o m p o n e n t s  ~ ~y) of t h e  
i n e q u i v a l e n t  IR, r e p r e s e n t a t i o n  m a t r i c e s  b y  cons ide r ing  t h e  b o u n d e d ,  con-  
t i n u o u s  f u n c t i o n  (x I U(g)AU(g)~ly) d i r ec t ly .  Ques t ions  conce rn ing  t h e  conse-  
quences  of t h e  poss ib l e  H e r m i t i c i t y  of A or  t he  ex i s t ence  of s y m m e t r i e s  of A 
w i t h  r e s p e c t  to  s u b g r o u p s  of G can  be  a n s w e r e d  in  a s t r a i g h t f o r w a r d  m a n n e r  
u s i n g  t h e  p r e c e d i n g  f o r m a l i s m .  

R I A S S U N T O  (*) 

Si studiano le propriet~ delle componcnti  tcnsoriali dcll 'operatorc di transizione 
r ispetto ad un arbitrario gruppo compatto.  I1 r isultato principalc 5 che, in conse- 
guenza dell 'unitaricts l 'opcratore di transizionc ha sempre unn componente invar iante  
la cui par te  immaginar ia  ~ non negativa. Si discute come questo risultnto sin connesso 
con la consistenza dei calcoli feaomenologici nei modelli di s immetria  iafranta .  

(*) T r a ~ u z l o n e  a cura  de l la  R e d a z i o n e .  

TeH3opHoe pa3ao~em~e onepaTopa nepexo~a. 

Pe3mMe (*). - -  I4ccaegyK~TC~t CBOHCTBR Tert30pm, tx rOM~OI~ertr onepaTopa nepexoga 
no OTrtomermm r 1-lpotI3BOJlbI-IO~ I<OMnarTrtO~ rpymte. KaK cYtegcTBrte yrmTap~ocTn, 
ocrtoaao~t pe3y~bTaT rtpe~cTaBn~teT, ~tTO or~epaTop nepexo~a Bcer~a nMeeT rtHaapHaHTnym 
rOtaUoHertTy, '~bff MHriMa~t qaCTb He ~BhseTc~I OTprtt~aTeflbHOi~. O6cy~aeTc~t CBaab a roro  
pe3y~bTaTa C HOCJ1e)IoBaTeYlbHOCTb~O ~erloMelto~Ior~tqecI~tX BbIqHc~eHm~ a Mo~e~ax c 
rtapymeHHeM ClIMMeTpHrL 

(') IIepeeec)eno pec)ar, que~. 


